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Abstract

We consider two models of computation for Tarski’s order preserving function f related to fixed
points in a complete lattice: the oracle function model and the polynomial function model. We
develop a complete understanding under the oracle function model for finding a Tarski’s fixed point
as well as determining the uniqueness of Tarski’s fixed point in both the lexicographic ordering
and the componentwise ordering lattices. Moreover, we present a polynomial-time reduction of
an integer program to an order preserving mapping f from a lattice L into itself. As a result of
this reduction, we prove that, when f is given as a polynomial function, determining whether or
not f has a unique fixed point is Co-NP hard.

Keywords: Lexicographic Ordering, Componentwise Ordering, Lattice, Finite Lattice, Order
Preserving Mapping, Fixed Point, Integer Programming, Co-NP Completeness, Co-NP Hardness

1 Introduction

A partially order set L is defined with ¹ as a binary relation on the set L such that ¹ is reflexive,
transitive, and anti-symmetric. A lattice is a partially ordered set (L,¹), in which any two elements
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x and y have a least upper bound (supremum), supL(x,y) = inf{z ∈ L | x ¹ z and y ¹ z}, and a
greatest lower bound (infimum), infL(x,y) = sup{z ∈ L | z ¹ x and z ¹ y}, in the set. A lattice
(L,¹) is complete if every nonempty subset of L has a supremum and an infimum in L. Let f be a
mapping from L to itself. f is order-preserving if f(x) ¹ f(y) for any x and y of L with x ¹ y.

The well-known Tarski’s fixed point theorem (Tarski)[23] asserts that, if (L,¹) is a complete
lattice and f is order-preserving from L into itself, then there exists some x∗ ∈ L such that f(x∗) =
x∗. This theorem plays a crucial role in the study of supermodular games (or games with strategic
complementarities) for economic analysis. Supermodular games were formalized in Topkis [24] and
have been extensively applied in the literature such as Bernstein and Federgruen [2][3], Cachon [6],
Cachon and Lariviere [7], Fudenberg and Tirole [15], Lippman and McCardle [19], Milgrom and
Roberts [20][21], Milgrom and Shannon [22], Topkis [25], and Vives [26][27]. To compute a Nash
equilibrium of a supermodular game, a generic approach is to convert it into the computation of a
fixed point of an order preserving mapping. Recently, an algorithm has been proposed in Echenique
[14] to find all pure strategy Nash equilibria of a supermodular game, which motivated to the study
in this paper.

An efficient computational algorithm for the fixed point has been a recognized important technical
advantage in applications. Further, it is sometimes desirable to know if an already-found fixed point
for such applications is unique or not, for the decision whether additional resource should be spent
to improve the already found solution. There were some interesting complexity results in algorithmic
game theory research along this line, on determining whether or not a game has a unique equilibrium
point. For the bimatrix game, Gilboa and Zemel [16] showed that it is NP-hard to determine whether
or not there is a second Nash equilibrium. For this problem, computing even one equilibrium (which
is know to exist), is already difficult and no polynomial time algorithms are known: Nash equilibrium
for the bimatrix game is known to be PPAD-complete [11]. Similar cases are known for other problems
such as the market equilibrium computation (Codenotti et al.)[5].

In this work, we consider the fixed point computation of order preserving functions over a complete
lattice, both for finding a solution and for determining the uniqueness of an already-found solution.
We are interested in both the oracle function model and polynomial function model. For the fixed
point problem, the domain space is usually huge. As we are considering a discrete version with the
lattice, the search space is well-defined. For an instance of the problem, we would need an order
preserving function and functions for lattice operations. For those functions, one or two lattice
points are given as the input and another lattice point will be returned as the output. Therefore, the
most succinct representation of the lattice (L,¹) will be those enough to represent a lattice point
which requires O(log |L|) bits. That observation has been the main motivation in most interesting
discussions restricting the input size to log |L|. It is enough for the representation of a variable in a
lattice of size |L|. Both the oracle function model and the polynomial time function model return
the function value f(x) on a lattice node x where x is of size log |L|. They differ in the ways the
functions are computed. The polynomial time function model computes f(x) by an explicitly given
algorithm, in time polynomial of log |L|. The oracle model, on the other hand, always returns the
value in one oracle step. More details on comparing the two models can be found in Section 2.2.

1.1 Main Results

We focus on the componentwise ordering and lexicographic ordering finite lattices. Let Ld = {x ∈
Zd | a ≤ x ≤ b}, where a and b are two finite vectors of Zd with a < b. We denote the compo-
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nentwise ordering and the lexicographic ordering as ≤c and ≤l, respectively. Clearly, (Ld,≤c) is a
finite lattice with the componentwise ordering and (Ld,≤l) is a finite lattice with the lexicographic
ordering.

Let fc and fl be an order preserving mapping from Ld into itself under the componentwise
ordering and the lexicographic ordering, respectively.

1.1.1 Oracle Function Model

When fl(·) and fc(·) are given as oracle functions, we develop a complete understanding for finding
a Tarski’s fixed point as well as determining the uniqueness of Tarski’s fixed point in both the
lexicographic ordering and the componentwise ordering lattices.

We develop an algorithm of time complexity O((log |L|)d) to find a Tarski’s fixed point on the
componentwise ordering lattice (L,≤c), for any dimension d. This algorithm is based on the binary
search method. We first present the algorithm when d = 2. Following a similar principle, this
algorithm can be generalized to any constant dimension. This is the first known polynomial time
algorithm for finding a Tarski’s fixed point in terms of the componentwise ordering. In the literatures,
a polynomial time algorithm was only known for the total order lattices (Chang et al.) [8], where
any pair of lattice points are comparable.

On the other hand, given a general lattice (L,¹) with one already known fixed point, to find out
whether it is unique will take Ω(|L|) time for any algorithm. For a componentwise ordering lattice,
we derive a Θ(N1 + N2 + · · ·+ Nd) matching bound for determining the uniqueness of Tarski’s fixed
point, where L = {x ∈ Zd | a ≤ x ≤ b} and Ni = bi−ai. In addition, we prove this matching bound
for both deterministic algorithm and randomized algorithm.

For a lexicographic ordering lattice, it can be viewed as a componentwise ordering lattice with
dimension one by an appropriate polynomial time transformation to change the oracle function for
the d-dimension space to an oracle function on the 1-dimension space. All the above results can be
transplanted onto the lexicographic ordering lattice with a set of related parameters.

1.1.2 Polynomial Function Model

Under the polynomial time function model, our polynomial time algorithm applies when the dimen-
sion is any finite constant. When the dimension is used as a part of the input size in unary, we first
present a polynomial-time reduction of integer programming to an order preserving mapping f from
a componentwise ordering lattice L into itself. As a result of this reduction, we obtain that, given f
as a polynomial time function, determining whether f has a unique fixed point in L is a Co-NP hard
problem. Furthermore, even when the dimension is one, we also find a polynomial-time reduction
of determining the feasibility of an integer programming to the uniqueness of Tarski’s fixed point
in a lexicographic lattice. This shows that determining the uniqueness of Tarski’s fixed point in a
lexicographic lattice is Co-NP hard though there exists a polynomial-time algorithm for computing
a Tarski’s fixed point in a lexicographic lattice in any dimension.

1.2 Related Work

For the oracle function model, when the lattice (L,¹) has a total order, i.e., all the point in the
lattice is comparable, there is a matching bound of θ(log |L|) in Chang et al.[8]. It is a special case of
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our result for the oracle function model since a total order lattice is equivalent to a componentwise
ordering lattice of dimension one.

1.3 Organization

The rest of the paper is organized as follows. First, in Section 2, we present definitions as well as the
difference of the polynomial function model and the oracle function model. We develop polynomial
time algorithms in oracle function model for componentwise ordering and lexicographic ordering in
Section 3. In Section 4, we derive the matching bound for determining the uniqueness of Tarski’s fixed
point under the oracle function model. We prove co-NP hardness for determining the uniqueness of
Tarski’s fixed point under the polynomial function model in Section 5. We conclude with discussion
and remarks on our results and open problems in Section 6.

2 Preliminaries

In this section, we first introduce formal definitions of some relevant concepts as well as Tarski’s
fixed point theorem. We then compare the difference between the oracle function model and the
polynomial function model.

2.1 Definitions and Theorems

Definition 1. (Partial Order vs. Total Order) A relationship ¹ on a set L is a partial order if it
satisfies reflexivity (∀a ∈ L : a ¹ a); antisymmetry (a ¹ b and b ¹ a implies a = b); transitivity
(a ¹ b and b ¹ c implies a ¹ c). It is a total order if ∀a,b ∈ L: either a ¹ b or b ¹ a.

Definition 2. (Lattice) (L,¹) is a lattice if

1. L is a partial ordered set;

2. There are two operations: meet ∧ and join ∨ on any pair of elements a,b of L such that
a,b ¹ a ∨ b and a ∧ b ¹ a,b

The lattice is complete if, for any subset A = {a1,a2, · · · ,ak} ⊆ L, there is a unique meet and a
unique join:

∧
A = (a1 ∧ a2 ∧ · · · ∧ ak) and

∨
A = (a1 ∨ a2 ∨ · · · ∨ ak).

For simplicity, we use L for a lattice when no ambiguity exists on ¹. We should specify ¹
whenever it is necessary.

Definition 3. (Order Preserving Function) A function f on a lattice (L,¹) is order preserving if
a ¹ b implies f(a) ¹ f(b).

Theorem 1. (Tarski’s Fixed Point Theorem)[23]. If L is a complete lattice and f an increasing
from L to itself, there exists some x∗ ∈ L such that f(x∗) = x∗, which is a fixed point of f .

This theorem guarantees the existence of fixed points of any order-preserving function f : L → L
on any nonempty complete lattice.

Definition 4. (Lexicographic Ordering Function). Given a set of points on a d-dimensional space
Rd, the lexicographic ordering function ≤l is defined as:

∀x,y ∈ Rd, x ≤l y if either x = y or xi = yi, i = 1, 2, . . . , k − 1, and xk < yk for some k ≤ d.
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Definition 5. (Componentwise Ordering Function). Given a set of points on a d-dimensional space,
the componentwise ordering function ≤c is defined as:

∀x,y ∈ Rd, x ≤c y if ∀i ∈ {1, 2, · · · , d} : xi ≤ yi.

2.2 The oracle function model versus the polynomial time function model.

In recent years, the computational complexities of the fixed point computation has received intensive
examinations, under both the oracle function model and the polynomial time function model.

The differences of these two models have an impact on the computational complexities of them.
For the oracle function model, the function value f(x) is revealed only if the value x is specified
to the oracle. The oracle is restricted to be consistent in that the answer has to be consistent in
the returned values, i.e., the returned values of the same input x in different queries must be the
same. However, it still has the flexibility in the choices of function values dependent on the algorithm
designed to find the guaranteed fixed point. In this sense, the oracle has a huge range of functions to
choose from, and hence makes it difficult for an algorithm to deal with all the answer sequences with
respect to its query sequences. The oracle model allows for any function to be used and therefore
often demands a large complexity to handle every case. The polynomial time function model, on the
other hand, provides, a prior, a function computable in polynomial time with respect to the input
size, such as a circuit of AND/OR/NOT gates of size polynomial in the input size. It is possible that
the algorithmic designer could utilize the knowledge of the polynomial time computable function
to design a fast fixed point computation procedure though there has no universal framework to tell
us how to do it. Therefore, the polynomial time function model can only accommodate a much
less number of functions than the oracle function model. Hence, one may only need to consider a
smaller set of functions than that in the oracle function model. Hence, the oracle function model
often demands a large computational complexity. More details on comparing these two models in
the general fixed point computation can be found in (Deng et al.)[13].

3 Polynomial Time Algorithm under Oracle Function Model

In this section, we consider the complexity of finding a Tarski’s fixed point in any constant dimension
d with the function value f given by an oracle. Chang et al. [8] proved that a fixed point can be
found in time polynomial when the given lattice is total order.

Define L = {x ∈ Zd | a ≤ x ≤ b}, where a and b are two finite vectors of Zd with a < b.

Theorem 2. (Chang et al.)[8] When (L,¹) is given as input and the order preserving function f is
given as oracles, a Tarski’s fixed point can be found in time O(log |L|) on a finite lattice when ¹ is
a total order on L.

Since any two vectors in the lexicographic ordering is comparable, the lexicographic ordering is
a total order. We have

Corollary 1. When (L,¹) is given as input and the order preserving function f is given as oracles,
a Tarski’s fixed point can be found in time O(log |L|) on a finite lattice when ¹ is the lexicographic
ordering on L.

The proof is rather standard utilizing the total order property of the lexicographic ordering.
As the componentwise ordering lattice cannot be modeled as a total order, it leaves open the oracle
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complexity of finding a fixed point in componentwise ordering lattice. Here we show that this problem
is also polynomial time solvable, by designing a polynomial algorithm to find a fixed point of f in
time O((log |L|)d) given componentwise ordering lattice L.

The algorithm exploits the order properties of the componentwise lattice and applying the binary
search method with a dimension reduction technique. To illustrate the main ideas, we first consider
the 2D case before moving on to the general case.

Without loss of generality (WLOG), we assume L is an N × N square centered at point (0, 0).
The componentwise ordering is denoted as ≤c.

Algorithm 3.1. Point check() (A polynomial algorithm for 2D lattice)

• Input:

2-dimensional lattice (L,≤c), |L| = N2 (Input size to the oracle is 2 log N since the input size
for both dimensions to the oracle is log N . )

Oracle function f . f is an order preserving function. ∀x ∈ L, f(x) ∈ L and f(x) ≤c f(y) if
x ≤c y, ∀x,y ∈ L

• Point check(L, f)

Let x0 be the center point in L. Let xL be the left most point in L such that xL
2 = x0

2. Let xR

be the right most point in L such that xR
2 = x0

2.

1. If f(x0) = x0,return(x0);end;
2. If f(x0) ≥c x0,L′ = {x|x ≥c x0,x ∈ L}. Point check(L′, f);
3. If f(x0) ≤c x0, L′′ = {x|x ≤c x0,x ∈ L}. Point check(L′′, f);
4. If f(x0)1 < x0

1 and f(x0)2 > x0
2, Binary Search(xL,x0);

5. If f(x0)1 > x0
1 and f(x0)2 < x0

2, Binary Search(x0,xR);

• Binary Search(x,y)

Let xm = b1/2(x + y)c
1. If f(xm) = xm,return(xm);end;
2. If f(xm) ≥c xm, L′ = {x|x ≥c xm,x ∈ L}. Point check(L′, f);
3. If f(xm) ≤c xm, L′′ = {x|x ≤c xm,x ∈ L}. Point check(L′′, f);
4. If f(xm)1 < xm

1 and f(xm)2 > xm
2 , Binary Search(x,xm);

5. If f(xm)1 > xm
1 and f(xm)2 < xm

2 , Binary Search(xm,y);

Theorem 3. When the order preserving function f is given as an oracle, a Tarski’s fixed point can
be found in time O(log2 N) on a finite 2D lattice formed by integer points of a box with side length
N by using Algorithm 3.1 Point check.

Proof. Start from a lattice of size |L|, we first prove that in at most O(log N) steps the above
algorithm either finds the fixed point or reduces the input lattice to size |L|/2.
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(a) Point check() (b) Binary Search()

Figure 1: A polynomial algorithm for 2D Lattice

Consider the algorithm Point check(L, f).

1. Case I: If f(x0) = x0, x0 is the fixed point which is found in 1 step.

2. Case II: If f(x0) ≥c x0, since f is an order preserving function, ∀y ≥c x0, we have f(y) ≥c

f(x0) ≥c x0. Let L′ = {x|x ≥c x0,x ∈ L}. Define f ′(x) = f(x), ∀x ∈ L′. Then f ′ : L′ → L′ is
a order preserving function on the complete lattice L′. By Tarski’s fixed point theorem, there
must exist a fixed point in L′. Next we only need to check L′ which is only 1/4 size of |L|.

3. Case III: If f(x0) ≤c x0, similar to the analysis in Case II, we only need to consider L′′ =
{x|x ≤c x0,x ∈ L} which is only 1/4 size of |L| in the next step.

4. Case IV: If f(x0)1 < x0
1 and f(x0)2 > x0

2, we prove that Binary Search(xL,x0) finds a fixed
point or reduce the size of the lattice by half in log N

2 steps. Since f is an order preserving
function, ∀ adjacent points u ≤c v ∈ L (i.e., ||u − v||∞ = 1), it is impossible that f(u)1 > u1

and f(v)1 < v1. Thus, on a line segment [x,y] where x2 = y2, if f(x)1 ≥ x1 and f(y)1 < y1,
there must exist a point z such that f(z)1 = z1. On the other hand, we have f(x0)1 < x0

1

and by the boundary condition f(xL)1 ≥ xL
1 , therefore, there must exist a point x′ ∈ [xL, x0)

such that f(x′)1 = x′1. This point x′ can be found in time log N
2 by using binary search. If

f(x′)2 > x′2, similar to the analysis in Case II, we only need to consider L′ = {x|x ≥c x′,x ∈ L}
which is at most 1/2 size of |L| in the next step. If f(x′)2 < x′2, we only need to consider
L′′ = {x|x ≤c x′,x ∈ L} which is at most 1/4 size of |L| in the next step. If f(x′)2 = x′2, then
x′ is the fixed point.

5. Case V: If f(x0)1 > x0
1 and f(x0)2 < x0

2, similarly, we can prove that Binary Search(x0,xR)finds
a fixed point or reduce the size of the lattice by half in log N

2 steps.
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The size of the lattice is reduced by half in every O(log N) steps. Therefore, the algorithm finds
a fixed point in at most O(log N × log L) = O(log2 N) steps.

The above algorithm can be generalized to any constant dimensional lattice with L = {x ∈
Zd | a ≤ x ≤ b}, where a and b are two finite vectors of Zd with a < b. We reduce a (d + 1)-
dimension problem to a d-dimension one. Assume we have an algorithm for a d-dimensional problem
with time complexity O(logd |L|). Let the algorithm be Ad(L, f).

Consider a d+1-dimensional lattice (L,≤c). Choose the central point in L, and denote it by O =
(O1, O2, · · · , Od+1)T . Take the section of L by a hyperplane parallel to xd+1 = 0 passing through O.
Denote it as Ld. Clearly, it is a d-dimensional lattice. We define a new oracle function fd on Ld, based
on the oracle function f on L. Define fd(x1, x2, · · · , xd) = (y1, y2, · · · , yd), if f(x1, x2, · · · , xd, Od+1) =
(y1, y2, · · · , yd, yd+1). We apply the algorithm Ad(Ld, fd) to obtain a Tarski’s fixed point in time
(log |L|)d. Let the fixed point be denoted by x∗. Therefore, f(x∗) = (x∗, Od+1) + aed+1 or f(x∗) =
(x∗, Od+1)− aed+1, where a is some constant, ed+1 is a d + 1 dimensional unit vector with 1 on its
d + 1th position.

In either case, we obtain a new box B with size no more than half of the original box defined
by [a,b], such that f(·) maps all points in B into B and is order preserving. We can apply the
algorithm recursively on B. The base case can be handled easily. Therefore the total time is

T (|L|d+1) ≤ T (
|L|d+1

2
) + O(logd |L|).

It follows that T (|L|d+1) = O(logd |L|).
Algorithm 3.2. Fixed point() (A polynomial algorithm for any constant dimensional lattice)

• Input:

d dimensional lattice Ld, WLOG, |Ld| = Nd (Input size to the oracle is d log N since the input
size for both dimensions to the oracle is log N . )

Oracle function fd. fd is an order preserving function. ∀x ∈ Ld, fd(x) ∈ Ld and fd(x) ≤c

fd(y) if x ≤c y, ∀x,y ∈ Ld

• Fixed point(Ld)

1. If d > 1

(a) Let x0 be the center point in Ld.
(b) Let Ld−1 = {x = (x1, x2, · · · , xd−1)|(x, x0

d) ∈ Ld}.
(c) Let fd−1(x) = (fd(x, x0

d)1, f
d(x, x0

d)2, · · · , fd(x, x0
d)d−1).

(d) x∗ =Fixed point(Ld−1).
(e) If fd(x∗, x0

d)d > x0
d, Ld = {x|x ≥ (x∗, x0

d)}; Fixed point(Ld);
(f) If fd(x∗, x0

d)d < x0
d, Ld = {x|x ≤ (x∗, x0

d)}; Fixed point(Ld);
(g) If fd(x∗, x0

d)d = x0
d, return (x∗, x0

d); end;

2. If d = 1, let xL be the left end point and xR be the right end point. binary search(xL,xR, fd).

• binary search(x,y, f)
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1. If f(xL) = 0, output xL;

2. else if f(xR) = 0, output xR;

3. else

(a) If f(b1/2(xL + xR)c) < b1/2(xL + xR)c, binary search(xL, b1/2(xL + xR)c, f);
(b) If f(b1/2(xL + xR)c) > b1/2(xL + xR)c, binary search(b1/2(xL + xR)c,xR, f);
(c) else output x∗.

Theorem 4. When the order preserving function f is given as an oracle, a Tarski’s fixed point can
be found in time O(logd |L|) on a componentwise ordering lattice (L,≤c).

4 Determining the Uniqueness under Oracle Function Model

It has been a natural question to check whether there is another fixed point after finding the first
one, such as in the applications for finding a Nash equilibrium (Echenique)[14] . In this section we
develop a lower bound that, given a general lattice L with one already known fixed point, determining
whether it is unique will take Ω(|L|) time for any algorithm. Even for the componentwise ordering
lattice, we also derive a Θ(N1 + N2 + · · · + Nd) matching bound for determining the uniqueness of
fixed points even for randomized algorithms. The technique builds on and further reveals crucial
properties of mathematical structures for fixed points.

Theorem 5. Given a lattice (L,¹), an order preserving function f and a fixed point x0, it takes
time Ω(|L|) for any deterministic algorithm to decide whether there is a unique fixed point.

Proof. Consider the lattice on a real line: 0 ≺ 1 ≺ 2 ≺ · · · ≺ L− 1. Let x0 = 0, define f(0) = 0 and
f(x) = x−1 for all x ≥ 1 except a possible fixed point x∗. f(x∗) = x∗ or f(x∗) = x∗−1 which is not
known until we query x∗. Given a deterministic algorithm A, define yj be the j-th item A queried
in its effort to find x∗. Our adversary will answer x− 1 whenever A asks for f(x) until the last item
when the adversary answers x. Clearly this derives a lower bound of L.

For a randomized algorithm R, let pij be the probability R queries x = i on its j-th query. Let
k be the total number of queries R makes. We have:

k∑

j=1

|L|−1∑

i=0

pij = k.

Therefore, there exists i∗ such that
k∑

j=1

pi∗j ≤ k

|L| .

The adversary will place f(i∗) = i∗, which is queried with probability k
|L| < 1/2 when we choose

k = |L|−1
2 . Therefore, we have

Theorem 6. Given a lattice (L,¹), an order preserving function f and a fixed point x0, it takes time
Ω(|L|) for any randomized algorithm to decide whether there is a unique fixed point with probability
at least 1/2.
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As we noted before, for a lexicographic ordering lattice, it can be viewed as a total ordering
lattice or componentwise ordering lattice with dimension one by an appropriate polynomial time
transformation to change the oracle function for the d-dimension space to an oracle function on the
1-dimension space. Therefore,

Corollary 2. Given a lattice (L,≤l), an order preserving function f and a fixed point x0, it takes
time Ω(|L|) both for any deterministic algorithm and for any randomized algorithm to decide whether
there is a unique fixed point with probability at least 1/2.

Next we consider a componentwise ordering lattice.

Theorem 7. Given the componentwise ordering lattice L = N1×N2×· · ·×Nd of d dimensions and
an order preserving function f as well as a known fixed point x0. The deterministic oracle complexity
is θ(N1 + N2 + · · ·+ Nd) to decide whether there is a unique fixed point.

Proof. For dimension d ≥ 2, let L = {x ∈ Z : 0 ≤c x ≤c (N1, N2, · · · , Nd)}. For x = (x1, x2, · · · , xd),
let maxindex(x) = max{i : xi > 0} for any non-zero vector x. Define auxi(x) = −emaxindex(x)

where ei is a unit vector in the i-th coordinate. Therefore, auxi(·) is well defined on nonzero vectors
in the lattice L. One example of two-dimensional case is demonstrated in Fig. 2. The fixed point is
denoted by the red color. The direction of all the other points are defined by the function auxi(·).

Figure 2: auxi(x)

The adversary will set g(x) = f(x) − x to be auxi(x) except at certain points (to be decided
according to the algorithm) where it may hide a zero point.

1. Proof of the Lower Bound:
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First consider x such that xd = 0. It constitutes a solution of d− 1 dimensions. By inductive
hypothesis, it requires time N1 + N2 + · · · + Nd−1 to decide whether or not there is one zero
point at xd = 0.

Second, when there is no such zero point, we need to decide if there is a zero point at x with
xd > 0. Fixing any i > 0, we will set, for all x with xd = i, g(x) = 0 whenever none of such x
is queried, and set g(x) = −ei otherwise. This will take Nd queries.

One may note that the adversary always answers a non-zero value. In fact, for any pair
i = maxindex(x) and j = xi not queried, the adversary can make g(x) = 0 without violating
the order preserving property.

2. Proof of the Upper Bound:

We design an algorithm which always queries the componentwise maximum point of the lattice
xmax = (N1, N2, · · · , Nd). We should have g(xmax) ≤c 0. We are done if it is zero. Otherwise,
there must exist some i, such that g(xmax)i < 0. The problem is reduced to a smaller lattice
L′ = {x ∈ Z : 0 ≤c x ≤c (N1, N2, · · · , Ni−1, Ni − 1, Ni+1, · · · , Nd)} which has a total sum of
side lengths at most N1 + N2 + · · ·+ Nd − 1. The claim follows.

For the randomized lower bound, it follows in the same way as in the one-dimensional case for a
general lattice. We can always set f(x) = 0 for all x with i = maxindex(x) and j = xi if none of
such x is queried.

Corollary 3. Given the componentwise ordering lattice L = N1×N2×· · ·×Nd of d dimensions and
an order preserving function f as well as a known fixed point x0. It takes time θ(N1 +N2 + · · ·+Nd)
for any randomized algorithm to decide whether there is a unique fixed point with probability at least
1/2.

5 Determining Uniqueness under Polynomial Function Model

In this section, we consider the dimension as a part of the input size in unary and develop a hardness
proof for the polynomial function model for determining the uniqueness of a given fixed point. We
start with a polynomial-time reduction from a special class of integer programming which is NP-
complete to one of finding a second Tarski’s fixed point, by deriving an order preserving mapping f
from a componentwise ordering lattice L into itself, with a given fixed point. Therefore, given f as a
polynomial time function with a known fixed point, determining whether f has another fixed point
in L is an NP-hard problem. In other words, determining the uniqueness of a Tarski’s fixed point is
co-NP-hard.

Furthermore, even for the case when the dimension is one, the uniqueness problem is still co-NP-
hard. This can be done by designing a polynomial-time reduction of determining the feasibility of
an integer programming to the uniqueness of Tarski’s fixed point in a lexicographic lattice. As the
lexicographic order defines a total order, it can be reduced to a one dimensional problem by finding
a polynomial time algorithm for the order function calculation. It then follows that determining
the uniqueness of Tarski’s fixed point in a lexicographic lattice is Co-NP hard though there exists
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a polynomial-time algorithm for finding one Tarski’s fixed point in a lexicographic lattice in any
dimension.

Let P = {x ∈ Rn | Ax ≤ b} be a full-dimensional polytope, where A is an m×n rational matrix
satisfying that each row of A has at most one positive entry and b a rational vector of Rm. It has
been shown in (Lagarias)[18] that

Theorem 8. [18] Determining whether there is an integer point in P is an NP-complete problem.

5.1 Co-NP-hard in Componentwise Ordering

Let N = {1, 2, . . . , n}. For any real number α, let bαc denote the greatest integer less than or equal to
α and dαe the smallest integer greater than or equal to α. For any vector x = (x1, x2, . . . , xn)> ∈ Rn,
let bxc = (bx1c, bx2c, . . . , bxnc)> and dxe = (dx1e, dx2e, . . . , dxne)>. Given these notations, we
present a polynomial-time reduction of integer programming, which is as follows.

For any x ∈ Rn, let P (x) = {y ∈ P | y ≤c x}. Then, as a direct result of the property of the
matrix A, one can easily obtain that

Lemma 1. For any given x ∈ Rn, if x1 = (x1
1, x

1
2, . . . , x

1
n)> ∈ P (x) and x2 = (x2

1, x
2
2, . . . , x

2
n)> ∈

P (x), then

x̄ = max(x1,x2) = (max{x1
1, x

2
1},max{x1

2, x
2
2}, . . . , max{x1

n, x2
n})> ∈ P (x).

Let e = (1, 1, . . . , 1)> ∈ Rn. For any given v ∈ Rn, if P (v) 6= ∅, Lemma 1 implies that
maxx∈P (v) e>x has a unique solution, which we denote by xv = (xv

1 , xv
2 , . . . , xv

n)>.

Lemma 2. x ≤c xv for all x ∈ P (v).

Proof. Suppose that there is a point x0 = (x0
1, x

0
2, . . . , x

0
n)> ∈ P (v) with x0

k > xv
k for some

k ∈ N . Then, Lemma 1 implies that

xv0 = (max{x0
1, x

v
1},max{x0

2, x
v
2}, . . . ,max{x0

n, xv
n})> ∈ P (v).

Thus, e>x0v > e>xv = maxx∈P (v) e>x. A contradiction arises. This completes the proof.
Let xmax = (xmax

1 , xmax
2 , . . . , xmax

n )> be the unique solution of maxx∈P e>x and xmin = (xmin
1 , xmin

2 ,
. . . , xmin

n )> with xmin
j = minx∈P xj , j = 1, 2, . . . , n. Then, xmin ≤c x ≤c xmax for all x ∈ P . Let

D(P ) = {x ∈ Zn | xl ≤c x ≤c xu},

where xu = bxmaxc and xl = bxminc. Thus, D(P ) contains all integer points in P . Without loss of
generality, we assume that xl <c xmin (Let xl

i = xmin
i − 1 if xl

i = xmin
i for some i ∈ N). Obviously,

the sizes of both xl and xu are bounded by polynomials of the sizes of the matrix A and the vector
b since xl and xu are obtained from the solutions of linear programs with rational data.

For x ∈ Rn, we define h(x) = bd(x)c with

d(x) =
{

xl if P (x) = ∅,
argmaxy∈P (x)e

>y otherwise.

It follows from Lemma 2 that d(x) is well defined.
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Example 1. Consider P = {x ∈ R3 | Ax ≤c b}, where

A =




2 −1 0
−1 3 0
0 0 2
0 −1 −1




and b = (0,−10, 10, 0)>. For y = (−3,−4, 5)>, h(y) = (−3,−5, 5)>. An illustration of h can be
found in Fig.3.

−5

−4

−3

−2

−5

−4.5

−4
3

3.5

4

4.5

5

h(y)

xu

xl

y

Figure 3: An Illustration of h

Lemma 3. h is an order preserving mapping from Rn to D(P ). Moreover, h(x∗) = x∗ 6= xl if and
only if x∗ is an integer point in P .

Proof. Let x1 and x2 be two different points of Rn with x1 ≤c x2. Then, P (x1) ⊆ P (x2). Thus,
from the definition of d(x), we obtain that xmin ≤c d(x1) ≤c d(x2) ≤c xmax. The first part of the
lemma follows immediately.

Let x∗ be an integer point in P . Then,

d(x∗) = argmaxy∈P (x∗)e
>y = x∗.

Thus, h(x∗) = x∗ 6= xl.
Let x∗ be a point in Rn satisfying that h(x∗) = x∗ 6= xl. Suppose that P (x∗) = ∅. Then,

d(x∗) = xl. Thus,
x∗ = h(x∗) = bxlc = xl.

A contradiction occurs. Therefore, P (x∗) 6= ∅ and, consequently, d(x∗) ∈ P . Since

x∗ ≥c d(x∗) ≥c bd(x∗)c = h(x∗) = x∗,
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hence, d(x∗) = bd(x∗)c = x∗. This completes the proof.
Let (L,≤c) be a finite lattice and f an order preserving mapping from L into itself. As a corollary

of Theorem 8 and Lemma 3, we obtain that

Corollary 4. Given lattice (L,≤c) and an order preserving mapping f as a polynomial function,
determining that f has a unique fixed point in L is a Co-NP hard problem.

It is a remark that the result can also be applied to derive a fixed-point iterative method for
determining wether there is an integer point in such a polytope.

5.2 Co-NP-hard in Lexicographic Ordering

Let P be a polytope of Rn. It is well known that determining there is no integer point in P is a Co-
NP hard problem. We assume n ≥ 2. Let xmax = (xmax

1 , xmax
2 , . . . , xmax

n )> with xmax
j = maxx∈P xj ,

j = 1, 2, . . . , n, and xmin = (xmin
1 , xmin

2 , . . . , xmin
n )> with xmin

j = minx∈P xj , j = 1, 2, . . . , n. Then,
xmin ≤c x ≤c xmax for all x ∈ P . Let D(P ) = {x ∈ Zn | xl ≤c x ≤c xu}, where xu = bxmaxc and
xl = bxminc. Thus, D(P ) contains all integer points of P . We assume without loss of generality that
xl <c xmin (Let xl

i = xmin
i − 1 if xl

i = xmin
i for some i ∈ N).

For y ∈ Rn and k ∈ N , let P (y, k) = {x ∈ P | xi = yi, i = 1, 2, . . . , k}.
Definition 6. For y ∈ D(P ), h(y) = (h1(y), h2(y), . . . , hn(y))> ∈ D(P ) is given in the following
procedure:

Step 0: If y1 = xl
1 or y ∈ P , let

h(y) =
{

xl if y1 = xl
1,

y if y ∈ P .

Otherwise, let k = 2 and go to Step 1.

Step 1: Solve linear program

min xk − vk

subject to x ∈ P (y, k − 1) and v ∈ P (y, k − 1),

to obtain the optimal values (x∗k, v
∗
k). Let xk(y) = x∗k and vk(y) = v∗k. If bvk(y)c < dxk(y)e or

yk < dxk(y)e, go to Step 2. Otherwise, go to Step 3.

Step 2: If yk−1 = xl
k−1 + 1,

hi(y) =
{

yi if 1 ≤ i ≤ k − 2,
xl

i if k − 1 ≤ i ≤ n,

i = 1, 2, . . . , n. If yk−1 > xl
k−1 + 1,

hi(y) =





yi if 1 ≤ i ≤ k − 2,
yk−1 − 1 if i = k − 1,
xu

i if k ≤ i ≤ n,

i = 1, 2, . . . , n.
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Figure 4: An Illustration of h

Step 3: If yk > bvk(y)c,

hi(y) =





yi if 1 ≤ i ≤ k − 1,
bvk(y)c if i = k,
xu

i if k + 1 ≤ i ≤ n,

i = 1, 2, . . . , n. Otherwise, let k = k + 1 and go to Step 1.

Example 2. Consider P = {x ∈ R3 | Ax ≤ b}, where

A =




−1 0 2
0 −2 1
−1 0 −2
1 1 0




and b = (0, 1, 1, 0)>. For y = (0, 0,−1)>, h(y) = (0,−1, 0). An illustration of h can be found in
Figure 4.

For any given y ∈ D(P ) with y1 6= xl
1 and y /∈ P , let k(y) denote the value of k at which the

procedure determines h(y). Clearly, k(y) ≥ 2. For simplicity, let k = k(y) from now on.

Lemma 4. xl ≤ h(y) ≤l y and h(y) 6= y for all y ∈ D(P ) with y 6= xl and y /∈ P .

Proof. Clearly, the lemma holds for all y ∈ D(P ) with y1 = xl
1 and y 6= xl. Let y be any given

point in D(P ) with y1 6= xl
1 and y /∈ P . It is easy to see that

xl
i < dxi(y)e ≤ yi ≤ bvi(y)c, i = 1, 2, . . . , k − 1.

From the procedure, we know that one of the following two situations must occur.
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Situation 1: Consider that bvk(y)c < dxk(y)e or yk < dxk(y)e.
1. Suppose that yk−1 = xl

k−1 + 1. Then, from Step 2, we find that

hi(y) =
{

yi if 1 ≤ i ≤ k − 2,
xl

i if k − 1 ≤ i ≤ n,

i = 1, 2, . . . , n. Thus, it follows from yk−1 > xl
k−1 that xl ≤ h(y) ≤ y and h(y) 6= y.

2. Suppose that yk−1 > xl
k−1 + 1. Then, from Step 2, we find that

hi(y) =





yi if 1 ≤ i ≤ k − 2,
yk−1 − 1 if i = k − 1,
xu

i if k ≤ i ≤ n,

i = 1, 2, . . . , n. Thus, it follows from yk−1 − 1 < yk−1 that xl ≤ h(y) ≤l y and h(y) 6= y.

Situation 2: Consider that bvk(y)c ≥ dxk(y)e and yk > bvk(y)c. From Step 3, we find that

hi(y) =





yi if 1 ≤ i ≤ k − 1,
bvk(y)c if i = k,
xu

i if k + 1 ≤ i ≤ n,

i = 1, 2, . . . , n. Thus, it follows from yk > bvk(y)c that xl ≤ h(y) ≤l y and h(y) 6= y.

These two situations show that xl ≤ h(y) ≤l y and h(y) 6= y always hold no matter which occurs.
Therefore, the lemma follows immediately.

As a corollary of Lemma 4, we obtain that

Corollary 5. For any given x∗ ∈ D(P ), x∗ ∈ P if and only if h(x∗) = x∗ and x∗ 6= xl.

Theorem 9. In terms of the lexicographic ordering, h is an increasing mapping from D(P ) to itself.

Proof. Let y1 and y2 be any given two different points in D(P ) with y1 ≤l y2. Let q be the
index in N satisfying that y1

i = y2
i , i = 1, 2, . . . , q − 1, and y1

q < y2
q . From the definition of h, we

obtain that h(y1) = xl if y1
1 = xl

1 and that h(y2) = y2 if y2 ∈ P . Thus, when y1
1 = xl

1 or y2 ∈ P , it
follows from Lemma 4 that h(y1) ≤l h(y2).

Suppose that y1
1 6= xl

1 and y2 /∈ P . Let k1 = k(y1) and k2 = k(y2). From the procedure, we know
that k2 is well defined and k2 ≥ 2. In the following, we show under four different cases of k2 that
h(y1) ≤l h(y2).

Case 1: Consider that 2 ≤ k2 ≤ q − 1. The procedure together with y1
i = y2

i , i = 1, 2, . . . , q − 1,
implies that k1 = k2. Thus, h(y1) = h(y2).

Case 2: Consider that 2 ≤ k2 = q. It is easy to see that

xl
i < dxi(y2)e ≤ y2

i ≤ bvi(y2)c, i = 1, 2, . . . , q − 1.

Since y1
i = y2

i , i = 1, 2, . . . , q − 1, hence,

dxi(y1)e = dxi(y2)e and bvi(y1)c = bvi(y2)c, i = 1, 2, . . . , q,
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and
xl

i < dxi(y1)e ≤ y1
i ≤ bvi(y1)c, i = 1, 2, . . . , q − 1.

From the procedure, we know that one of the following two situations must occur:

Situation 1: Consider that bvq(y2)c < dxq(y2)e or y2
q < dxq(y2)e. From bvq(y2)c <

dxq(y2)e, dxq(y1)e = dxq(y2)e and bvq(y1)c = bvq(y2)c, we derive that k1 = k2 = q.

1. Suppose that y2
q−1 = xl

q−1 + 1. Since y1
q−1 = y2

q−1, hence, from Step 2, we find that

hi(y2) =
{

y2
i if 1 ≤ i ≤ q − 2,

xl
i if q − 1 ≤ i ≤ n,

i = 1, 2, . . . , n, and

hi(y1) =
{

y1
i if 1 ≤ i ≤ q − 2,

xl
i if q − 1 ≤ i ≤ n,

i = 1, 2, . . . , n. Therefore, h(y1) = h(y2).

2. Suppose that y2
q−1 > xl

q−1 + 1. Since y1
q−1 = y2

q−1, hence, from Step 2, we find that

hi(y2) =





y2
i if 1 ≤ i ≤ q − 2,

y2
q−1 − 1 if i = q − 1,

xu
i if q ≤ i ≤ n,

i = 1, 2, . . . , n, and

hi(y1) =





y1
i if 1 ≤ i ≤ q − 2,

y1
q−1 − 1 if i = q − 1,

xu
i if q ≤ i ≤ n,

i = 1, 2, . . . , n. Therefore, h(y1) = h(y2).

Situation 2: Consider that bvq(y2)c ≥ dxq(y2)e and y2
q > bvq(y2)c. From Step 3, we find

that

hi(y2) =





y2
i if 1 ≤ i ≤ q − 1,
bvq(y2)c if i = q,
xu

i if q + 1 ≤ i ≤ n,

i = 1, 2, . . . , n.

• Suppose that y1 ∈ P . Then, h(y1) = y1 and

dxi(y1)e ≤ y1
i ≤ bvi(y1)c, i = 1, 2, . . . , n.

Thus, from bvq(y1)c = bvq(y2)c, we obtain that

hq(y1) = y1
q ≤ bvq(y2)c = hq(y2).

Therefore, h(y1) ≤ h(y2).

• Suppose that y1 /∈ P . From y1
i = y2

i , i = 1, 2, . . . , q−1, and k2 = q, we derive that k1 ≥ q.

1. Assume that k1 = q. Since bvq(y1)c ≥ dxq(y1)e, hence, either y1
q > bvq(y1)c or

y1
q < dxq(y1)e.
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(a) Suppose that y1
q > bvq(y1)c. Then, from Step 3, we obtain that

hi(y1) =





y1
i if 1 ≤ i ≤ q − 1,
bvq(y1)c if i = q,
xu

i if q + 1 ≤ i ≤ n,

i = 1, 2, . . . , n. Therefore, h(y1) = h(y2).
(b) Suppose that y1

q < dxq(y1)e. From Step 2, we obtain that, if y1
q−1 = xl

q−1 + 1,
then

hi(y1) =
{

y1
i if 1 ≤ i ≤ q − 2,

xl
i otheriwse,

i = 1, 2, . . . , n; and if y1
q−1 > xl

q−1 + 1, then

hi(y1) =





y1
i if 1 ≤ i ≤ q − 2,

y1
q−1 − 1 if i = q − 1,

xu
i if q ≤ i ≤ n,

i = 1, 2, . . . , n. Therefore, if y1
q−1 = xl

q−1 + 1, then h(y1) ≤ h(y2); and if y1
q−1 >

xl
q−1 +1, then h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q− 2, and

hq−1(y1) = y1
q−1 − 1 < y1

q−1 = y2
q−1 = hq−1(y2).

2. Assume that k1 > q. Then, k1 − 1 ≥ q and

dxi(y1)e ≤ y1
i ≤ bvi(y1)c, i = 1, 2, . . . , k1 − 1.

Thus, from the procedure, we obtain that hi(y1) = y1
i = y2

i = hi(y2), i = 1, 2, . . . , q−1,
hq(y1) ≤ y1

q ≤ bvq(y1)c = bvq(y2)c = hq(y2), and hi(y1) ≤ xu
i = hi(y2), i = q + 1, q +

2, . . . , n. Therefore, h(y1) ≤ h(y2).

Case 3: Consider that 2 ≤ k2 = q + 1. It is easy to see that

xl
i < dxi(y2)e ≤ y2

i ≤ bvi(y2)c, i = 1, 2, . . . , q.

Since y1
i = y2

i , i = 1, 2, . . . , q − 1, hence,

dxi(y1)e = dxi(y2)e and bvi(y1)c = bvi(y2)c, i = 1, 2, . . . , q,

xl
i < dxi(y1)e ≤ y1

i ≤ bvi(y1)c, i = 1, 2, . . . , q − 1,

and
dxq(y1)e ≤ bvq(y1)c.

From the procedure, we know that one of the following two situations must occur:

Situation 1: Consider that bvq+1(y2)c < dxq+1(y2)e or y2
q+1 < dxq+1(y2)e.

1. Suppose that y2
q = xl

q + 1. From Step 2, we find that

hi(y2) =
{

y2
i if 1 ≤ i ≤ q − 1,

xl
i if q ≤ i ≤ n,
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i = 1, 2, . . . , n. From y1
q < y2

q = xl
q + 1, we get that y1

q = xl
q and k1 = q ≥ 2 because

y1
1 6= xl

1. Thus, it follows from y1
q = xl

q < dxq(y1)e and Step 2 that, if y1
q−1 = xl

q−1 + 1,
then

hi(y1) =
{

y1
i if 1 ≤ i ≤ q − 2,

xl
i if q − 1 ≤ i ≤ n,

i = 1, 2, . . . , n; and if y1
q−1 > xl

q−1 + 1, then

hi(y1) =





y1
i if 1 ≤ i ≤ q − 2,

y1
q−1 − 1 if i = q − 1,

xu
i if q ≤ i ≤ n,

i = 1, 2, . . . , n. Therefore, if y1
q−1 = xl

q−1 + 1, then h(y1) ≤ h(y2); and if y1
q−1 > xl

q−1 + 1,
then h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2, and hq−1(y1) =
y1

q−1 − 1 < y2
q−1 = hq−1(y2).

2. Suppose that y2
q > xl

q + 1. From Step 2, we find that

hi(y2) =





y2
i if 1 ≤ i ≤ q − 1,

y2
q − 1 if i = q,

xu
i if q + 1 ≤ i ≤ n,

i = 1, 2, . . . , n.

• Suppose that y1 ∈ P . Then, h(y1) = y1. Thus, h(y1) ≤ h(y2).
• Suppose that y1 /∈ P . Then, k1 ≥ q.

(a) Assume that k1 = q. Since dxq(y1)e ≤ bvq(y1)c, hence, either y1
q > bvq(y1)c or

y1
q < dxq(y1)e.

i. Suppose that y1
q > bvq(y1)c. Then, from Step 3, we obtain that

hi(y1) =





y1
i if 1 ≤ i ≤ q − 1,
bvq(y1)c if i = q,
xu

i if q + 1 ≤ i ≤ n,

i = 1, 2, . . . , n. Thus, hq(y1) < y1
q . Therefore, h(y1) ≤ h(y2) because y1

q < y2
q .

ii. Suppose that y1
q < dxq(y1)e. From Step 2, we obtain that, if y1

q−1 = xl
q−1 + 1,

then

hi(y1) =
{

y1
i if 1 ≤ i ≤ q − 2,

xl
i otheriwse,

i = 1, 2, . . . , n; and if y1
q−1 > xl

q−1 + 1, then

hi(y1) =





y1
i if 1 ≤ i ≤ q − 2,

y1
q−1 − 1 if i = q − 1,

xu
i if q ≤ i ≤ n,

i = 1, 2, . . . , n. Therefore, if y1
q−1 = xl

q−1 +1, then h(y1) ≤ h(y2); and if y1
q−1 >

xl
q−1 + 1, then h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2,

and hq−1(y1) = y1
q−1 − 1 < y2

q−1 = hq−1(y2).
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(b) Assume that k1 > q. From the procedure, we derive that hi(y1) = y1
i , i =

1, 2, . . . , q − 1, and hq(y1) ≤ y1
q . Thus, h(y1) ≤ h(y2) because y1

q < y2
q .

Situation 2: Consider that bvq+1(y2)c ≥ dxq+1(y2)e and y2
q+1 > bvq+1(y2)c. From Step 3,

we find that

hi(y2) =





y2
i if 1 ≤ i ≤ q,
bvq+1(y2)c if i = q + 1,
xu

i if q + 2 ≤ i ≤ n,

i = 1, 2, . . . , n.

• Suppose that y1 ∈ P . Then, h(y1) = y1. Thus, from y1
q < y2

q , we obtain that hq(y1) <
y2

q = hq(y2). Therefore, h(y1) ≤l h(y2) follows immediately from hi(y1) = hi(y2), i =
1, 2, . . . , q − 1, and hq(y1) < hq(y2).

• Suppose that y1 /∈ P . Then, k1 ≥ q.

1. Assume that k1 = q. Since dxq(y1)e ≤ bvq(y1)c, hence, either y1
q > bvq(y1)c or

y1
q < dxq(y1)e.

(a) Suppose that y1
q > bvq(y1)c. From Step 3, we obtain that

hi(y1) =





y1
i if 1 ≤ i ≤ q − 1,
bvq(y1)c if i = q,
xu

i if q + 1 ≤ i ≤ n,

i = 1, 2, . . . , n. Thus, hq(y1) < y1
q . Therefore, h(y1) ≤l h(y2) follows from

hi(y1) = hi(y2), i = 1, 2, . . . , q − 1, and hq(y1) < y1
q < y2

q = hq(y2).

(b) Suppose that y1
q < dxq(y1)e. From Step 2, we obtain that, if y1

q−1 = xl
q−1 + 1,

then

hi(y1) =
{

y1
i if 1 ≤ i ≤ q − 2,

xl
i otheriwse,

i = 1, 2, . . . , n; and if y1
q−1 > xl

q−1 + 1, then

hi(y1) =





y1
i if 1 ≤ i ≤ q − 2,

y1
q−1 − 1 if i = q − 1,

xu
i if q ≤ i ≤ n,

i = 1, 2, . . . , n. Therefore, if y1
q−1 = xl

q−1 + 1, then h(y1) ≤ h(y2); and if y1
q−1 >

xl
q−1 +1, then h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q− 2, and

hq−1(y1) = y1
q−1 − 1 < y1

q−1 = y2
q−1 = hq−1(y2).

2. Assume that k1 > q. From the procedure, we derive that hi(y1) = y1
i , i = 1, 2, . . . , q−

1, and hq(y1) ≤ y1
q . Thus, h(y1) ≤l h(y2) follows immediately from hi(y1) = hi(y2),

i = 1, 2, . . . , q − 1, and hq(y1) ≤ y1
q < y2

q = hq(y2).

Case 4: Consider that k2 > q + 1. From k2 − 1 > q, we obtain that hi(y2) = y2
i , i = 1, 2, . . . , q.

Thus, y1 ≤l h(y2) since y1
i = y2

i , i = 1, 2, . . . , q − 1, and y1
q < y2

q . Therefore, it follows
immediately from Lemma 4 that h(y1) ≤l h(y2).
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The above four cases show that h(y1) ≤l h(y2) always holds no matter which occurs. This completes
the proof.

From Definition 6, one can see that, for each y ∈ D(P ), it takes at most n linear programs to
determine h(y). Therefore, h(y) is polynomial-time defined for any given y ∈ D(P ).

As a corollary of Theorem 9, we obtain that

Corollary 6. Given lattice (L,≤l) and an order preserving mapping f as a polynomial function,
determining that f has a unique fixed point in L is a Co-NP hard problem.

We remark that the result can also be used to obtain a fixed-point iterative method for deter-
mining whether there is an integer point in a polytope.

Next, we give a simple but naive reduction.

Definition 7. For z ∈ D(P ), h(z) = (h1(z), h2(z), . . . , hn(z))> ∈ D(P ) is given as follows:

Step 0: If z ∈ P or z = xl, let h(z) = z. Otherwise, let k = n and go to Step 1.

Step 1: If zk > xl
k, let h(z) = (h1(z), h2(z), . . . , hn(z))> with

hi(z) =





zi if i < k,
zk − 1 if i = k,
xu

i if i > k,

i = 1, 2, . . . , n. Otherwise, go to Step 2.

Step 2: Let k = k − 1 and go to Step 1.

Clearly, h(z) is polynomial-time defined for any z ∈ D(P ). Furthermore, it is easy to see that

Theorem 10. In terms of the lexicographic ordering, h is an increasing mapping from D(P ) to
itself. Moreover, h(z∗) = z∗ 6= xl if and only if z∗ ∈ P .

6 Conclusion and Open Problems

Results on the Tarski’s fixed points contrast with the past results for the general fixed point computa-
tion in several ways. First, in the oracle function model, several fixed point computational problems
are known to require an exponential number of queries for constant dimensions, including the two
dimensional case (Chen et al., Deng et al. and Hirsch et al.)[10, 13, 17]. Our results prove the
Tarski’s fixed point to be polynomial in the oracle function model with constant dimensions. They
also show that it is so for the polynomial function model, which is also different from those fixed point
computational problems which are known to be PPAD-complete for constant dimensions, including
the two dimensional case (Chen et al. and Deng et al.)[9, 13]. In the polynomial function model, we
have proved that determining the uniqueness is co-NP-complete. In comparison, the uniqueness of
Nash equilibrium is known to be co-NP-complete but its existence is in PPAD.

The above comparisons with the previous work leave the following outstanding open problem:
Is it PPAD-complete to find a Tarski’s fixed point in the variable dimension n for the polynomial
function model ? This problem is known to be true for finding a Sperner simplex in dimension n
with n as a variable. We conjecture that this is also true for finding a Tarski’s fixed point.
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