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Abstract

Eisenberg and Gale (1959) gave a convex program for
computing market equilibrium for Fisher’s model for lin-
ear utility functions, and Eisenberg (1961) generalized
this to concave homogeneous functions of degree one.
We further generalize to:

1. Homothetic, quasi-concave utilities. This also helps
extend Eisenberg’s result to concave homogeneous
functions of arbitrary degree.

2. We introduce the notion of a trading cone which
enables us to compute market equilibrium in the
presence of economies of scale in production pro-
vided differential pricing is allowed. Applications
to network pricing are provided.

1 Introduction

In a classic work Eisenberg and Gale [9] give a convex
optimization program whose solution yields equilibrium
allocations for the linear case of Fisher’s market equi-
librium problem [4], and Eisenberg [10] extended this
approach to derive a convex program for concave ho-
mogeneous functions of degree one. Their program con-
sists of maximizing a joint utility function of all buyers
(a concave, logarithmic function) over a convex region
defined via linear constraints. Their formulation has a
number of attractive properties: Their joint utility func-
tion is the unique one satisfying the property that the
joint utility of buyers remains unchanged if the money
of one of the buyers, say b, is split among several new
buyers with the same utility function as b (this follows
from Nash bargaining problem [22]). The dual of their
program yields equilibrium prices. The utility derived
by a buyer is the same in all equilibria (contrast this
with the very diverse payoffs received in various Nash
equilibria of a game). For the linear case of Fisher’s
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model, uniqueness and rationality of equilibrium prices
follow easily from this formulation. Furthermore, equi-
librium allocations can be shown to satisfy proportional
fairness [20]. This formulation also gives the only known
combinatorial characterization of the equilibria [16].

Our first result is to extend this approach further
to derive a convex program for continuous, monotone,
homothetic, quasi-concave utility functions. Using our
technique, one can also extend Eisenberg’s result to con-
cave homogeneous functions of arbitrary degree. Our
model also includes producers. At the heart of our proof
is the following: we give a monotone transformation
that yields a log-concave function that is “equivalent”
to such a utility function. Our proof of this fact relies on
a theorem of Friedman [11]. Furthermore, using [11] one
can show that homotheticity is necessary for our result.
Our convex program also inherits some of the fundamen-
tal properties of the Eisenberg-Gale’s convex program,
such as uniqueness of utilities, proportional fairness [20],
and the combinatorial characterization [16].

The study of market equilibria occupies a central
place in mathematical economics. This study was for-
mally started by Walras [27] over a hundred years ago,
and its climax came with the celebrated Arrow-Debreu
Theorem, establishing existence of market equilibria un-
der very general conditions. Despite this progress, the
question of efficient computability of equilibria via poly-
nomial time algorithms was not properly addressed until
recently. The paper of Deng, Papadimitriou and Safra
[5] brought this question to the forefront in the theoret-
ical computer science community and has led to a surge
of activity on this issue [6, 18, 8, 14, 15, 26, 7, 16, 29, 17].

Arrow and Debreu introduced production in their
exchange model, a generalization of Fisher’s model
which does not demarcate between buyers and sellers,
and showed the existence of equilibrium when produc-
ers satisfy decreasing economies of scale, i.e. produc-
tion becomes less and less efficient with the quantity
produced [2]. [23] reports that V. M. Polterovich en-
hanced Fisher’s model with linear utilities to include
producers, and extended the Eisenberg-Gale approach
to derive a convex program for this setting. As reported
in [23], Polterovich assumed only one producer who can



not consume raw materials to produce a finish good.
Over the years, several attempts have been made

on establishing existence of equilibria in the presence
of economies of scale in production, but these at-
tempts have had only limited success, and typically in-
volve weakening the notion of equilibrium [24]. Indeed,
this remains an important issue in mathematical eco-
nomics. Using price differentiation, we can incorporate
economies of scale in production in the following sense:
production becomes more and more efficient as a func-
tion of the number of consumers of this good (rather
than the amount of the good produced). We show ex-
istence of equilibrium and present a polynomial time
algorithm for computing it. Such economies of scale are
natural for instance in software, media and entertain-
ment industries. Applications to network pricing are
provided.

2 The model

Consider a market with sets N of buyers, G of goods,
and M of producers, with |G| = n. Each buyer i ∈ N
has a specified initial endowment of money ei > 0 and a
concave, scalable utility function ui : Rn

+ → R+ for the
goods. (Rn denotes the n-dimensional Euclidean space;
Rn

+ denotes the subset of Rn where each coordinate
is non-negative; R and R+ denote the set of reals
and the set of non-negative reals, respectively; the j-
th coordinate of a point in Rn corresponds to the j-th
good in n.)

A utility function u : Rn
+ → R+ is said to be

concave if for any x, y ∈ Rn
+ and any 0 ≤ α ≤ 1, we

have u(αx + (1− α)y) ≥ αu(x) + (1 − α)u(y). It is
quasi-concave if for any x ∈ Rn

+ and α ∈ R+, the set
{x ∈ Rn

+ : u(x) ≥ α} is convex. For example, the
function ex − 1 is quasi-concave but not concave.

A utility fnction is homothetic if for any x, y ∈ Rn
+

and any α > 0, u(x) ≥ u(y) iff u(αx) ≥ u(αy). It
is monotone if for any x, y ∈ Rn

+ x ≥ y implies that
u(x) ≥ u(y). It is homogeneous of degree d if for any
x ∈ Rn

+ and any α > 0, f(αx) = αdf(x). We assume
that u(0) = 0. The function log 1 + x is homothetic but
not homogeneous.

Each producer k ∈ M has the ability to produce
certain goods and in doing so he is allowed to consume
other goods. A production point for a producer is a point
in Rn. A production point can have positive and as
well as negative coordinates, with positive coordinates
representing output of the corresponding goods and
negative coordinates representing consumption. The set
of production points Pk of each producer k is given and
forms a closed, bounded, convex set. We assume that
there is a production point for each k at which the net
amount (over all producers) of each good produced is

strictly positive. The Fisher setting is a special case of
the above when there is only one producer and his set of
production points is a singleton set consisting of a point
in Rn

+ with each coordinate strictly positive.
An equilibrium is defined as a non-negative price

vector π ∈ Rn
+ at which there exist a bundle of goods

xi ∈ Rn
+ for each buyer i, and production point yk ∈ Pk

for each producer k such that the following conditions
hold:

1. The vector xi optimizes the utility of buyer i given
her endowment ei and the prices π, that is, xi

maximizes ui over all x ∈ Rn
+ such that πT x ≤ ei.

2. The vector yk maximizes the profit πT y over all
y ∈ Pk.

3. For each good j, the total amount produced by the
producers equals the total amount consumed by the
buyers, that is,

∑
i∈N xij =

∑
k∈M ykj .

4. The sum of the profits of all producers equals the
sum of the money possessed by all buyers, that is,∑

k∈M πT yk =
∑

i∈N ei.

Equilibrium prices are also known as market clear-
ing prices. We give a convex optimization problem
whose optimal solution gives market clearing prices; the
proof of this fact follows from the method of variational
calculus. We assume that each convex set corresponding
to producers is either an explicitly given polyhedron or
a convex set with the corresponding strong separation
oracle.

We assume that the utility function of a buyer is
given via an oracle. That is, given x ∈ Rn

+ and α ∈ R+,
the oracle tells us whether α ≤ f(x) or not.

3 Obtaining a concave function from a
quasi-concave homothetic function

Given a function u : Rn
+ → R+, a transformation

yielding function f : Rn
+ → R+ is said to be a monotone

transformation if for any x, y ∈ Rn
+, if u(x) > u(y)

(u(x) = u(y)) then f(x) > f(y) (f(x) = f(y)). It
is easy to see that monotone transformations preserve
monotonicity, quasi-concavity and homotheticity.

In this section, we prove the following central
theorem.

Theorem 3.1. Let u : Rn
+ → R+ be a continuous,

monotone, quasi-concave, homothetic function. Then
there is a monotone transformation yielding a function
f : Rn

+ → R+ that is homogeneous of degree one and is
log-concave. Given an oracle for u and a point x such
that u(x) 6= 0, the transformation can be approximated
to any degree in polynomial time.



We may assume w.l.o.g. that u is not identically
zero. Suppose u(y) = c 6= 0. Then we can scale u
by 1/c to ensure that u attains the value of 1 at some
point. We assume this w.l.o.g. Let us define function
f as follows. For x ∈ Rn

+, if u(x) = 0 then f(x) = 0.
Otherwise, f(x) = α, where α is such that u(x/α) = 1.
We first prove that this transformation is well-defined,
i.e., that such an α exists and is unique.

Lemma 3.1. If u(x) 6= 0 then there exists a unique
α ∈ R+ such that u(x/α) = 1.

Proof. By the assumption made above, u(y) = 1 for
some y ∈ Rn

+. Since u(0) = 0 and u is continuous and
monotone, there exists β ∈ R+ such that u(βy) < u(x).
Now by homotheticity of u,

u(x/β) > u(y) = 1.

Finally, the continuity of u implies the existence of α.
Next we prove uniqueness of α. Since u(0) = 0

and u is continuous and homothetic, we get that if
u(x) = u(cx) for x, c 6= 0 then u(dx) = 0 for all
d ∈ R+. Hence, non-uniqueness of α will contradict
the assumption that u(x) 6= 0.

The definition of f and the monotonicity of u clearly
imply that the transformation given above is monotone,
i.e., u(x) > u(y) (u(x) = u(y)) implies that f(x) > f(y)
(f(x) = f(y)).

Lemma 3.2. f is a homogeneous function of degree 1.

Proof. Let f(x) = α 6= 0. Then u(x/α) = 1. Therefore
u(cx/cα) = 1. Hence f(cx) = cα. The lemma follows.

We finally prove Theorem 3.1.

Proof. [Proof of Theorem 3.1] We apply the monotone
transformation given above to obtain f from u and we
need to show that f is log-concave. Clearly, f inherits
monotonicity and quasi-concavity from u. Moreover,
since f is a homogeneous function, log(f) is concave
along any ray passing through the origin. We now
apply Friedman’s theorem [11] which states that a
monotone, homothetic, quasi-concave function that is
concave along any ray passing through the origin is
concave. Hence we get that log(f) is concave.

Remark : Friedman gives an example showing that
homotheticity is essential for his result. This example
also shows that homotheticity is essential for Theorem
3.1 to hold.

Remark : Observe that the proof of Theorem 3.1 can
be used to show that if f is a concave homogeneous func-
tion of degree d, then f1/d is a log-concave homogeneous
function of degree 1. This helps extend Eisenberg’s [10]
result to concave homogeneous functions of arbitrary
degree.

4 The convex program yielding market
equilibrium

We will assume that the monotone transformation of
Theorem 3.1 has already been applied to the given con-
tinuous, quasi-concave, monotone, homothetic utility
function to yield an equivalent utility function that is
homogeneous of degree one and is log-concave.

Lemma 4.1. Let u(x) from Ω ⊂ Rn → R be a homo-
geneous continuous function of degree d in C1, that is,
u(αx) = αd · u(x) then

∇u(x)T x =
∑

j

uj(x)xj = d · u(x),

where ∇u(x) is the gradient vector function of u(x),
and uj(x) is the partial derivative function of u(x) with
respect to xj.

Proof. For any given x ∈ Ω, Consider u((1 + ε)x)) We
have

(1 + ε)du(x) = u((1 + ε)x))

= u(x) +∇u(x)T ((1 + ε)x− x) + o(ε)

= u(x) + ε∇u(x)T x + o(ε)

Thus,

(1 + ε)du(x)− u(x) = ε∇u(x)T x + o(ε)

or

(1 + ε)d − 1
ε

· u(x) = ∇u(x)T x +
o(ε)
ε

.

Let ε → 0, we have the desired result.

Remark : In Lemma 4.1 and its proof we assumed
that u(x) is in C1, i.e., u(x) is differentiable. This is
not necessary. One can use subdifferntials instead. For
example, suppose

u(x) = min{u1(x), ..., un(x)}

where each ui(x) ∈ C1 with homogeneous degree d.
Thus, u(x) is not necessarily in C1. At any point x,
let

u(x) = u1(x) = ... = um(x), 1 ≤ m ≤ n.



Then, the subdifferentials of u(x) is a convex combina-
tion of ∇u1(x),..., ∇um(x), that is,

∇u(x) =
m∑

i=1

αi∇ui(x)

where

m∑
i=1

αi = 1, αi ≥ 0, i = 1, ...,m.

Furthermore,

∇u(x)T x =

(
m∑

i=1

αi∇ui(x)

)T

x

=
m∑

i=1

αi(∇ui(x)T x)

=
m∑

i=1

αi(d · ui(x))

=
m∑

i=1

αi(d · u(x))

= d · u(x)

We will also incorporate producers into the model
and using ideas from [23], give the convex program
yielding market equilibrium prices. This will set the
stage for introducing the notion of trading cone in the
next section. Let m index producer k’s production
inequalities. We will show that the optimal solution
to the following convex program yields equilibrium
allocations and productions. Here the first set of
inequalities provide production constraints for producer
k, and the second set ensure that the consumption of
each good does not exceed its production.

maximize
∑

i

ei log(ui(xi))(4.1)

subject to

∀k : ∀m :
∑

j

am
jkyjk ≤ bm

k

∀j :
∑

i

xij ≤
∑

k

yjk

∀i, j : xij ≥ 0

∀i : ui ≥ 0

Under the assumption that the production sets are
closed and bounded, and the assumption that there is
a production point for each producer so that the net

amount of each good produced (over all producers) is
positive, and the (obvious) assumption that none of
the utility functions is the identically-zero function, the
maximum is well-defined. Let x̄ij , ūi, ȳjk denote an
optimal solution to this convex program. Note that ūi >
0 for all i. Consider the Lagrangian relaxation for the
convex program 4.1 by introducing dual variables βm

k for
the first set, and pj for the second set. At optimality,
pj ’s will turn out to be the equilibrium prices. Clearly
at optimality each buyer buys her optimal, i.e., utility
maximizing, bundle. We will additionally show that
each producer is at a production point that maximizes
his profit. This is accomplished by showing that the
optimal solution to convex program 4.1 provides optimal
solutions to the following LP which corresponds to
producer k.

maximize
∑

j

pjyjk(4.2)

subject to

∀m :
∑

j

am
jkyjk ≤ bm

k

∀j : yjk is unconstrained

Theorem 4.1. An optimal solution to the convex pro-
gram 4.1 optimizes for each buyer i her utility and for
each producer k LP 4.2, i.e., buyers are buying opti-
mal bundles and producers maximizing profits. More-
over, the money of each buyer is fully spent and the
total money earned by producers is precisely equal to the
total money initially possessed by buyers.

We will first use Lemma 4.1 to show that buyers
are buying optimal bundles. Then, the dual variables
introduced in obtaining the Lagrangian relaxation of 4.1
will be used in constructing the duals of LP’s 4.2. The
idea of the rest of the proof is to derive conditions on
the primal and dual variables from the optimality of
4.1 which yields feasibility of dual solutions constructed
to LP’s 4.2. Since LP’s 4.2 satisfy complementary
slackness conditions w.r.t. these feasible duals, the
primal solutions constructed are optimal.

Proof. Let us start by taking the Lagrangian relaxation
of program 4.1:

f = min
αl

i
≥0,βm

k
≥0,pj≥0

max
xij≥0,yjk,ui

∑
i

ei log ui

−
∑
kl

(bm
k −

∑
j

al
jkyjk)βm

k −
∑

j

(
∑

k

yjk −
∑

i

xij)pj .

First, the feasible set of the optimization problem is
compact, the maximal solution exists and the maximum



value is finite. Moreover, the optimization problem is
convex. Setting the partial differential of f w.r.t. xij

to be zero, we get ([21], page 105) that there exist
pj such that the following conditions are necessary for
optimality:

ei
uij(x)
ui(x) ≤ pj , ∀i, j

ei
uij(x)xij

ui(x) = pjxij ,

where p is the n-dimensional optimal dual price (La-
grangean) vector. The second equality constraint is
called the complementarity condition.

To prove p is a market clearing price, we sum the
complementarity condition equations over j for agent i,
and have∑

j

pjxij =
∑

j

ei
uij(x)xij

ui(x)

= ei

∑
j uij(x)xij

ui(x)

= ei
ui(x)
ui(x)

= ei

which implies that under prices p each buyer spends her
money completely.

Next setting the partial differential of f w.r.t. yjk

to zero, we get that there exist non-negative βm
k such

that ∑
m

am
jkβm

k = pj(4.3)

βm
k

∑
j

am
jkȳjk = βm

k bm
k(4.4)

pj

∑
i

x̄ij = pj

∑
k

ȳjk(4.5)

We next obtain the dual of LP 4.2.

minimize
∑
m

bm
k ρm

k(4.6)

subject to ∀j :
∑
m

am
jkρm

k = pj

∀m : ρm
k ≥ 0

Note that from Equation 4.3, ρm
k = βm

k forms a
feasible dual solution for this LP. Also, ȳjk is feasible for
LP 4.2. It is easy to verify using Equation 4.4 that the
complementary slackness conditions are satisfied. Hence
ȳ is an optimal solution for the primal LP 4.2.

Thus both consumers and producers are making
optimal choices with respect to prices pj . Now we have
to show that the market clears. Note that whenever
pj is positive, then by Equation 4.5 the corresponding
inequality for the good j is tight in convex program 4.1.
In other words whenever there is a surplus of good j its
price is zero. If there is surplus of some good that has
zero price we just give this surplus to some buyer. Now
we need to check the conservation of money. Again,
using the fact that each buyer spends her endowment
and Equation 4.5, we get:∑

i

ei =
∑

i

∑
j

pj x̄ij =
∑

j

pj

∑
i

x̄ij

=
∑

j

pj

∑
k

ȳjk =
∑

k

∑
j

pj ȳjk.

Hence we have conservation of money.

Note that once we have an optimal solution to the
convex program 4.1, the optimality conditions yield a
linear program to find the dual variables pj , αl

i, and βm
k .

One can solve this linear program within some bounded
precision. Alternatively, one can use primal-dual path
following interior point methods to solve the convex pro-
gram. As a side result one can derive the value of the
dual variables. The case with separation oracle can be
solved as in [19]. When we solve a convex program us-
ing the ellipsoid algorithm, the algorithm considers only
polynomially many separating hyperplanes (because it
is a polynomial time algorithm). This polynomial num-
ber of separating hyperplanes forms a proof that the
run of the algorithm has found an optimal solution. In
essence, if one writes a linear program consisting of half-
spaces used by a run of the ellipsoid algorithm then
this linear program will have the same solution. Again,
one needs to consider the dual variables corresponding
to these hyperplanes only; this is a polynomial sized
program. Once we know a primal solution, optimal-
ity conditions give a small sized linear program. Alter-
natively, for certain utility functions polynomial-time
interior-point algorithms can be used to further reduce
the computational complexity of the problem, see [29].

Theorem 4.2. There is a polynomial, in the input
size and log(1/ε), time algorithm to find a feasible
primal and a dual for convex program 4.1 (and also
for convex program 5.7 defined later) such that all the
complementarity slacks are less that ε.

5 The trading cone and economies of scale

The second set of inequalities in convex program 4.1
say that the quantity of good consumed is at most the



quantity of good produced. This is not true for goods
which can be simultaneously consumed, e.g., a software
package which can be used by many users. Even in
production, many inputs can be used simultaneously,
e.g., an authors’ efforts are used simultaneously whereas
the physical book itself can’t be. The situation is much
more complicated with the service sector. To encompass
such situations, we define a new notion of a trading
cone which defines the feasibility of consumption with
production.

We replace the second set of inequalities in convex
program 4.1 as follows. These inequalities, which are
indexed by h, will create price differentiation for buyers
as well as producers. In return, they will enable
us to impose desirable economic properties, such as
introducing economies of scale for consumption.

maximize
∑

i

ei log(ui(xi))(5.7)

subject to ∀k : ∀m :
∑

j

am
jkyjk ≤ bm

k

∀h :
∑
i,j

dh
ijxij ≤

∑
j,k

gh
jkyjk

∀i, j : xij ≥ 0

∀j, k : yjk is unconstrained

Let the dual variable for the new set of inequalities
be δh; those for the rest of the inequalities are as
before. Setting the partial differential of f w.r.t. xij , yjk

respectively to be zero, we get:

eiuij(xi)
ui

=
∑

h

δhdh
ij

∑
m

am
jkβm

k =
∑

h

δhgh
jk

Let pij denote the price of good j for buyer i and
qjk denote the price of good j for producer k. Then,
by letting pij =

∑
h δhdh

ij and qjk =
∑

h δhgh
jk, one can

show conservation of money as in Theorem 4.1.
Let us see by an example how the notion of trading

cone can be used to model economies of scale, which
had been a hard modeling question in the theory of
equilibrium. Let us consider the set cover problem.
This problem consists of a set of buyers, U , and a set of
sellers, each with a fixed endowment of a subset of U . A
buyer i has a money ei and her utility function is linear
in the number of sets she buys containing her. The
supply of each set, S, is dS . Also, for each set S, we have
a submodular function fS ; for T ⊂ S, fS(T ) says how
much S is needed to serve each user in T to the extent

of one. Economies of scale are being modeled since
fS is submodular (more precisely fS is a polymatroid
function, because fS is submodular, monotonic, non-
negative and zero at the empty set).

Let us now consider various scenarios based on
fS ’s. Suppose each fS is just the cardinality function,
i.e., fS(T ) = |T |. This means each copy of S can
serve at most one user to the extent of one. We call
such a set S an exclusive good. As an example, a
book can be shared by two people to the extent of
half. The corresponding trading cone can be written
as: ∀S :

∑
i∈S xiS ≤ yS , where xiS denotes the

consumption of S by i, and yS denotes the supply
of S. Another case is when fS(T ) = 1 for every
nonempty set T . We call such a good a nonexclusive
good. An example is services of an author to write a
book. Another major example is software. Once some
software is developed, it can used by many users on a
nonexclusive basis. The corresponding trading cone can
be written as: ∀S : maxi∈S xiS ≤ yS , which further can
be written as: ∀S and i ∈ S : xiS ≤ yS .

These two cases are the extremes for submodular
functions. Typically, in real life, for any manufactur-
ing activity we have both kinds of input, exclusive and
nonexclusive, e.g., exclusive inputs are physical raw ma-
terial and nonexclusive inputs are research and devel-
opment. Other inputs, like labor, are typically neither
exclusive nor nonexclusive, but still satisfy economies of
scale.

Next let us deal with general submodular functions.
We want to come up with a cone which defines the
feasibility of the x and y variables. Consider a set S.
Suppose it is supplied to the extent of yS . Suppose xiS

is the demand for this set by user i. We want to describe
whether the supply yS of S can satisfy the demand of
xiS ’s. In other words we want to figure out whether yS

can be decomposed into yT
S ’s, where T ’s are subsets of

S, and yT
S denotes the extent to which S is available for

T , i.e., ∑
T⊆S

yT
S ≤ yS

∀i ∈ S : xiS ≤
∑

T :i∈T

yT
S

fS(T )
.

For convenience we define zT
S = yT

S /fS(T ). Using
this equality the above two conditions become:∑

T⊆S

fS(T )zT
S ≤ yS(5.8)

∀i ∈ S : xiS ≤
∑

T :i∈T

zT
S(5.9)



Lemma 5.1. Suppose z satisfy inequalities 5.8 and 5.9.
We may assume that whenever zT1

S > 0 and zT2
S > 0,

either T1 ⊆ T2 or T2 ⊆ T1. W.l.o.g. we may in fact
assume that the former is the case.

Lemma 5.1 says that we may assume that the zS ’s
are zero, except for a telescoping sequence of subsets.
Let us consider a permutation σ on users, so that
without loss of generality we may assume that zS is zero
except for the sets T1 = {σ1}, T2 = {σ1, σ2}, · · ·Ts =
{σ1.σ2, · · · , σs}, where s is the cardinality of S.

Lemma 5.2. Inequalities 5.8 and 5.9 imply the follow-
ing:

fS(T1)xσ1S + (fS(T2)− fS(T1))xσ2S

+(fS(T3)− fS(T2))xσ3S · · · (fS(Ts)− fS(Ts−1))xσsS ≤ yS .

Proof. Denote the empty set by T0, so we have fS(T0) =
0. Now the left hand side of the above inequality
becomes:

s∑
i=1

(fS(Ti)− fS(Ti−1))xσiS

≤
s∑

i=1

(fS(Ti)− fS(Ti−1))
∑

Tj :i∈Tj

z
Tj

S

=
s∑

j=1

j∑
i=1

(fS(Ti)− fS(Ti−1)) z
Tj

S .

The first inequality follows from the inequality 5.9
and the second equality follows by changing the order
of summation.

s∑
j=1

j∑
i=1

(fS(Ti)− fS(Ti−1)) z
Tj

S =
s∑

j=1

fS(Tj)z
Tj

S ≤ yS .

Here the first equality follows from cancellation and
the second follows from the inequality 5.8.

Theorem 5.1. The trading cone corresponding to sub-
modular function fS consists of the following inequality
for each permutation σ on the users in S:

fS(T1)xσ1S + (fS(T2)− fS(T1))xσ2S

+(fS(T3)− fS(T2))xσ3S · · · (fS(Ts)− fS(Ts−1))xσsS

≤ yS .

Proof. Let us prove the easier direction first. Suppose
the inequality in this theorem is valid for every permu-
tation then we need to show that we can find zT

S ’s so

that inequalities 5.8 and 5.9 hold. Choose the permu-
tation σ which puts xiS ’s in descending order. Choose
z

Tj

S = xσjS−xσj+1S except for zTs

S which is simply xσsS .
It is easy to verify inequalities 5.8 and 5.9.

For the harder direction, suppose we have xiS ’s and
yS so that zT

S ’s exist that satisfy inequalities 5.8 and
5.9. Again consider a permutation σ which puts xiS ’s
in descending order. It is not difficult to see that the in-
equality in the theorem is satisfied for this permutation.
But what about the other permutations? Consider π as
an arbitrary permutation. Using submodularity we will
show that the left hand side of the inequality in the the-
orem for permutation π is at most the left hand side of
the inequality for permutation σ. It is easy to verify
that when π also puts xiS ’s in descending order then
the left hand side of the inequality in theorem is the
same for π and σ.

Let us assume that π does not put x′iSs in descend-
ing order. Suppose for some j, xπjS < xπj+1S . We
create another permutation by interchanging the places
of j and j + 1 and keeping the rest the same. We claim
that this procedure can not decrease the left hand side
of the inequality in the theorem.

Suppose it does, then we have:

(fS({π1, . . . , πj})− fS({π1, . . . , πj−1}))xπjS

+(fS({π1, . . . , πj+1})− fS({π1, . . . , πj}))xπj+1S

> (fS({π1, . . . , πj−1, πj+1})− fS({π1, . . . , πj−1}))xπj+1S

+(fS({π1, . . . , πj+1})− fS({π1, . . . , πj−1, πj+1}))xπjS .

Rearranging terms we get:

(fS({π1, . . . , πj}) + fS({π1, . . . , πj−1, πj+1})

−fS({π1, . . . , πj−1})−fS({π1, . . . , πj+1})
(
xπjS − xπj+1S

)
> 0

This gives a contradiction because the first factor
is nonnegative by submodularity of fS and the second
factor is negative because of the assumption. This
completes the proof.

This theorem shows that an equilibrium exists. One
can consider the trading cone consisting of all the s-
factorial inequalities for every set S. The number of
such inequalities can’t be explicitly written. The proof
of the above theorem also gives us a separation oracle.
Given x′iSs and yS , verify the inequality corresponding
to that permutation which put xiS ’s in descending
order.

Economies of scale via submodular functions are
just an example of the power we get by introducing
trading cones. It is worthwhile studying this notion
further.



5.1 A natural application to network pricing
Using the framework proposed by [1] for utilizing Net-
work Coding, we present a natural application of the
notion of trading cone to network pricing.

Suppose we are given a directed network with ca-
pacities on edges and a special node s, the sender, that
is running a broadcasting session. There is a set of re-
ceivers, R, who want to receive this broadcast. The
sender s is running the broadcasting session in an asyn-
chronous fashion. The sender has M packets to broad-
cast and keeps sending out random linear combinations
of these M packets. Random linear combinations are
linearly independent with high probability so each re-
ceiver needs to accumulate only a little more than M
packets to retrieve the information. This scheme allows
the receivers to accumulate packets at different rate.

Using the framework of Network Coding [3], each
receiver can accumulate the packets at a rate which
equals the bandwidth between the sender and the
receiver (see [28]). Hence an edge can simultaneously
augment the flow to more than one receiver. This is
precisely the notion of economies of scale which the
trading cone can deal with. Let us define a market in
this setting. Each receiver is a buyer and each edge is
a seller of bandwidth – the most it can sell to a buyer
is its capacity. Assume that receiver i has money mi.
([1] use this notion to control congestion in a scenario
where multiple broadcasting sessions are being run on
the same network. This is along the lines of [20].) Each
receiver wants to maximize the rate at which packets
are accumulated and we assume that a buyer’s utility
is proportional to this rate. Using network coding,
this rate is the maximum flow from the sender to the
receiver. The convex program whose optimal solution
gives market equilibrium is as follows:

maximize
∑

i

mi log(ri)(5.10)

subject to ∀i :
∑
p∈Pi

xp ≥ ri

∀e : ye ≤ Cap(e)

∀e, i :
∑

p∈Pi:e∈p

xp ≤ ye

∀i : ri ≥ 0

∀p : xp ≥ 0

Here variable ri denotes the rate of consumption by
the i-th receiver, Pi the set of all paths from the sender
to receiver, Cap(e) the capacity of e, and ye the amount
of capacity sold by edge e. The first set of constraints
chooses paths for routing ri amount of flow from the
sender to the i-th receiver. The second set of constraints

implies that an edge can not sell more capacity than
available. The third set of constraints represents the
trading cone between what the receivers bought and
what the edges sold. Note that a unit capacity bought
on some edge e can potentially be used simultaneously
by all the receivers but can’t be used to more than a
unit extent by any one receiver.

In the Lagrangian relaxation, the dual variable
corresponding to the first set of constraints for the
i-the receiver denotes the amount of money paid by
the receivers for one unit of flow. The dual variables
corresponding to the second set of constraints for the
edge e denote the amount of money received by edge
e for one unit of capacity. The dual variables for the
third set of constraints denote how the money received
from the receivers is distributed among various edges.
Note that an edge can receive money from more than
one receiver and that too at an unequal rate.

A more enlightening example is when there are
more than one broadcasting sessions happening on the
same network. Let the senders of these sessions be
denoted by sj ’s. Let Rj denote the set of receivers
interested in getting data from sj . We superscript the
variables corresponding to the j-th broadcast by j. The
Eisenberg-Gale convex program becomes:

maximize
∑

j,i∈Rj

mj
i log(rj

i )(5.11)

subject to ∀j, i ∈ Rj :
∑

p∈P j
i

xj
p ≥ rj

i

∀e : ye ≤ Cap(e)

∀e :
∑

j

yj
e ≤ ye

∀e, j, i ∈ Rj :
∑

p∈P j
i
:e∈p

xj
p ≤ yj

e

∀j, i ∈ Rj : rj
i ≥ 0

∀p : xj
p ≥ 0

The variables have the same meaning as in the
previous scenario except they are in the context of
j. The first set of constraints represent the paths
bought by the i-th receiver in j-th sessions. The second
constraints represent the capacity sold by the edge e.
The third and the fourth sets of constraints represent
the capacity bought by different sessions. Note that
a unit of capacity sold on one edge can help only one
session. So there is no economies of scale. This means
that the capacity on an edge e is sold to different sessions
at the same price. Within a session this capacity can be
used by many receivers simultaneously hence the price



paid by the session to the edge e is the sum of prices
paid by the receivers in the session. The situation can
be thought of as if a session acts as an intermediary
to buy capacity on the edges for its receivers. This
example demonstrates that the trading cone can be
quite sophisticated. Agarwal et. al. [1] is exploiting
this interpretation of trading cone in controlling the
congestion in case there are many broadcasting sessions
running based on Network Coding.
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