Multi-Robot Manipulation without Communication

Zijian Wang and Mac Schwager

Multi-Robot Systems Lab Department of Mechanical Engineering Boston University

DARS 2014, Daejeon, Korea

Nov. 3, 2014

Motivation

Multi-Robot Manipulation

- Transport large objects
- Scalable, high fault tolerance
- Construction, manufacturing, disaster relief
- Minimalist Approach
- No explicit communication
- No global localization information
- Inexpensive individual robot

Related Works 1

> Featured solutions for multi-robot manipulation

Caging / Force closure	Ensemble Control	Quadrotors	
	500x Assembly	Ax	
Fink et al. ICRA 08	Becker et al. IROS 13	Fink et al. IJRR 11	
External localization info. Collision with objects	Centralized. Operated by human. Not automatic.	External localization info. Planning is centralized and offline.	

Zijian Wang, Mac Schwager

Related Works 2

How ants manipulate objects

 [Berman et al. RSS2010] Ants align their forces better and better as they move the object

• [McCreery et al. Insectes Sociaux] Ants detect small-scale vibration or deformation of the object in order to coordinate their forces

Assumptions

- 1. Robots have proper mechanism to grasp the object, and apply a **force** to the object with desired magnitude and direction.
- 2. Robots can **follow the object** and have their desired force maintained.
- 3. Robots are equipped with necessary sensors to **measure** the movement of the object.
- 4. One **leader robot** knows the desired trajectory of the object, can measure the angle and and angular velocity of the object, and can also apply a torque to the object.
- 5. Other **follower robots** have no information about their positions, the object's position and the desired trajectory of the object.
- 6. Robots are **centrosymmetrically** distributed around the object.

Centrosymmetric Assumption

Centrosymmetric

Non-Centrosymmetric

Zijian Wang, Mac Schwager

Problem Formulation

Known Parameters:

Mass of the object	Moment of Inertia	Coeff. of static friction	Coeff. of viscous friction	Number of robots	Acceleratio n of gravity
М	J	μ_{s}	$\mu_{_{v}}$	N	g

> Quantities Measurable by Robots

Object's velocity	Object's acceleration
V	$\dot{\mathcal{V}}$

• Note: v and \dot{v} are at the center of the mass of the object.

Problem Formulation

> Dynamics of the object

• Translational Dynamics

$$M\dot{v} = \sum_{i=1}^{N} F_i - \mu_s Mg \frac{v}{\|v\|} - \mu_v v_i$$

• Rotational Dynamics

$$J\dot{\omega} = T_1 - \frac{\mu_v}{M} J\omega$$

≻Goal

• A decentralized force updating law for F_i such that v and ω can be controlled in order to follow a desired trajectory.

Force Coordination via Consensus MSL Background Linear consensus algorithm $\dot{x}_i(t) = \sum a_{ij}(x_j - x_i)$ $v_i \in N_i$ Leader-following (steering) For example, fix $x_1(t) = x_1(0)$ 0.5 [Olfati-Saber et al. TAC 2004] [Jadbabaie et al. TAC 2003] 2 2.5 3 3.5 1.5 4.5

Zijian Wang, Mac Schwager

Force Coordination via Consensus

Leader following

- Choose robot 1 as the leader
- If we fix the leader's force, then followers' forces will converge to the leader's

 $\lim_{t\to\infty}F(t)=F_1(0)\mathbf{1}$

• If we actively change the leader's force, we can steer the group force dynamically

Force Coordination via Consensus

Leader following (Theorem 1)

 Treat the leader's force (may be changing) as the input, the group force as the output, then their relationship can be characterized by the following first-order state space equations:

$$\dot{\eta}(t) = -\eta(t) + F_1(t)$$

$$F_s(t) = (N-1)\eta(t) + F_1(t)$$
(12)

where $F_s(t) = \sum_{i=1}^{N} F_i(t)$ is the group force, and $\eta(t) = (\sum_{i=2}^{N} F_i(t))/(N-1)$ denotes the average force of all followers.

Force Coordination via Consensus

Convergence rate (Theorem 2)

• Difference among follower robots

Theorem 2. The difference among all followers in (9) will converge exponentially to zero regardless of the leader's input. The rate of this exponential convergence increases linearly with the number of robots.

$$F_i(t) - F_k(t) = Ce^{-Nt}$$

• Convergence rate of the group force

$$\dot{F}_s = (N-1)\dot{\eta} + \dot{F}_1 = (N-1)(F_1 - \eta) + \dot{F}_1$$

More robots -> faster convergence!

Controller Design and Trajectory Following

- > Overall state-space dynamics
- Put everything together:

$$\begin{pmatrix} \dot{\eta} \\ \dot{\nu} \\ \dot{\omega} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ \frac{N-1}{M} & -\frac{\mu_{\nu}}{M} & 0 \\ 0 & 0 & -\frac{\mu_{\nu}}{M} \end{pmatrix} \begin{pmatrix} \eta \\ \nu \\ \omega \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ \frac{1}{M} & 0 \\ 0 & \frac{1}{J} \end{pmatrix} \begin{pmatrix} F_1 \\ T_1 \end{pmatrix} + \begin{pmatrix} 0 \\ -\mu_s g \frac{\nu}{\|\nu\|} \\ 0 \end{pmatrix}$$

Controller design

- Feedback control can be used to get desired performance on v and ω
- Use other trajectory following algorithms to choose desired
 - v and ω

Simulations in Open Dynamic Engine (ODE)

12 Robots, 1 Leader1kg Rectangular Plank0.6m*0.2m*0.1m

1000 Robots, 1 Leader273kg Steinway Piano1.54m*0.67m*1.32m

Zijian Wang, Mac Schwager

Conclusion

- A scalable multi-robot manipulation approach
- Completely decentralized
- Guarantee the efficiency of cooperation by reaching a force consensus
- A dynamic model
- No explicit communication
- No global localization information

Adaptive control

Human-swarm interaction

oots

- Consensus using velocity and acceleration at attachment
 - points rather than at the center of mass. (New paper

submitted to ICRA 2015)

Validation on physical robots

Multi-Robot Manipulation without Communication

Zijian Wang and Mac Schwager

Thanks for you attention!

More info on our website: http://sites.bu.edu/msl/

DARS 2014, Daejeon, Korea

Nov. 3, 2014

