Convergence behavior of central paths for convex homogeneous self-dual cones

This is a preliminary discussion note resulted among Nesterov, Todd and myself. I hope it would be interesting to some love-to-see-superlinear-convergence researchers.

We are interesting in solving the pair of primal and dual problems in K and K^* , which are self-scaled and convex homogeneous primal and dual cones in a finite-dimensional real vector space E, see Nesterov and Todd¹.

We further assume that there is a unique fix point, e, in int K such that

$$e = -F'(e), \quad \langle e, e \rangle = \nu, \quad \text{and} \quad F''(e) = I$$

where I is the identical operator or matrix. Thus, we can view K^* as the dual of K with respect to the inner product on E defined by $\langle x, s \rangle := \langle F''(e)x, s \rangle$. Also, x + s makes sense because it corresponds to $x + [F''(e)]^{-1}s$, which is certainly in E. One property for these cones is that for any w and x in int K,

$$F''(w)x \in \operatorname{int} K^* = \operatorname{int} K,\tag{1}$$

where F is the ν self-scaled barrier for K.

Let us first give a definition.

Definition 1 A pair of primal and dual feasible solution are strictly complementary if

$$Ax = b$$
, $s = c - A^T y$, $x \in K$, $s \in K^*$,
 $x + s \in \text{int } K$, and $\langle x, s \rangle = 0$.

Lemma 1 Let x^1 and x^2 be in int K, and $s^1 = -F'(x^1)$ and $s^2 = -F'(x^2)$ in int K^* . Then, if $x^1 - x^2 \in int K$ then $s^2 - s^1 \in int K^*$.

Proof. For any $w \in K$ and $w \neq 0$,

$$\begin{split} \langle s^2 - s^1, w \rangle &= \langle F'(x^1) - F'(x^2), w \rangle \\ &= \langle \int_0^1 F''(x^2 + t(x^1 - x^2))(x^1 - x^2) dt, w \rangle \\ &= \int_0^1 \langle F''(x^2 + t(x^1 - x^2))(x^1 - x^2), w \rangle dt \\ &> 0. \end{split}$$

Here we have used fact (1) which implies that $F''(x^2 + t(x^1 - x^2))(x^1 - x^2) \in \operatorname{int} K^*$ and

$$F''(x^{2} + t(x^{1} - x^{2}))(x^{1} - x^{2}), w > 0$$

since $x^2 + t(x^1 - x^2) \in \operatorname{int} K$ for any $0 \le t \le 1$ and $x^1 - x^2 \in \operatorname{int} K$, and $0 \ne w \in K$.

Now we prove the following theorem.

¹Yu. Nesterov and M. Todd, Self-scaled barriers and interior-point methods for convex programming (9462) and Primal-dual interior-point methods for self-scaled cones (9544), CORE, Louvain-la-Neuve, 1994-1995.

Theorem 2 Let (y^*, x^*, s^*) be a strictly complementary solution such that

$$x^* + s^* - \rho e \in K$$

and let $(y(\mu), x(\mu), s(\mu))$, for any $\mu > 0$, be on the central path, that is,

$$Ax(\mu) = b, \quad s(\mu) = c^T - A^T y(\mu), \quad x(\mu) \in \operatorname{int} K, \quad s(\mu) \in \operatorname{int} K^*,$$

and

$$s(\mu) = -\mu F'(x(\mu))$$

 $x(\mu) = -\mu F'(s(\mu)).$

or equivalently

Then,

$$x(\mu) + s(\mu) - \frac{3\rho}{4\nu}e \in K$$

 $\mathbf{Proof.}$ Since

$$\langle x(\mu) - x^*, s(\mu) - s^* \rangle = 0,$$

$$\begin{split} \mu\nu &= = \langle x(\mu), s^* \rangle + \langle s(\mu), x^* \rangle \\ &= \langle -\mu F'(s(\mu)), s^* \rangle + \langle -\mu F'(x(\mu)), x^* \rangle \\ &\geq \langle -\mu F'(s(\mu) + x(\mu)), s^* \rangle + \langle -\mu F'(x(\mu) + s(\mu)), x^* \rangle \\ &= \langle -\mu F'(s(\mu) + x(\mu)), s^* + x^* \rangle \\ &\geq \langle -\mu F'(s(\mu) + x(\mu)), \rho e \rangle. \end{split}$$

Thus,

or

$$\langle -F'(s(\mu) + x(\mu)), e \rangle \le \nu / \rho.$$

From Theorem 5.2 and (5.6) of Nesterov and Todd's first paper and Lemma 3.3 of Nesterov and Todd's second paper, this implies that 4ν

$$\sigma_{x(\mu)+s(\mu)}(e) \leq \frac{1}{3\rho}$$
$$x(\mu) + s(\mu) - \frac{3\rho}{4\nu}e \in K$$

The result holds for any point in a neighborhood of the central path, based on the above result.

Corollary 3 Let (y^*, x^*, s^*) be a strictly complementary solution such that

$$x^* + s^* - \rho e \in K$$

and let (y, x, s), for $\mu = \langle x, s \rangle / \nu > 0$, be in the neighborhood of the central path, that is,

Ax = b, $s = c^T - A^T y$, $x \in \operatorname{int} K$, $s \in \operatorname{int} K^*$,

and for some $0 < \beta < 1$

 $s - \beta(-\mu F'(x)) \in K^*$

or equivalently (Lemma 3.2 of Nesterov and Todd's second paper)

$$x - \beta(-\mu F'(s)) \in K.$$

Then,

$$x + s - \frac{3\beta\rho}{4\nu}e \in K.$$