NOTES AND REVIEWS

More on Nez Perce: On Alternative Analyses
Arnold M. Zwicky

In an important series of articles, a number of writers have considered the vowel systems of Nez Perce and several Sahaptin dialects, and the historical derivation of these systems from Proto-Sahaptian. The focus of interest has been the character and origin of vowel harmony in Nez Perce. To recapitulate the facts that have been clarified in the discussion: Nez Perce has a five-vowel system

i u o æ a

divided into two classes, a dominant class i o a and a recessive class i u æ, with the vowels paired as follows: i-i, o-u, a-æ. If a word contains a dominant morpheme (one with dominant vowels), all vowels in the word are dominant. Some morphemes with the vowel i are dominant, some recessive.

The first problem in analyzing these facts is whether the division between dominant and recessive morphemes should be accomplished by an (abstract) feature associated with morphemes as wholes, or by a (presumably phonological) feature associated with the individual vowels within the morphemes. Aoki’s 1966 article, which opts for morpheme-sized features, summarizes his objections to a purely phonological explanation: “A solution which involves segment-sized phonological features as the conditioning factor requires (1) postulation of a non-occurrence phonological entity or entities in order to distinguish Ai [dominant i] from i, (2) assignment of a phonological feature in the non-occurrence element as the triggering mechanism, and (3) inclusion of irrelevant elements, such as intervening consonants, in the rules. Furthermore, if Ai (or i) is to be represented by a non-occurrence phoneme X which is different from /i/, we need an additional rule to rewrite X as /i/” (p. 764f.). Jacobsen (p. 820) points out that the abstract analysis has the advantage of not requiring the investigator to make an arbitrary decision as to whether a dominant morpheme like cïkil destroy has the underlying shape cïkxïl, cœkil, or cœœxïl. In their contribution to this discussion, Chomsky and Halle stress the fact that “the sets of vowels in the two classes of words...are not natural classes in any reasonable phonetic framework,” thus refining and expanding Aoki’s second objection.

None of these objections is unassailable; note that non-occurrence phonological entities are fairly common in insightful analyses, that, as Rigsby and Silverstein (p. 48) observe, the problem of irrelevant elements must be solved in both the abstract and the purely phonological analyses, and that difficulties in determining the complete details of underlying representations are general in phonological analyses.

3 There is a particularly nice discussion of the necessity for such entities in Charles W. Kisseberth, On the Abstractness of Phonology: The Evidence from Yawelmani, Papers in Linguistics 1.248–82 (1969).

4 Many examples can be found in Chomsky and Halle’s The Sound Pattern of English, and the general issue has been clearly and briefly treated by Sanford Schane, On the Non-Uniqueness of Phonological Representations, Lg. 44.709–16 (1968).
The prime defect of the Aoki 1966 treatment is its totally unilluminating nature. The rule

$$V \rightarrow \begin{cases} [-\text{back}] / \left[\begin{array}{c} \text{Dominant} \\ -\text{high} \end{array} \right] \\ [-\text{high}] / \left[\begin{array}{c} +\text{Dominant} \\ +\text{back} \end{array} \right] \end{cases}$$

which operates on the underlying vowel system a i u to shift to a to æ in recessive words, u to o in dominant ones, has no phonetic plausibility at all. Moreover, if totally abstract features like Dominant can be employed in this fashion, we would predict that thousands of additional harmony systems with underlying a i u would be as likely as the Nez Perce system; these can be obtained by substituting different feature names (high, low, back, round, nasal, tense, etc.) and different feature values (+, −, α, −α) for the ones that appear in Aoki’s rule, and it cannot be argued that any of these systems is inherently more implausible than the system postulated for Nez Perce.

Another criticism of the abstract analysis has been put forth by Jacobsen, who points out that this treatment is incoherent with respect to the historical developments: “There is a temptation to fall into the anachronism of continuing to use the ‘plus Dominant’ feature (or the dominant prosody A) as an environment for the sound changes leading to vowel harmony. But these features (or prosodies) are morphophonemic entities that show themselves only in the vowel harmony alternations; if vowel harmony is not present, they cannot exist either” (p. 821).

What is required is an underlying six-vowel system, with a harmony rule couched entirely in terms of phonological features. Consider first, the set of logical possibilities. On the assumption that the six underlying vowels are chosen from the 12 vowels which can be distinguished by the features HIGH, LOW, BACK, and ROUND (three heights, times two backness specifications, times two specifications for rounding) there are 924 possible underlying systems. Each such set of six vowels can be divided into two subsets with three vowels apiece in 10 different ways. Next, for each such division there are six distinct ways in which the vowels of one set can be paired with the vowels of the other, times two possible assignments of dominance to these sets. Finally, for each such assignment, there are six ways in which the underlying vowels can be made to correspond to the five actual vowels of Nez Perce. There are consequently 665,280 logically possible analyses of vowel harmony in Nez Perce. Many of these are sufficiently preposterous to be excluded on a priori grounds; I do not believe that anyone would favor the suggestion that the underlying vowels of Nez Perce are ŭ e ě i a ò, arranged into dominant-recessive pairs as ŭ-a, e-i, ě-ò and realized phonetically as i (< ò and ò), æ (< ě), u (< a), o (< ŭ), and a (< e). On the other hand, many of the logically possible analyses are fairly plausible. At least four sorts of considerations bear upon the plausibility of an analysis: (a) the character of the underlying vowel system; (b) the naturalness of the classes of dominant and recessive vowels; (c) the extent to which the shift of the recessive vowels to their dominant counterparts can be rationalized, especially as some type of assimilation; and (d) the plausibility of the rule or rules required to realize the underlying system as the Nez Perce five-vowel system (including the merger of one pair of underlying vowels into the single vowel i). The preposterous example above fails on every count: the underlying system is odd, neither the class of dominant vowels (enclosed in figure 1) nor the harmony rule (indicated by arrows in figure 1) is natural, and the process of realization (indicated by the arrows in figure 2) is chaotic.

One has no assurance in general that the four sorts of plausibility considerations will tend in the same direction. Indeed, in many cases there is a conflict between an emphasis on natural underlying systems (for example,
the ‘canonical’ six-vowel system i e æ a o u), in the manner of Chomsky and Halle, and attempts to restrict the arbitrariness of analyses, in the manner of Postal, who proposes that underlying representations be identical to phonetic representations, except insofar as universal principles of phonology are operative and except insofar as required by the existence of otherwise justifiable language-particular rules. Thus, in a recent analysis of Mandarin Chinese, it is proposed on the basis of the phonetic qualities of the vowels (slightly modified to rationalize the six-vowel system) that the language has the underlying vowel system

\[i \quad u \quad i \quad a \]

This analysis conforms closely to Postal’s naturalness condition, but posits a six-vowel system wildly different from the canonical one. On the other hand, in the principal dialect of the New Guinean language Rotokas, as reported recently by Firchow, there are six consonants, with phonetic norms

\[p \quad t \quad k \]
\[b \quad f \quad g \]

Although in the closely related Aita dialect the phonetic norms of the voiced consonants are the nasals m n n̄, the Firchows report that the nasal allophones are rarely heard in Rotokas Proper; on the basis of Postal’s naturalness conditions, it would be very difficult to argue that the Rotokas Proper voiced consonants were underlying nasals, despite the intuitively satisfying nature of this proposal.

5 The Sound Pattern of English, pp. 408–11.
9 They say, “We are appealing here to a condition of naturalness of an underlying six-vowel system... in accordance with conventions of markedness as proposed in Trubetzkoy’s Grund...
(illustrated in figure 3), while Jacobsen seeks a phonetically natural10 dominant-recessive distinction and manages, in addition, to rationalize the harmony rule as an assimilation11 (see figure 4).

The Rigsby-Silverstein analysis can be revised to rationalize the harmony rule in a similar fashion, if \(e \), rather than \(i \), is taken to be the dominant vowel (figure 5). The realization rules needed are simple in both cases: for Rigsby-Silverstein, \(e \rightarrow i \); for Jacobsen, \(a \rightarrow i \). Another possibility would be to take \(i \) (or \(u \)) as the sixth (dominant) vowel (figure 6), in which case the harmony is a kind of \(o \)-umlaut.

Still other analyses involve mild violations of the naturalness principle, with a concomitant gain in the rationality of the harmony process. For example, in the system illustrated in figure 7, two underlying vowels are displaced from their output values, with underlying \(i \) realized as \(a \), and underlying \(e \) realized as \(i \); but the harmony rule is then a straightforward assimilation to the feature \([-\text{high}]\). One might even exercise ingenuity while holding fast to the canonical six-vowel system, say by adopting the definitely non-patent analysis summarized in figure 8, together with the realization rules \(e \rightarrow a \) and \(a \rightarrow i \). Although these analyses appear to be vastly different, when expressed in standard notations of generative phonology they differ by relatively few features (five at the most—fewer markings than occur in almost any single rule in The Sound Pattern of English). If the four types of plausibility considerations are weighed intuitively, probably the analyses of figures 4 through 7 are to be preferred to the others. But additional evidence of some sort is necessary if any further decision is to be reached.

Rigsby and Silverstein have, in fact, deduced some relevant evidence, namely the palatalization of \(k \) and \(k \) in Sahaptin. They find that the occurrence of palatals in Sahaptin can be explained if it is assumed that these dialects have essentially the same system of vowels and vowel harmony as Nez Perce. The Sahaptin vowels which condition palatalization correspond to the (regressive) Nez Perce vowels \(e \) and \(a \) in the analysis of

10 That is, \(a \) was chosen as the sixth vowel, instead of \(i \) (or \(a \)), ‘merely in order to give more phonetic homogeneity to the class of dominant vowels’ (p. 822).

11 In which, as R. P. V. Kiparsky observes in an unpublished paper, the vowels move toward the low back position—an \(a \)- (or \(o \)- or \(o \)-) umlaut analogous to the \(i \)-umlaut of Germanic.
The distinction between dominant i and recessive e, postulated entirely on a priori grounds above, is thus confirmed by the differential behavior of these vowels in Sahaptin.

Far from supporting the analysis of figure 3, however, the Sahaptin palatalizations suggest that Jacobsen’s treatment (figure 4) is essentially correct. The difficulty is that the Rigsby-Silverstein analysis has k palatalizing to č in position before e and æ, but not before i—despite the fact that i is the characteristic palatalizing influence. One expects that if any vowel conditions palatalization, that vowel is i; that if e conditions palatalization, so does i; and that if æ conditions palatalization, so do e and i. Inasmuch as palatalization is a kind of assimilation of consonants to an i articulation, these universal claims have enough intuitive plausibility for me not to defend them here.\(^{12}\)

It is sufficient to note that both the original Rigsby-Silverstein analysis and the revision of figure 5 (with palatalization after i and æ, but not e) are counterintuitive. This difficulty is avoided in Jacobsen’s analysis, where the (recessive) front vowels i and æ correspond to the palatalizing vowels of Sahaptin; the related dominant vowels (ø and a, respectively) are back vowels, hence would not be expected to condition palatalization. Jacobsen’s underlying vowel system is (perhaps) less natural than the Rigsby-Silverstein system, and Jacobsen’s ø→i rule is slightly more complex, in terms of feature markings, than Rigsby and Silverstein’s e→i rule; but Jacobsen’s treatment permits the rationalization of both processes involved, harmony and palatalization, hence is clearly preferable.

The Ohio State University

A Note on Sommer’s Claim that There Exist Languages Without CV Syllables

Bill J. Darden

In the January 1970 issue of IJAL, Bruce Sommer\(^ {1}\) presents some fascinating data from a set of Australian dialects which he claims do not have CV syllables. His data clearly support the claim that all lexical items in these dialects begin with vowels and end with consonants. They do not so clearly support the argument that all the syllables begin with vowels and end with consonants. The phonological representation of lexical items is a part of the underlying structure of a language, not necessarily a part of the surface. The break-up of a phonological utterance into syllables is a surface phenomenon. Mr. Sommer himself presents evidence that the surface distribution is not the same as the underlying distribution. To quote him: “—all four dialects have a small set of words which lose the initial vowel (and also the first consonant of any subsequent consonant cluster) when occurring in initial position of the phrase. Another phonetic feature of the phrase in Olglol, Okunjan, and Kawarrangg is the appearance of a final vowel, usually [-] or [ə]. These predictable characteristics of the phrase are not regarded as affecting syllable patterns.”

The examples quoted are:

\- **m amboț** (underlying ⟨abm ambot⟩) small person
\- **gul signer il** (ungul igun il) there he goes
\- **ay inun uwodin• —in** I would have given some meat to you

It is strange that Mr. Sommer elects to disregard phonological phenomena just because they are predictable. It is precisely the predictable phenomena which are most