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1 Introduction

Recently, there were several theoretical results on approximating combinatorial and nonconvex quadratic
optimization problems by using semidefinite programming (see, e.g., Goemans and Williamson [11], Nes-
terov [24], and Ye [33]). The positive semi-definite relaxation was first proposed by Lovész and Shrijver
[19][18]. Shor [29] proposed its use for 0 — 1 integer quadratic programming, and the field has received
further contributions in papers by Alizadeh [2], Fujie and Kojima [9], Helmberg and Rendl [12], Karisch,
Rendl, and Clausen [14], Polijak, Rendl and Wolkowicz [27], Sherali and Adams [28], etc.

The approximation solves a semidefinite programming (SDP) relaxation problem, written in standard
form as:
Minimize Ce X
(SDP)
Subject to A; e X =b;, i=1,...,m. (1)

X >~ 0.

Here, the given matrices C, A; € S™, the set of n-dimensional symmetric matrices; vector b € R™; and
unknown X € S™. Furthermore, the A;’s are linearly independent, meaning that Y i, y;A; = 0 implies
P=...=yn=0;CeX =tr CTX = >k CjkXjk; and X = 0 means that X is positive semidefinite.

For much of this paper, one additional assumption will made: the constraint matrices have a rank one
form, A; = a;al’, a; € R™. This structure arises in many large scale problems and results in considerable
simplifications.

The dual of (SDP) can be written as:

Maximize b'y
(DSDP) (2)
Subject to Y%, yidi+S=C, S*0,

where y;, 1 = 1,...,m are scalar variables.
We have the following well known duality theorem [25]:
Theorem 1 (Strong Duality) Provided that (SDP) and (DSDP) are both feasible and there is a strictly

interior point to either (SDP) or (DSDP), there is no duality gap. That is, if primal and dual optimal
solutions are (X*) and (y*,S*) respectively, then C o X* = bly*.

This pair of semidefinite programs can be solved in “polynomial time”. There are actually several
polynomial algorithms. One is the primal-scaling algorithm (Nesterov and Nemirovskii [25], Alizadeh
[2], Vandenberghe and Boyd [31], and Ye [34]), which is the analogue of the primal potential reduction
algorithm for linear programming. This algorithm uses only X to generate the iterate direction. In other

words,
ch+1
( Gk+1 ) :Fp(Xk)’

where Fj, is the primal algorithm iterative mapping.



Another is the dual-scaling algorithm (Vandenberghe and Boyd [31], Anstreicher and Fampa [4], and
Ye [34]), which is the analogue of the dual potential reduction algorithm for linear programming. The
dual-scaling algorithm uses only S to generate the new iterate:

Xk+1
( gk+1 ) :Fd(sk)a
where Fj is the dual algorithm iterative mapping.

The third is the primal-dual scaling algorithm which uses both X and S to generate the new iterate
(see Todd [30] and references therein):

Xk+1
( Sk+1 )Zde(Xkask)a

where F; is the primal-dual algorithm iterative mapping.

All these algorithms generate primal and dual iterates simultaneously, and possess O(y/n1n(1/e)) iter-
ation complexity to yield the duality gap accuracy e. Other scaling algorithms have been proposed in the
past. For example, an SDP equivalent of Dikin’s affine-scaling algorithm could be very fast. However this
algorithm may not even converge. Muramatsu [22] and Muramatsu and Vanderbei [23] showed an example
in which these affine scaling algorithms will not converge to an optimal answer.

There are also quite few computational results and implementations of these interior algorithms, see
Anstreicher and Fampa [4], Alizadeh, Haeberly, and Overton [3], Fujisawa, Kojima and Nakata [8], Helm-
berg, Rendl, Vanderbei, and Wolkowicz [13], Vandenberghe and Boyd [31], Wolkowicz and Zhao [32], etc.
To the best of our knowledge, the largest problem that could be solved was at n = 628 from their reports.
(After the initial version of this paper was submitted, two more implementations came out: Fujisawa,
Fukuda, Kojima and Nakata [10] reported that they could solve a maximum cut semidefinite program with
n = 1250; Lin and Saigal [17] also reported that they could solve the quadratic assignment semidefinite
program with n = 625 with large m; both use powerful work-stations.)

The practical winner of solving semidefinite programs was Helmberg and Rendl [12], an implementation
of a non-interior-point algorithm called the bundle method. They reported to solve a set of dual semidefinite
programs with n up-to 3000. The bundle method enables them to take advantages of the sparsity structure
of these problems. The (minor) weakness of their method is that the method does not simultaneously solve
the primal problem and cannot guarantee or verify the optimality accuracy at its termination, and it is
not a polynomial time algorithm.

Therefore, the open question is how to exploit the sparsity structure by polynomial interior-point
algorithms so that they can also solve large-scale problems in practice. In this paper we try to respond
to this question. We show that many large-scale semidefinite programs arisen from combinatorial and
quadratic optimization have features which make the dual-scaling interior-point algorithm the most suitable
choice:

1. The computational cost of each iteration in the dual algorithm is less that the cost the primal-dual
iterations. Although primal-dual algorithms may possess superlinear convergence, the approximation
problems under consideration require less accuracy than some other applications. Therefore, the
superlinear convergence exhibited by primal-dual algorithms may not be utilized in our applications.



The dual-scaling algorithm has been shown to perform equally well when only a lower precision
answer is required, see, e.g., Adler et al. [1] and Vandenberghe and Boyd [31].

2. In most combinatorial applications, we need only a lower bound for the optimal objective value of
(SDP). Solving (DSDP) alone would be sufficient to provide such a lower bound. Thus, we may
not need to generate an X at all. Even if an optimal primal solution is necessary, our dual-scaling
algorithm can generate an optimal X at the termination of the algorithm with little additional cost.

3. For large scale problems, S tends to be very sparse and structured since it is the linear combination of
C and the A;’s. This sparsity allows considerable savings in both memory and computation time. The
primal matrix, X, may be much less sparse and have a structure unknown beforehand. Consequently,
primal and primal-dual algorithms may not fully exploit the sparseness and structure of the data.

These problems include the semidefinite relaxations of the graph-partition problem, the box-constrained
quadratic optimization problem, the 0 — 1 integer set covering problem, etc. We will use the maximum cut
problem to illustrate our points later, where we report our computational result, using a PC machine, on
solving the maximum cut semidefinite relaxations of the Helmberg and Rendl set of graph problems for n
up-to 3000.

2 Dual Scaling Algorithm

The dual-scaling algorithm, which is a modification of the dual-scaling linear programming algorithm,
reduces the Tanabe-Todd-Ye primal-dual potential function

U(X,S) = pln(X e S) —Indet X — Indet S.

The first term decreases the duality gap, while the second and third terms keep X and S in the interior
of the positive semidefinite matrix cone. When p > n, the infimum of the potential function occurs at an
optimal solution. Also note that, using the arithmetic-geometric mean inequality, we have (e.g., [34])

nln(X ¢ S) —Indet X —Indet S > nlnn.

The algorithm, along with other SDP algorithms, is described in Ye [34], so that we will use notations
defined there.

Let operator A(X) : 8™ — R™ be defined as
A1 o X
AQ o X
A(X) = :
A,eX
Since A(X)Ty =37, y;(A; ¢ X) = (™, y;4;) @ X, the adjoint operator AT : R™ — S" is

m

AT(y) = > vidi.

i=1

4



Let z = C o X for some feasible X and consider the dual potential function
Y(y, Z) = pIn(z — bly) — Indet S.

Its gradient is

Vip(y,z) = — b+ A(S™Y). (3)

P

z—bly
To estimate the reduction in the potential function from a current iterate (y*,2z*) to the next, we will

use a lemma from linear programming that can be found in [34] and is essentially do to Karmarkar [15].

Lemma 1 Let X € 8" and || X — I||oo < 1. Then

X — 1]

Indet(X) > tr (X = 1) = 50— 55— 11

where I denotes the identity matriz and || - || denotes the Frobenius norm.

Proof. For 1 < i <n, let A\;(X) be the eigenvalues of the matrix X. Then, 0 < \; := X\;(X) < 2 for all i,
since || X — I]|oc < 1. Moreover,

In)\;, =In(1+X—1)

(A — ]_) ()‘igl)? + ()\igl)'g ()\izl)‘l +...
> (Xi—1)— (Al_l) T4+ Xi—1+[N—12+..)
(Ai —

Ai—1 )\—12
1) - MZ(&—U— B

2(1=IX = Iloo)

Summing the inequality over ¢, we have the result. H

For any given y and S = C — AT (y) such that S > 0 and [|(S¥) (.AT(y - yk)) (S*)~?|| < 1, using
the above lemma, the concavity of the first term in the potential function, and the fact that

(Sk)—.5s(sk)—.5 —I= (Sk)—.5(s . Sk)(sk)—.5 — (Sk)—.5 (AT(y . yk)) (Sk)_'5,

we establish an overestimater for the potential reduction:

= pIn(zF — bTy) — pIn(zF — bTy*) — Indet((S*)>S(S¥) )

~k 3T T, k _5a(aky—.5 l|(5*) =5 (AT (y—y*)) (S*) =]

< ph’l(z —b y) - pl ( b ) +tr (( ) S(S ) - I) + 2(1—||(Sk)—-5(AT(y—yk))(Sk)—-5||oo) (4)
_ 1(s%) =5 (AT (y=y*)) (S*) =]

= pln(zk —b"y) —pIn ( —b" k) + A((Sk) DTy — yk) + 2(1_”(5k).Ei((ATZ(Jy_yykg)(Sk).5”00)
k Sk\T ll(s*F) =5 (AT (y—y*)) (S*) =]

< Vzﬁ(y ) ) (y -y ) + 2(1_||(5k)—.5(AT(y,yk))(sk)—j”oo)'

Therefore, beginning with a strictly feasible dual point (y*, S*¥) and upper bound z*, each iteration
solves this following problem.
Minimize VT (y* ,zk)( yk)
Subject to [|(5%)~% (AT(y — ¢¥)) ($5) =5 < (5)



where « is a positive constant less than 1. For simplicity, in what follows we let

AF = 25— pTyk,

The first order Karusch-Kuhn-Tucker conditions state that the minimum point, y**!, of this convex
problem satisfies

MHGF =) + BV ) = MEG =) 4 B bt A ) =0 @
for a positive value of 3, where
A(SF)y e (SF)1A; ... A(SF)le(SF)lA, Ay e (SF)L
MF = ; ; and A((SH)™) = s
An(S¥)7 e (S)71A; <o Ap(SF) e (S5 A, A s (8%)7

The matrix M* is a Gram matrix and is positive definite when S* > 0 and the A;’s are linearly independent.
In this paper, it will sometimes be referred to as M.

Using the ellipsoidal constraint, the minimal solution, y**1, of (5) is given by

E+1 _ k a zk 7
y Yy \/pr(yk,gk)(Mk)—lvw(yk’zk)d( )y (7)

where
d(z")y = —(M*)7'Vp(y*, 2). (8)

Unlike linear programming, positive semidefinite programs requires a significant amount of the time
to compute the system of equations used to to determine the step direction. For arbitrary symmetric
matrices A;, Monteiro and Zanjicomo [20] demonstrated an efficient implementation of several primal-dual
step directions. The AHO direction [3] can be computed in 5nm?® + n?m? + O(max{m,n}3) operations.
The HRVW/KSH/M direction [13],[16],[21] uses 2nm? + n?m? + O(max{m,n}?) operations, and the NT
direction [26] uses nm?3 + n?m? /2 + O(max{m,n}?®) operations. The complexity of computing the matrix
is a full order of magnitude higher than any other step of the algorithm. Fujisawa, Kojima and Nakata [8]
explored another technique for computing primal-dual step directions that exploit the sparsity of the data
matrices. However, it is our belief that only the dual-scaling algorithm can fully exploit the structure and
sparsity of many problems, as explained below.

Generally, Mf; = A;(S¥)~! o (5¥)71A;. When A4; = a;a], the Gram matrix can be rewritten in the
form
(@ (8%)7'a1)* -+ (af (8%)7'am)? af (§%)7'ay
: : and A((S*)7") =

M = , :
(a7, (§%)"'an)? -+ (ag (%) am)? 07 (S%) " am

(9)

This matrix can be computed very quickly without computing, or saving, (S¥)~!. Instead, S* can be
factored, and then we can use



Algorithm M: To compute M* and A((S*¥)~!), factor S¥ = L¥(L¥)T and do the following:
Fori=1:m;
Solve L*w; = a;;
A((S*)1)i = wlwi and M = (A((S*)1)i)%;
For j=1:m—1; MZ’; = (w]'w;)?  end;
end.

Solving each of the m systems of equations uses n? + O(n) floating point operations. Since there are
m(m + 1) /2 vector multiplications, Algorithm M, uses nm? 4+ n?m + O(nm) operations after factoring S*.
Note that these operations can be significantly reduced if S* is structured and sparse. In applications like
the maximum cut problem, discussed in Section 3, the matrix S* is indeed very sparse while its inverse
is usually dense, so working with S* is faster than working with its inverse. Using matrices of the form
A; = aiazT also reduces the complexity of primal-dual algorithms by a factor of n, but even the quickest
direction to compute takes about twice as long as our dual-scaling direction. Furthermore, they all need
to handle dense X.

Algorithm M needs to store all vectors wy, ..., wn,, and they are generally dense. To save storage and
exploit the sparsity of a;, ..., a,,, an alternative algorithm is

Algorithm M?’: To compute M* and A((S*)~1), factor S¥ = L¥(L*¥)T and do the following:
Fori=1:m;
Solve S*w; = a;;
A((S%)71); = wla; and M = (A((S%)71);)%;
For j=i+1:m; MZIE = (wl'a;)?;  end;
end.
Algorithm M’ does not need to store w; but uses one more back-solver for w;.
To find a feasible primal point X, we solve the least squares problem

Minimize ~[|(S*)2X(8%)® — A%1|

10
Subject to A(X) =b. (10

This problem looks for a matrix X (z*) near the central path. Larger values of p generally give a lower
objective value, but provide a solution matrix that is not positive definite more frequently. The answer to
(10) is a by-product of computing (8), given explicitly by

Alc

X (z%) p

(8%) (AT (d(2)y) + %) (%) 1. (1)

Creating the primal matrix may be costly. However, the evaluation of the primal objective value



C o X(z*) requires drastically less work.
CeX(Z*) =bTy* + X(ZF) e
= BTyk e (2 ( AT +5) (59718Y)
= b7y + 20 ((S%)7TAT(d(25),) + 1)
= bTy* + 2 (d(Z*TA((SH) ) +n)

Since the vectors A((S*)~!) and d(z¥), were previously found in calculating the dual step direction, the
cost of computing a primal objective value is the cost of a vector dot product! The matrix X (z*) never gets
computed during the iterative process, saving time and memory. On the other hand, primal-dual methods
require far more resources to compute the primal variables X.

Defining

L (8¥)5 X (27)(5%)° — 1, (12)

P(z%) = AR

we have the following lemma:

Lemma 2 Let ¥ = %k = Zk_bTyk7 = X(zF)esk _ C'X(‘?’;)*{’Tyk, p>n++/n, and a<1. If

n n

1P| < min(ay/ 5.1~ a), (13)

then the following three inequalities hold:

1. X(z%) = 0;

2. [|(S*) X (2F)(8*)° — uIl| < ap;

3. u< (11— .5a/yn)uk
Proof. The proofs are by contradiction. If the first inequality is false, then (S%):5X (2*)(S*)® has at least
one nonpositive eigenvalue, which by (12) implies that ||[P(z*)| > 1.

If the second does not hold, then

||f)(§k)||2 = ||nLk(Sk) 5X(2k)(5k) .5 I||2
m
= ||#(Sk) SX( k)(sk) 5 PMkI_|_ %1_1”2
= ||$(Sk 5X(2k)(51c) 5 pﬁk1||2 + ||ﬁf—f||2
2 9 2
> () o+ (1)
> a? (n+a )

n
n+a?”

where the last inequality is true because the quadratic term has a minimum at % =

If the third inequality does not hold, then

%>(1+%) (1—'5\/—‘7_)2)21.

8



which leads to

PP > (%—1)2
- (2020
(-3
> (1-a)

Focusing on the expression P(z*), it can be rewritten as

P(F) = £(8%)° (807 (A7) +5) (89)71) (8)° — 1

— (Sk)_'5AT d(?k)y) (Sk)—.s
= (Sk)~5AT y’“"’;fyk) (Sk)—>
which by (5), makes
VT (y*, 28)d(z"), = —||P(")|)? (14)
and
Vil (y*, 2 (T = F) = —al | P(P)]]. (15)

Updating the dual variables according to

a

- k+1 _ v AT (k41
||P(Zk+1)||d(z)y and S C—A (y°), (16)

S = gk 4

assures the positive definiteness of S¥*1 when a < 1, which assures that they are feasible. Using (15) and
(4), the reduction in the potential function satisfies the inequality

2

B2 —$(h, 7)< —all PE)I + 5

ey (17)

The theoretical algorithm can be stated as follows.

DUAL ALGORITHM. Given an upper bound z° and a dual point (y°, S°) such that S = C—ATy° - 0,
set k=0, p>n++n,a€(0,1), and do the following:

while 78 — bTyF > ¢ do

begin

1. Compute A((S*)™!) and the Gram matrix M* (9) using Algorithm M or M’.
2. Solve (8) for the dual step direction d(z*),.

3. Calculate | P(2*)|| using (14).



4. If (13) is true, then X*t1 = X (zF), z8t1 = C o X*+1 and (yFt1, SF+1) = (y*, §%);
else ylc—|—1 — yk + 7d(2k+1)y, Sk+1 — o — .AT(yk_H), Xkt+1l — ch’ and zFt1 = zk.

[0}
1PCR)II
endif

5. k:=k+1.

end

We can derive the following potential reduction theorem based on the above lemma:

Theorem 2
\Il(Xk—l—l,Sk—‘rl) < \I/(Xk,Sk) -5

where 6 > 1/50 for a suitable c.

Proof.
\I/(Xk_H,Sk_H) _ \IJ(Xk,Sk) — (\I/(Xk+1,sk+1) _ \I/(Xk+1,sk)) + (\I/(Xk+1,sk) _ \Il(Xk,Sk)) .

In each iteration, one of the differences is zero. If | P(2*)|| does not satisfy (13), the dual variables get
updated and (17) shows sufficient improvement in the potential function when o = 0.4

On the other hand, if the primal matrix gets updated, then using Lemma 1 and the first two parts of
Lemma 2,

nln (Xk+1 . Sk) — Indet (Xk“) ~Indet (Sk)
—nln (X5 e sk) — Indet (Xk+1sk)
=nln(Xktle Sk/u) — Indet (Xk"'lSk/p)

=nlnn — Indet ((Sk)'SXk+1(Sk)'5/M>
[[(S%)5 XK+ (SK)5 /1|
1| (S*)-BX*+1(Sk)5 /i Iloo )

<nlnn+ o
<nlnn+ 52—
2(1—a) \
<nln (X* e S%) — Indet (X*) — Indet (S*) + 52
Additionally, by the third part of Lemma, 2

o

v (In(xX*! o 8F) — In(X* o §%)) = \/ﬁln% < -

N

Adding the two inequalities gives

(0% 062

k+1 gky < kE gky @
U(XHT §F) < w(xF, 5k RETI

By choosing a = 0.4 again, we have the desired result. W

This theorem leads to
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Corollary 1 Let p > n++/n and ¥(X°, 5% < (p —n)In(X° e S°). Then, the algorithm terminates in at
most O((p — n)In(X? e §%/¢)) iterations.

Proof. In O((p — n) In(X° e §%/¢)) iterations,
T(x*, 8%) < (p—n)In(e)).

Also,
(p—n)In(C e X¥ —bT*) = (p — n) In(X* o $¥) < U(X*, 5%) —nlnn < T(X*, 5F).

Combining the two inequalities,
CeXk—pTyk = XFesk<e

Again, from (11) we see that the algorithm can generate an X* as a by-product. However, it is
not needed in generating the iterate direction, and it is only explicitly used for proving convergence and
complexity.

Theorem 3 Each iteration of the dual algorithm uses O(m? + nm? + n?m +n3) floating point iterations.

Proof. Creating S, or S+ A" (d(z*)), uses matrix additions and O(mn?) operations; factoring it uses O(n?)
operations. Creating the Gram matrix uses nm? + 2n?m + O(nm) operations, and solving the system of
equations uses O(m?3) operations. Dot products for 2! and || P(z*)]|, and the calculation of y**! use only
O(m) operations. These give the desired result. W

In contrast, each iteration of primal-dual methods require several additional computations. First, the
various Schur complement matrices used to compute the step directions cost significantly more to compute
than the matrix used in this dual-scaling algorithm. Second, primal-dual algorithms must compute a
primal step direction. This step direction involves the product of three matrices, which can be very costly.
Third, the primal-dual algorithms does use line searches in both the primal and dual problems. Such a
search requires additional dense matrix factorizations.

3 Maximum Cut Problem

The maximum cut problem asks to partition the vertices of a graph into two sets that maximize the sum
of the weighted edges connecting vertices in one set with vertices in the other. The positive semidefinite
relaxation of the maximum cut problem can be expressed as ([11])

Minimize Ce X
(MAX-CUT)
Subject to diag(X) =e, (18)

X >0.

T

The operator diag(-) takes the diagonal of a matrix and makes it a vector. In other words, 4; = eje; ,

i1 =1,...,n, where e; is the vector with 1 for the ith component and 0 for all others.

11



The dual program can be expressed as:

Maximize ey

Subject to Diag(y) +S=C, S*>0,

The operator Diag(-) forms a diagonal matrix from a vector.

Many examples of the maximum cut problems have a very sparse matrix C. Since S is a linear
combination of C and a diagonal matrix, it possesses the same sparse structure of C that remains constant
for all iterations. This sparsity can be exploited by reordering S to reduce fill-in during the Cholesky
factorization. A good reordering will drastically speed up the factorization and the many forward and
back substitutions required to compute the Gram matrices.

Applying the dual-scaling algorithm to this relaxation,

V(" 2) = — (pe + diag(SF) ™)

and
M = (§%)~1 o (§%)71, (20)

2
where o represents the Hadamard product and A*¥ = zF — eT'yk. That is, Ml-lj- = ((Sk)z_]l) . When the

graph represented by C' is connected, M* is generally dense-even when C is sparse.

The direction d(z¥), of (8) is comprised of two parts:

dyr = (M%) e (21)
dyy = (M*) ™' diag((S*)™") (22)

so that
d(z*), = ﬁd?}l —dy2 (23)

Since the dual direction depends upon the upper bound z*, splitting the direction into these two parts
allows the algorithm to take advantage of a possibly improved upper bound.

To determine the stepsize and measure the improvement in the potential function, we first note

IP(25)|| = /- VT (yF, 24)Td(2F),. (24)

If || P(2*)]| is sufficiently small, Lemma 2 guarantees an improved primal solution, X (z*) with C e X (z¥) <
z*, where from (11),

AE
X(2) = = (87! (Diag(d(z*),) + S*) (¥ 1.
p
Frequently, an improved primal objective value Zz can be found for even larger values of || P(z*)||. We may

first compute
k

Z:=Ce X(5F) = Tyf + % (diag(($¥)=")"d(z*)y +1). (25)

12



If z < z*, then we go on to check if X (z*) = 0. But from the above expression, X (z¥) = 0 if and only if
(Diag(d(z*),) + S*) = 0. (26)

To check if Diag(d(z*),) + S* = 0, we use the Cholesky factorization and simply check if its pivots are all
positive. We stop the factorization process as soon as we encounter a negative or zero pivot, and conclude
that the matrix is not positive definite. Note that Diag(d(z*),) + S* has the same sparse structure as S*
or C, allowing it to be stored in the same data structure. If Diag(d(z*),) + S¥ = 0, we set 2871 = z < zF.
Otherwise, K11 = zk.

k+1 k+1

An improved upper bound z¥*! results in a smaller A¥ := z¥*t!1 — ¢T'y* and will modify the dual step
direction calculated in (23), which is why the step direction was divided into two parts. Finally, the dual
variables will be updated by
a

Wd(2k+l)y and Sk+1 = C — DZCI,g(yk_'—l)

Sk 4

If a <1, S(a) = C — Diag (y’c + md(ékﬂ)y) > 0. Larger values of « increase the stepsize
which can speed up the convergence of the algorithm. Larger stepsizes, however, can also step outside
the cone of positive semidefinite matrices. If a larger step is used, a Cholesky factorization can check the
positive definiteness of S(«). Note that this factorization is needed in the next iteration anyway. Since the
matrix S(«a) is sparse and well ordered, an unsuccessful attempt to increase the stepsize cost very little.
In general, these factorizations cost far less than a factorization of the dense M*, but allow large stepsizes
to significantly reduce the number of iterations required to achieve the desired accuracy.

We now state the specialized dual-scaling algorithm for solving the maximum cut semidefinite program.

DUAL ALGORITHM. Reorder C to reduce fill-in during Cholesky factorization. Set z2° = C o I and
choose 4 such that S° = C — Diag(y®) = 0. Set k =0, a = .99 and do the following:

sk T,k
. Zt—e'y
while T+ >edo

begin

1. Compute diag((S*)~!) the matrix M* (20) using Algorithm M or M’.
2. Solve (21), (22), and (23) for the dual step direction.

3. Use (25) to compute a new upper bound Zz.

4. Tf 7 < 7" and (Diag(d(*),) + 5*) = 0,

then let z2¥*! = z and recompute d(zFT1), using (23);

else let zFt! = z¢. endif
5. Compute || P(zF*+1)|| using (24).
6. Select 3> a/||P(zF1)||, so that y*1 = y* + Bd(zF*1), and S*¥*! = C — Diag(y**!) = 0.
. ki=k+1.

EN|

end
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4 Computational Results

We implemented the dual-scaling algorithm in ANSI C and ran the program on a PC with 233 MHz, 64
MB RAM and 256 K cache memory. (The code and its User-Guide are available for public download at
the web-side http://dollar.biz.uiowa.edu/col/)

To accelerate convergence of the algorithm, the implementation used a more aggressive stepsizes. It
used values of a equal to .99, 1.5, 3, and 6. Initially, we set @« = 3. When value of « was successful for three
consecutive iterates, we tried the next larger value. If we stepped out of the feasible region, we tried the
next smaller value of . We found that that larger stepsizes were frequently used and this strategy yields
a significant improvement in the total number of iterations.

In addition, we initialized the value of p to be 5n. Larger values of p more aggressively seek the optimal
solution, but are also more like to yield infeasible points. After a couple of iterates, p was dynamically
selected using the following criteria:

p = 1.6nx* \/(rgapk_l/rgapk)
where rgap®~! and rgap® are the relative duality gaps at the previous and current iteration

ok 7 BTy
I T Ty

We let the initial point

X°=1 and o) =Cui—) |Cyjl—1, i=1,..,n,
J#
which by Gerschgorin’s Theorem, guarantees S° = 0 (see Atkinson [5]). This value generally provides a
reasonable starting point. We used the minimum degree ordering algorithm to reorder C.

We stopped the iteration process when the relative duality gap

r_ 2 — by -6
rgap” = T Ty <10
Most combinatorial applications ask for a reasonable bound to be found very quickly. Therefore, the
precision required in the semidefinite program is far less than required by other applications. In addition,
the original maximum cut problem has only simple, binary variables. For these problems, we believe that
a precision of 10~ is sufficient, so we recorded the number of iterations and seconds needed to compute
that level of precision.

Our experiments used a machine independent graph generator, rudy, created by G. Rinaldi. We tested
the maximum cut semidefinite program on the G set of graphs used by Helmberg and Rendl [12]. This
set of problems becomes a standard test set for graph optimization. These maximum cut problems range
in size from n = 800 to n = 3000. Many of these problems, like G1-G10, G22-G31, and G43-G47 have
a randomly created structure. Problems G11-G13, G32-G34, and G48-G50 come from a 2 dimensional
toroidal grid, while the others represent planar type graphs. (Helmberg and Rendl [12] actually solved
G53-G54 semidefinite programs for another graph problem, the J-function ([18]), instead of the maximum
cut problem.)
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Name | Sparsity of | Factor S | Compute M | Factor M

Schol (sec.) (sec.) (sec.)
G1 73.6% 1.412 12.856 1.983
G11 4.2% 0.010 1.272 1.863
G14 14.3% 0.140 3.105 1.863
G22 47.8% 11.076 129.917 32.046
G32 1.6% 0.030 9.864 30.744
G35 11.8% 1.352 41.113 30.764

Table 1: Seconds used for the three most expensive computations.

Table 1 shows the cost of key steps of the algorithm for six different problems. It shows the seconds
required to factor S, create M, and factor M. The sparsity statistic in the second column gives the
percentage of nonzero entries in the factor after reordering.

This table shows that when S is sparse, the factorization of M dominates the computation time. Since
M is generally dense, regardless of the sparsity of S, its computation time is constant for problems of equal
size. For more dense problems, the creation of M dominates the computation time. This is not surprising
since it uses 3n® floating point operations, while the Cholesky factorization uses a sixth of that amount.
Most large scale applications, however, will contain a certain sparse structure, and the table shows how
this dual-scaling algorithm exploits that structure to save computation time.

Table 2 shows the performance of the code on solving the G set maximum cut semidefinite programs
for stopping tolerances of rgap < 10~* and rgap < 107%. PriObj, DualObj, and Rgap, are the primal
and dual objective values and the relative duality gap at termination. Also shown is the dimension and
the percentage of nonzero entries in the objective matrix, as well as the time (in seconds) and number of
iterations required by the program.

Most of the previous numerical tests [7], [17], [32], [35], [36], were conducted on smaller problem data
sets where the dimension n was only a few hundred or less, so that no available computation result could be
compared to ours. After our results reported, a study of using a primal-dual algorithm for solving relative
larger problems, including the maximum cut problem, was conducted by Fujisawa, Fukuda, Kojima, and
Nakata [10]. They tested solving sparse maximum cut semidefinite programs with dimension up-to 1250.
On sparse problems with dimension of 1000, they required 63,130 seconds; problems of dimension 1250
used 111,615 seconds. Their computations were performed on a DEC AlphaServer 8400 with a processing
speed of 437 MHz and 8 GB memory, which is much superior to the PC machine used in our test.

As we mentioned before, Helmberg and Rendl [12] used a spectral bundle method to solve the same set
of G1-G42 maximum cut problems. Their computations were performed on a UltraSPARC station with
64 MB memory. One advantage of the spectral bundle method is that it uses considerably less memory
since it does not create or store a matrix as large as M. On problems with a randomly created structure,
the bundle method appears slightly faster than ours. In these problems, the Cholesky factor of the slack
matrix is relatively dense, despite the sparsity of the objective matrix. For the toroidal and planar graphs
(such as G14), the dual matrix has a much better structure. In these problems, a minimum degree ordering
kept the Cholesky factor sparse and the back and forward substitutions quick. In problems with a more
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structured objective matrix, the dual SDP algorithm outperformed the bundle method.

Finally, our implementation of the dual-scaling algorithm appears to be the first algorithm to converge
to an optimal point in polynomial time, to use the characteristics inherent in many large scale problems to
its advantage, and to verify the optimality by solving both the primal and dual problems simultaneously. Its
success of even relative dense examples shows that the algorithm is generally efficient, while the improved
performance on more sparse examples shows how it exploits the structure of most large scale problems.
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rgap= 10 * rgap=10"°
Name Dim  Spars Pobj Dobj Rgap Tter Time | Iter Time
G1 800 6.12% | -4.833276e+04 -4.833279e+04  5.452359e-07 | 20 616.08 24 741.15
G2 800 6.12% | -4.835767e+04 -4.835772e+04  9.502824e-07 19 592.69 23 719.25
G3 800 6.12% | -4.833732e+04 -4.833733e+04  3.401351e-07 19 589.56 24 746.54
G4 800 6.12% | -4.844576e+04 -4.844581e+04  9.824817¢-07 19 595.43 23 723.28
G5 800 6.12% | -4.839953e+04 -4.839955e+04  3.552550e-07 19 594.71 24 752.24
G6 800 6.12% | -1.062463e+04 -1.062464e+04 8.541375e-07 | 21 646.12 25 769.41
G7 800 6.12% | -9.957042e+03 -9.957051e+03  8.420776e-07 | 21 654.40 25 779.28
G8 800 6.12% | -1.002773e+04 -1.002773e+04 9.678249e-07 | 21 655.63 24 780.46
G9 800 6.12% | -1.011492e+04 -1.011493e+04  7.775437e-07 | 21 654.09 | 25 778.95
G10 800 6.12% | -9.940246e+03 -9.940253e+03  7.465415e-07 | 20 620.63 24 742.82
G11 800 0.63% | -2.516658e+03 -2.516659¢+03  3.719002e-07 18 64.40 23 82.05
G12 800 0.63% | -2.495497e+03 -2.495498e+03  5.198500e-07 | 19 71.03 | 24 89.50
G13 800 0.63% | -2.588544e+03 -2.588546e+03 9.570427e-07 | 20 76.70 24 91.88
Gl14 800 1.59% | -1.276625e+04 -1.276627e+04 9.986387e-07 | 29 166.43 | 33 189.11
G15 800 1.58% | -1.268623e+04 -1.268623e+04  3.450954e-07 | 33 188.68 | 39 222.87
G16 800 1.59% | -1.270007e+04 -1.270007e+04  4.674935e-07 | 27 154.31 31 177.01
G17 800 1.58% | -1.268530e+04 -1.268531e+04 4.548353e-07 | 26 149.60 | 30 172.44
G18 800 1.59% | -4.664038e+03 -4.664040e+03  4.708559e-07 | 47 276.82 51 299.92
G19 800 1.58% | -4.328040e+03 -4.328042e+03  3.345754e-07 | 33 193.66 | 38 221.98
G20 800 1.59% | -4.445567e+03 -4.445570e+03  7.261350e-07 | 33 193.80 | 37 216.54
G21 800 1.58% | -4.417133e+03 -4.417136e+03  8.094406e-07 | 38 223.30 | 42 246.10
G22 2000 1.05% | -5.654376e+04 -5.654378e+04 3.957778e-07 | 23  8215.71 28 9997.62
G23 2000 1.05% | -5.658202e+04 -5.658204e+04 3.910436e-07 | 23  8146.30 28 9920.25
G24 2000 1.05% | -5.656340e+04 -5.656342e+04 4.981024e-07 | 23  8323.22 27 9759.06
G25 2000 1.05% | -5.657696e+04 -5.657698e+04 3.876964e-07 | 23  8306.01 28 10106.27
G26 2000 1.05% | -5.653145e+04 -5.653148e+04 5.027876e-07 | 23  8323.72 27 9756.52
G27 2000 1.05% | -1.656663e+04 -1.656664e+04 6.729729e-07 | 25  8851.74 29 10268.68
G28 2000 1.05% | -1.640315e+04 -1.640316e+04 7.335225e-07 | 25  8862.04 29 10278.55
G29 2000 1.05% | -1.683555e+04 -1.683556e+04 6.531697e-07 | 25  9034.53 | 29  10483.11
G30 2000 1.05% | -1.686152e+04 -1.686153e+04 6.413532e-07 | 26  9386.62 30 10843.05
G31 2000 1.05% | -1.646672e+04 -1.646673e+04 6.898466e-07 | 25  9047.75 29 10493.99
G32 2000 0.25% | -6.270553e+03  -6.270559e+03  9.633737e-07 | 23  1070.39 | 27 1255.70
G33 2000 0.25% | -6.177246e+03 -6.177250e+03  6.333926e-07 | 25 1175.24 29 1362.61
G34 2000 0.25% | -6.186747e+03 -6.186750e+03 4.510949¢-07 | 24 1182.73 28 1381.23
G35 2000 0.64% | -3.205895e+04 -3.205896e+04 3.752328e-07 | 46  5167.17 | 51 5716.93
G36 2000 0.64% | -3.202383e+04 -3.202386e+04 9.011525e-07 | 38  4381.39 | 42 4841.52
G37 2000 0.64% | -3.207448e+04 -3.207449e+04 3.820329¢-07 | 42  4836.22 47 5400.13
G38 2000 0.64% | -3.205987e+04 -3.205990e+04 8.761401e-07 | 47  5392.57 | 52 5952.48
G39 2000 0.64% | -1.151058e+04 -1.151059e+04  7.376637e-07 | 59  6615.01 | 63 7056.50
G40 2000 0.64% | -1.145915e+04 -1.145916e+04 3.728182¢-07 | 52  6123.85 57 6703.57
G41 2000 0.64% | -1.146087e+04 -1.146087e+04 4.158517e-07 | 58  6629.09 | 63 7194.15
G42 2000 0.64% | -1.178500e+04 -1.178501e+04 7.308258e-07 | 45  5049.62 49 5495.55
G43 1000 2.10% | -2.812887e¢+04 -2.812889¢+04  7.416858¢e-07 18 767.17 | 22 939.50
G44 1000 2.10% | -2.811152e+04 -2.811154e+04 7.511560e-07 18 770.22 22 939.07
G45 1000 2.10% | -2.809911e+04 -2.809913e+04 4.530243e-07 | 21 900.51 25 1075.49
G46 1000 2.10% | -2.811972e+04 -2.811973e+04 3.978937¢-07 18 782.46 23 999.66
G47 1000 2.10% | -2.814662e+04 -2.814664e+04  7.609519e-07 18 751.57 | 22 920.39
G48 3000 0.17% | -2.399999e+04 -2.400000e+04  3.699426e-07 14 2878.85 19 3861.30
G49 3000 0.17% | -2.399999¢+04 -2.400000e+04 3.718535e-07 14 2873.69 19 3826.62
G50 3000 0.17% | -2.395268e+04 -2.395269e+04  3.543263e-07 14 2389.73 19 3192.86
Gb51 1000 1.28% | -1.602501e+04 -1.602502e+04 7.759416e-07 | 29 341.45 33 388.06
G52 1000 1.28% | -1.603854e+04 -1.603856e+04  7.427919e-07 | 36 44194 | 41 489.28
GbH3 1000 1.28% | -1.603886e+04 -1.603887e+04 8.122974e-07 | 26 306.85 30 353.86
GbH4 1000 1.28% | -1.602476e+04 -1.602478e+04  7.421491e-07 | 29 340.43 | 33 387.51

Table 2: Performance on solving the G-set semidefinite programs.
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