Theorems in Probability

Zi Yin

Department of Electrical Engineering, Stanford University

September 24, 2015

Contents

1	Ger	neral Theorems on Measure Theory	4		
	1.1	Integration and Expectation	4		
	1.2	Uniform Integrability	4		
	1.3	Moments and Characteristic Function	5		
	1.4	Zero One Laws	5		
2	Cor	vergence Theorems	7		
	2.1	Basic Theorems	7		
	2.2	Weak Convergence	8		
	2.3	Convergence of Random Series	9		
3	Inequalities 10				
	3.1	Basic Inequalities	10		
	3.2	Maximal Inequalities	10		
4	Asymptotics 11				
	4.1	LLN, CLT, LIL and Extreme Values	11		
	4.2	Stein-Chen Method	12		
		4.2.1 Gaussian Approximation	12		
		4.2.2 Poisson Approximation	13		
	4.3	Method of Types	13		
	4.4	Large Deviation	14		
	4.5	KL Divergence	16		
5	Cor	nditional Expectation	17		
6	Ma	rtingale	19		
	6.1	Inequalities	20		
	6.2	Convergence	20		
	6.3	Uniform Integrable Martingale	21		
	6.4	Square Integrable Martingale	21		
	6.5	Optional Stopping	22		
	6.6	Branching Process	23		
	6.7	Reversed Martingale	23		

7	Mai	rkov Chains	26
	7.1	Canonical Construction	26
	7.2	Strong Markov Property	26
	7.3	Countable State Space Markov Chain	27
	7.4	Ways to Show Recurrence	28
	7.5	Invariant Measure	28
	7.6	Aperiodic Markov Chains	29
8	Sto	chastic Processes	31
9	Bro	wnian Motion	32
	9.1	General Properties	32
	9.2	Path Regularity	32
		9.2.1 Dimension	33
	9.3	Maximum Process	34
	9.4	Martingale Property	34
		9.4.1 Exponential Martingale and Girsanov Theorem	35
	9.5	Stopping Times	35
	9.6	Distributions	36
		9.6.1 Hitting Times	36
	9.7	Characterizations	37
	9.8	PDE	37
	9.9	Harmonic Functions	38
		9.9.1 Dirichlet Problem	39
		9.9.2 Recurrence of Brownian Motions	39
	9.10	Local Time	40
10	Sto	chastic Integration	41
	10.1	Formulae	41
11	\mathbf{List}	of References	43

1 General Theorems on Measure Theory

1.1 Integration and Expectation

- 1. Independence (c.f. [1] p.55): If $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n$ are independent and each \mathcal{A}_i is a π -system then $\sigma(\mathcal{A}_1), ..., \sigma(\mathcal{A}_n)$ are independent.
- 2. Fatou's Lemma: For nonnegative f_n , $\int \liminf f_n d\mu \leq \liminf \int f_n d\mu$.
- 3. Change of variable: If f is continuous, g is one-one, g' exists and is continuous, then

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

For higher dimensions $g : \mathbb{R}^k \to \mathbb{R}^k$, substitute g'(x) with $|J_g(x)|$ the determinant of the Jacobian of g.

4. Exchangibility of derivative and integration (c.f. [1] p.212): Suppose $f(\omega, x)$ has derivative $f'(\omega, x)$ with respect to x, and $|f'(\omega, x)| \leq g(\omega)$ for all ω and x, where g is integrable. Then $\frac{d(\int f(\omega, x)\mu d\omega)}{dx} = \int f'(\omega, x)\mu d\omega$.

5.
$$\mathbb{E}[|X|^p] = \int_0^\infty px^{p-1} \mathbb{P}(|X| > x) dx = \int_0^\infty px^{p-1} \mathbb{P}(|X| \ge x) dx.$$

6. Radon-Nikodym (c.f. [1] p.423, [3] p.165): If μ and ν are two σ -finite measures on (Ω, \mathcal{F}) such that $\nu \ll \mu$, then there exists f measurable on \mathcal{F} , such that $\int_A h d\nu = \int_A f h d\mu, \forall A \in \mathcal{F}, h$ measurable. Moreover, f is unique up to a null set with respect to μ . $f = \frac{d\nu}{d\mu}$ is called the Radon-Nikodym derivative.

1.2 Uniform Integrability

- 7. (c.f. [3] p.45): X_n U.I. $\Rightarrow \sup \mathbb{E}[|X_n|] < \infty$.
- 8. U.I. of collection of conditional expectation (c.f. [3] p.165): For any $X \in L^1(\Omega, \mathcal{F}, P)$, the collection $\{\mathbb{E}[X|\mathcal{H}] : \mathcal{H} \subset \mathcal{F} \text{ is a } \sigma\text{-algebra}\}$ is U.I.
- 9. (c.f. [3] p.48, p.200): If p > 1, $\sup \mathbb{E}[|X_n|^p] < \infty \Rightarrow X_n$ U.I.

Moments and Characteristic Function 1.3

10. Uniqueness of moment generating function (c.f. [1] p.285): Suppose that μ and ν are two probability measures on $[0, +\infty)$ (one sided). If

$$\int_0^\infty e^{-sx} \mu dx = \int_0^\infty e^{-sx} \nu dx, s \ge s_0$$

then $\mu = \nu$.

11. Uniqueness and inversion of characteristic function (c.f. [1] p.346): Suppose $\phi(t) = \mathbb{E}[e^{itX}] = \int e^{itx} \mu dx$ is the characteristic function of X with distribution μ . Then $\phi_1 = \phi_2 \Rightarrow \mu_1 = \mu_2$. Moreover, if $\mu(a) = \mu(b) = 0$,

$$\mu(a,b] = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt$$

12. Method of Moments (c.f. [1] p.388): Let μ be a probability measure on the real line having finite moments $m_n = \int_{-\infty}^{\infty} \mu dx$ of all orders. If the power series $\sum_k m_k r^k / k!$ has a positive radius of convergence then μ is the unique probability measure with moments M_0, M_1, \dots

Remark: A counter example is the log-normal where $X = e^N, N \sim$ N(0,1), where all its moments exist but no positive ROC for the moment generating function.

1.4Zero One Laws

- 13. Borel-Cantelli:

 - (a) If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, $\mathbb{P}(A_n \text{ i.o.}) = 0$. (b) If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$ and A_n independent, $\mathbb{P}(A_n \text{ i.o.}) = 1$.
- 14. Kolmogorov: If $\{X_n\}$ mutually independent and $\mathcal{T} = \bigcap_{n=0}^{\infty} \sigma(X_i, i \ge n)$ is the tail σ -algebra, then $\mathbb{P}(A), A \in \mathcal{T}$ is either 0 or 1.
- 15. Hewlett-Savage (c.f. [3] p.224): Define an exchangable σ -algebra to be $\mathcal{E} = \bigcap_m \mathcal{E}_m$, where

$$\mathcal{E}_m = \{A : \omega = (\omega_1, \omega_2, \ldots) \in A \Rightarrow (\omega_{\pi(1)}, \omega_{\pi(2)}, \ldots, \omega_{\pi(m)}, \omega_{m+1} \ldots) \in A\}$$

Suppose \mathcal{E} is the exchangable σ -algebra of iid random variables ξ_i , $\omega_i(\omega) = \xi_i(\omega)$. Then $\mathbb{P}(A), A \in \mathcal{E}$ is either 0 or 1.

16. Suppose φ is a measure preserving homomoerphism:

$$\varphi:\Omega\to\Omega,\mathbb{P}(\varphi^{-1}(A))=\mathbb{P}(A),\forall A\in\mathcal{F}$$

If φ is ergodic, *i.e.*

$$\forall X \in L^1(\Omega, \mathcal{F}, P), \frac{1}{n} \sum_{m=0}^{n-1} X(\varphi^m(\omega)) \xrightarrow{a.c.} \mathbb{E}[X],$$

then for the invariant σ -algebra $\mathcal{I} = \{A : \mathbb{P}(\varphi^{-1}(A)\Delta A) = 0\}, \forall A \in \mathcal{I}, \mathbb{P}(A) \text{ is either } 0 \text{ or } 1.$

2 Convergence Theorems

2.1 Basic Theorems

- 1. Relationships between convergence:
 - (a) Converge a.c. \Rightarrow converge in probability \Rightarrow weak convergence.
 - (b) Converge in $L^p \Rightarrow$ converge in $L^q \Rightarrow$ converge in probability \Rightarrow converge weakly, $p \ge q \ge 1$.
 - (c) Convergence in KL divergence \Rightarrow Convergence in total variation \Rightarrow strong convergence of measure \Rightarrow weak convergence, where

i.
$$\mu_n \stackrel{TV}{\rightarrow} \mu$$
 means $\lim ||\mu_n - \mu||_{TV} = 0$, where

$$||\mu - \nu||_{TV} = \sup_{||f||_{\infty} \le 1} \{\int f d\mu - \int f d\nu\}$$

which also equals

$$||\mu - \nu||_{TV} = 2 \sup_{A \in \mathcal{F}} |\mu(A) - \nu(A)|$$

ii.
$$\mu_n \to \mu$$
 strongly if $\lim \mu_n(A) = \mu(A), \forall A \in \mathcal{F}$.

- 2. Subsequence of a.c. convergence: If $X_n \xrightarrow{p} X$, then there exists an subsequence $n_k, X_{n_k} \xrightarrow{a.c.} X$.
- 3. Equivalence of convergence in probability and a.c. convergence (c.f. [1] p.290): Let $S_n = \sum_{i=1}^n X_i$. If $\{X_n\}$ is independent, then S_n converges a.c. iff S_n converges in probability.
- 4. When a.c. convergence implies L¹ convergence: Monotone convergence (MCT), Dominated convergence (DCT), Uniform integrability (U.I.).
- 5. Vitali (c.f. [3] p.46): If $X_n \xrightarrow{p} X$, then X_n is U.I. iff $X_n \xrightarrow{L^1} X$, which is again equivalent to X, X_n integrable and $\mathbb{E}[|X_n|] \to \mathbb{E}[|X|]$.
- 6. Scheffé (c.f. [1] p.215): Suppose $\mu_n(A) = \int_A \delta_n d\mu$ and $\mu(A) = \int_A \delta d\mu$ for densities δ_n and δ . If $\mu_n(\Omega) = \mu(\Omega) < \infty$, and $\delta_n \to \delta$ a.c., then

$$\sup_{A \in \mathcal{F}} |\mu(A) - \mu_n(A)| \le \int_{\Omega} |\delta - \delta_n| d\mu \to 0$$

7. Slutsky: If $X_n \Rightarrow X$ and $X_n - Y_n \Rightarrow 0$, then $Y_n \Rightarrow X$.

Remark: $Y_n \Rightarrow c$ is equivalent to $Y_n \xrightarrow{p} c$ if c is a constant, in the sense that $\lim_n \mathbb{P}(|Y_n - c| > \epsilon) = 0$.

8. Skorohod (c.f. [1] p.333): Suppose $\mu_n \Rightarrow \mu$ where μ_n and μ are probability measures on the real line. Then there exist some Y_n and Y on a common probability space (Ω, \mathcal{F}, P) such that $Y_n(\omega) \to Y(\omega), \forall \omega \in \Omega$, and Y_n, Y have distributions μ_n, μ .

2.2 Weak Convergence

- 9. *Portmanteau* (c.f. [2] p.16): The following five conditions are equivalent concerning weak convergence of probability measures:
 - (a) $\mathbb{P}_n \Rightarrow \mathbb{P};$
 - (b) $\int f d\mathbb{P}_n \to \int f d\mathbb{P}$ for any bounded continuous function f;
 - (c) $\limsup_{n \in \mathbb{P}} \mathbb{P}_{n}(F) \leq \mathbb{P}(F)$ for all closed set F;
 - (d) $\liminf_{n \in \mathbb{P}_n} \mathbb{P}_n(G) \ge \mathbb{P}(G)$ for all open sets G;
 - (e) $\mathbb{P}_n(A) \to \mathbb{P}(A)$ for all P-continuous set A.
- 10. Helly selection: For $\{F_n\}$ a sequence of distribution functions, there exists a subsequence $\{F_{n_k}\}$, such that there exists a right-continuous non-decreasing function F, $\lim F_{n_k}(x) = F(x)$ at all continuity points of F. Moreover, F is a distribution function if and only if $\{F_n\}$ is tight.
- 11. Continuous mapping preserves weak convergence (c.f. [1] p.380): Suppose h is measurable and the discontinuity set has measure 0. If $\mu_n \Rightarrow \mu$, then $\mu_n h^{-1} \Rightarrow \mu h^{-1}$, where $\mu h^{-1}(A) \stackrel{def}{=} \mu(h^{-1}(A))$.
- 12. Characteristic functions and convergence in distribution (c.f. [1] p.383): $\mu_n \Rightarrow \mu \text{ iff } \varphi_n(t) \rightarrow \varphi(t).$
- 13. Necessary and sufficient conditions for multivariate weak convergence (c.f. [1] p.383): Suppose $X_n \in \mathbb{R}^k$, $X_n = (X_{n1}, ..., X_{nk})$, $X = (X_1, ..., X_k)$. $X_n \Rightarrow X$ iff $\sum_{i=1}^k t_i X_{ni} \Rightarrow \sum_{i=1}^k t_i X_i$ for every $\mathbf{t} = (t_1, ..., t_k) \in \mathbb{R}^k$.

2.3 Convergence of Random Series

- 14. (c.f. [1] p.289): Suppose $\{X_n\}$ independent with $\mathbb{E}[X_i] = 0, \forall i$. Further if $\sum Var(X_n) < \infty$, then $\sum X_n$ converges a.c.
- 15. Kolmogorov three-series theorem (c.f [1] p.290): Suppose $\{X_n\}$ is independent. Consider the three series $\sum \mathbb{P}(|X_n| > c), \sum \mathbb{E}[|X_n^{(c)}|]$, and $\sum Var(X_n^{(c)})$, where $X_n^{(c)} = X_n \mathbb{1}_{\{|X_n| \le c\}}$. Then $\sum X_n$ converges a.c. implies above series converge for all c. On the other hand, if the above three series converge for some positive c, then $\sum X_n$ converges a.c.

3 Inequalities

3.1 Basic Inequalities

- 1. Markov: $\mathbb{P}(|X| > \alpha) \leq \frac{1}{\alpha^k} \mathbb{E}[|X|^k].$
- 2. Chebyshev: $\mathbb{P}(|X \mu| > \alpha) \leq \frac{1}{\alpha^2} Var(X).$
- 3. Jensen: If f is convex, $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$.
- 4. *Hölder*: $\mathbb{E}[|XY|] \le ||X||_p ||Y||_q$, $\frac{1}{p} + \frac{1}{q} = 1, p \ge 1$.
- 5. Minkowski: $||X + Y||_p \le ||X||_p + ||Y||_p, p \ge 1.$
- 6. Lyapounov: $||X||_p \le ||X||_q$, 0 .

3.2 Maximal Inequalities

7. Kolmogorov (c.f. [1] p.287): Suppose $\{X_n\}$ independent with zero mean and finite second moments. Then for $\alpha > 0$,

$$\mathbb{P}(\max_{1 \le k \le n} |S_k| \ge \alpha) \le \frac{1}{\alpha^2} Var(S_n)$$

8. *Etemadi* (c.f. [1] p.288): Suppose $\{X_n\}$ independent, for $\alpha > 0$,

$$\mathbb{P}(\max_{1 \le k \le n} |S_k| \ge \alpha) \le 3 \max_{1 \le k \le n} \mathbb{P}(|S_k| \ge \frac{\alpha}{3})$$

4 Asymptotics

4.1 LLN, CLT, LIL and Extreme Values

- 1. Strong LLN: Suppose X_1, X_2, \dots are iid random variables with finite first moment. Then with probability $1, S_n/n \to \mathbb{E}[X_1]$.
- 2. Law of iterated logarithm (c.f. [1] p.154): Suppose $X_1, ..., X_n$ are iid simple random variables with mean 0 and variance 1. Then

$$\mathbb{P}(\limsup_{n} \frac{S_n}{\sqrt{2n\log\log n}} = 1) = 1$$

3. Glivenko-Cantelli: Suppose X_n is a stationary ergodic process, then

$$||F_n - F||_{\infty} \stackrel{a.c.}{=} 0$$

where $F_n(x) = \frac{1}{n} \sum \mathbb{1}_{(-\infty,x]}(X_i)$ is the empirical distribution function.

4. Lindeberg CLT (c.f. [1] p.359): Suppose $\{X_{nk}\}$ is a triangular array. Let $S_n = \sum_{i=1}^{r_n} X_{ni}$. If for all $X_{nk}, 1 \le k \le r_n$,

$$\mathbb{E}[X_{nk}] = 0, \sigma_{nk}^2 = \mathbb{E}[X_{nk}^2], s_n^2 = \sum_{i=1}^{r_n} \sigma_{ni}^2$$

and the Lindeberg condition holds for all $\epsilon > 0$:

$$\lim_{n \to \infty} \sum_{i=1}^{r_n} \frac{1}{s_n^2} \int_{|x_{ni}| \ge \epsilon s_n} x_{ni}^2 d\mathbb{P}_{X_{ni}} = 0$$

Then $S_n/s_n \Rightarrow N(0,1)$.

5. Fisher-Tippett-Gnedenko: Suppose $X_1, X_2, ...$ are iid random variables, and $M_n = \max\{X_1, ..., X_n\}$. If there exists a sequence of pairs of reals $(a_n, b_n), a_n > 0$ such that

$$\lim_{n \to \infty} \mathbb{P}(\frac{M_n - b_n}{a_n} \le x) = F(x)$$

where F is non-degenerate, then F can only be one of the following three distributions:

(a) Gumbel: $F(x) = e^{-e^{-x}};$

(b) Fréchet:

$$F(x) = \begin{cases} 0, x \le 0\\ e^{-x^{-\alpha}}, x > 0 \end{cases}$$
(1)

(c) reversed Weibull:

$$F(x) = \begin{cases} e^{-(-x)^{\alpha}}, x \le 0\\ 1, x > 0 \end{cases}$$
(2)

6. Suppose $X_1, X_2, ...$ are iid random variables with mean 0 and variance 1, and $S_n = \sum_{i=1}^n X_i$. For each $\epsilon > 0$, let $N(\epsilon) = \inf\{n : S_k/k < \epsilon, \forall k > n\}$. Then $\epsilon^2 N(\epsilon)$ converges in distribution to a 1-DoF chi-square distribution.

Remark: It is related to the Brownian hitting time $\sup\{t \ge 0 : B_t = t\}$.

4.2 Stein-Chen Method

7. Wasserstein metric: the distance $d_{\mathcal{H}}(X, Y)$ between two random variables with respect to a set of test functions \mathcal{H} is defined by

$$d_{\mathcal{H}}(X,Y) = \sup_{h \in \mathcal{H}} |\mathbb{E}[h(X)] - \mathbb{E}[h(Y)]|$$

When $\mathcal{H} = \{h : |h(x) - h(y)| \le |x - y|, \forall x, y\}$, this distance is defined to be the Wasserstein distance.

4.2.1 Gaussian Approximation

8. Stein's Lemma: Define a differential operator \mathcal{D} by

$$\mathcal{D}(f)(x) = f'(x) - xf(x)$$

If $\mathbb{E}[\mathcal{D}(f)(Z)] = 0$ for all absolutely continuous function f with $||f'||_{\infty} < \infty$, then Z is a standard Gaussian random variable. Conversely, if Z is a standard Gaussian random variable, then $\mathbb{E}[\mathcal{D}(f)(Z)] = 0$ for all absolutely continuous function f with $\mathbb{E}[|f'(Z)|] < \infty$.

9. If W is a random variable and Z is a standard Gaussian random variable, define the set of functions $\mathcal{F} = \{f : ||f||_{\infty} \leq 2, ||f''||_{\infty} \leq 2, ||f''||_{\infty} \leq 2, ||f''||_{\infty} \leq \sqrt{2/\pi}\}$. Then

$$d_W(W,Z) \le \sup_{f \in \mathcal{F}} |\mathbb{E}[f'(W) - Wf(W)]|$$

10. Approximation of dependency neighborhoods: Suppose $X_1, X_2, ...$ are random variables such that $\mathbb{E}[X_i] = 0, \sigma_n^2 = Var(\sum_{i=1}^n X_i), (\mathbb{E}[|X_i|^4] < \infty$. Let $D = \max_{1 \le i \le n} |N_i|, S_n = \sum X_i / \sigma_n$. Then

$$d_W(S_n, Z) \le \frac{D^2}{\sigma_n^3} \sum_{i=1}^n \mathbb{E}[|X_i|^3] + \frac{\sqrt{28}D^{3/2}}{\sqrt{\pi}\sigma_n^2} \sqrt{\sum_{i=1}^n \mathbb{E}[|X_i|^4]}$$

4.2.2 Poisson Approximation

11. Poisson characteristic operator: For $\lambda > 0$, define operator \mathcal{D} by

$$\mathcal{D}(f)(k) = \lambda f(k+1) - kf(k)$$

If for some nonnegative integer valued random variable W, $\mathbb{E}[\mathcal{D}(f)(W)] = 0$ for all bounded functions f, then $W \sim Po(\lambda)$. Conversely, if $W \sim Po(\lambda)$, then $\mathbb{E}[\mathcal{D}(f)(W)] = 0$ for all bounded f.

12. Let $\mathcal{F} = \{f : ||f||_{\infty} \leq \min\{1, \lambda^{-1/2}\}, and ||\Delta f||_{\infty} \leq \frac{1-e^{-\lambda}}{\lambda} \leq \min\{1, \lambda^{-1}\}\}$, and W is an integer valued nonnegative random variable with mean λ . If $Z \sim Po(\lambda)$, then

$$d_{TV}(W,Z) \le \sup_{f \in \mathcal{F}} |\mathbb{E}[\lambda f(W+1) - Wf(W)]|$$

13. Approximation of dependency neighborhoods: Suppose $X_1, X_2, ...$ are binary random variables with $\mathbb{P}(X_i = 1) = p_i$. Let $S_n = \sum_{i=1}^n X_i$ and $\lambda_n = \sum p_i$. Define $p_{ij} = \mathbb{E}[X_i X_j]$, and $Z \sim Po(\lambda)$. Then

$$d_{TV}(S_n, Z) \le \min\{1, \lambda^{-1}\} (\sum_{i=1}^n \sum_{j \in N_i} p_i p_j + \sum_{i=1}^n \sum_{j \in N_i - \{i\}} p_{ij})$$

4.3 Method of Types

Suppose $X_1, ..., X_n$ are iid random variables taking values from a discrete set \mathcal{X} . The type $P_{\mathbf{x}^n}$ of sequence \mathbf{x}^n is the empirical distribution of \mathbf{x}^n . The type class $T(P_{\mathbf{x}^n})$ of a type $P_{\mathbf{x}^n}$ is defined to be $\{\mathbf{y}^n : \mathbf{y}^n \text{ has empirical distribution } P_{\mathbf{x}^n}\}$. \mathcal{P}_n is the set of all types with respect to n and alphabet \mathcal{X} .

14. If $X_1, ..., X_n$ are drawn iid according to a distribution Q(x), then the probability of \mathbf{x}^n depends only on its type and equals:

$$Q^{n}(\mathbf{x}^{n}) = 2^{-n(H(P_{\mathbf{x}^{n}}) + D(P_{\mathbf{x}^{n}}||Q))}$$

15. Size of a type class T(P): For any $P \in \mathcal{P}_n$,

$$\frac{1}{(n+1)^{|\mathcal{X}|}} 2^{nH(P)} \le |T(P)| \le 2^{nH(P)}$$

Remark: Here no underlying distribution is assumed.

16. Probability of a type class: for any $P \in \mathcal{P}_n$ and any distribution \mathbb{Q} , the probability of the type class T(P) under Q^n is $2^{-nD(P||Q)}$ to first order in the exponent. More precisely,

$$\frac{1}{(n+1)^{|\mathcal{X}|}} 2^{-nD(P||Q)} \le Q^n(T(P)) \le 2^{-nD(P||Q)}$$

17. LLN for empirical distribution (c.f. [5] p.356): Suppose $X_1, ..., X_n$ are iid according to $\mathbb{P}(x), x \in \mathcal{X}$. Then,

$$D(P_{\mathbf{x}^n}||P) \stackrel{a.c.}{\to} 0$$

4.4 Large Deviation

18. Berry-Esseen: Suppose $X_1, X_2, ...$ are independent random variables with $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_i^2] = \sigma_i^2 > 0$ and $\mathbb{E}[|X_i|^3] = \rho_i < \infty$. Let $s_n^2 = \sum_{i=1}^n \sigma_i^2$, $S_n = \sum_{i=1}^n X_i/s_n$. Then for Z a standard Gaussian random variable,

$$d_K(S_n, Z) \le C_0 \psi_n$$

Where

$$\psi_n = (\sum_{i=1}^n \sigma_i^2)^{-3/2} \cdot \sum_{i=1}^n \rho_i$$

and $d_K(X,Y) = \sup_x \{|F_X(x) - F_Y(x)|\}$ is the Kolmogorov distance.

19. Sanov: Suppose $X_1, ..., X_n$ are iid according to $Q(x), x \in \mathcal{X}$. Let E be a set of probability of distributions. Then

$$Q^{n}(E) = Q^{n}(E \cap \mathcal{P}_{n}) \le (n+1)^{|\mathcal{X}|} 2^{-nD(P^{*}||Q)}$$

Where $P^* = \underset{P \in E}{\operatorname{argmin}} D(P||Q)$, and

$$Q^{n}(E \cap \mathcal{P}_{n}) = \sum_{\mathbf{x}^{n}: P_{\mathbf{x}^{n}} \in E} Q^{n}(\mathbf{x}^{n})$$

20. Hoeffding: Suppose $X_1, ..., X_n$ are independent variables, each is a.c. bounded. Suppose for each $X_i, \mathbb{P}(X_i \in [a_i, b_i]) = 1$. Let $S_n = \sum X_i, \mu = \mathbb{E}[S_n]/n$. Then

$$\mathbb{P}(|\frac{S_n}{n} - \mu| > \epsilon) \le 2e^{-\frac{2n^2\epsilon^2}{\sum (b_i - a_i)^2}}$$

21. Chernoff: Suppose $X_1, X_2, ...$ are iid random variables with $\mathbb{E}[X_1] < 0$, $\mathbb{P}(X_1 > 0) > 0$. Let $M(t) = \mathbb{E}[e^{tX_1}]$, and $\rho = \inf_t M(t)$. Then

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\sum_{i=1}^{n} X_i \ge 0) = \log \rho$$

22. Covering Lemma (c.f. [9] p.62): Let $(U, X, \hat{X}) \sim p(u, x, \hat{x})$ and $\epsilon' < \epsilon$. Let $(U^n, X^n) \sim p(u^n, x^n)$ be a pair of random sequences with $\lim_{n\to\infty} \mathbb{P}((U^n, X^n) \in \mathcal{T}_{\epsilon'}(U, X)) = 1$. Suppose there are $x_n \geq 2^{nR}$ many random sequences $\hat{X}^n(1), ..., \hat{X}^n(x_n)$, each distributed accoding to $\prod_{i=1}^n p_{\hat{X}|U}(\hat{x}_i|u_i)$ which are conditionally independent of each other and X^n given U^n . Then $\exists \delta(\epsilon)$ tends to 0 as $\epsilon \to 0$, such that

$$\lim_{n \to \infty} \mathbb{P}((U^n, X^n, \hat{X}^n(m)) \notin \mathcal{T}_{\epsilon}(U, X, \hat{X}), \forall m = 1, ..., x_n) = 0$$

if $R > I(X, \hat{X}|U) + \delta(\epsilon)$.

23. Packing Lemma (c.f. [9] p.46): Let $(U, X, Y) \sim p(u, x, y)$. Let $(\tilde{U}^n, \tilde{Y}^n) \sim p(\tilde{u}^n, \tilde{y}^n)$ be a pair of arbitrarily distributed random sequence. Suppose there are $x_n \leq 2^{nR}$ random sequences $X^n(1), ..., X^n(x_n)$, each distributed accoding to $\prod_{i=1}^n p_{X|U}(x_i|u_i)$, which are independent of \tilde{Y}^n given U^n . Then $\exists \delta(\epsilon)$ tends to 0 as $\epsilon \to 0$, such that

$$\lim_{n \to \infty} \mathbb{P}(\exists \ m \in \{1, .., x_n\}, (\tilde{U}^n, X^n(m), \tilde{Y}^n) \in \mathcal{T}_{\epsilon}(U, X, Y)) = 0$$

if $R < I(X, Y|U) - \delta(\epsilon)$.

4.5 KL Divergence

24. Pythagorean (c.f. [5] p.367): For a closed convex set of probability distributions E and distribution $\mathbb{Q} \notin E$, let $\mathbb{P}^* = \underset{\mathbb{P} \in E}{\operatorname{argminD}(\mathbb{P}||\mathbb{Q})}$. Then

$$D(\mathbb{P}||\mathbb{Q}) \ge D(\mathbb{P}||\mathbb{P}^*) + D(\mathbb{P}^*||\mathbb{Q})$$

25. *Pinsker*: Suppose \mathbb{P} and \mathbb{Q} are two probability distributions in the same space, $||\mathbb{P} - \mathbb{Q}||_{TV} = 2 \sup_{A \in \mathcal{F}} |\mathbb{P}(A) - \mathbb{Q}(A)|$. Then

$$||\mathbb{P} - \mathbb{Q}||_{TV} \le 2\sqrt{2\ln(2)D(\mathbb{P}||\mathbb{Q})}$$

5 Conditional Expectation

1. Independence (c.f. [3] p.159): If $X \in L^1(\Omega, \mathcal{F}, P)$, and \mathcal{H} is independent of $\sigma(\sigma(X), \mathcal{G})$, then

$$\mathbb{E}[X|\sigma(\mathcal{H},\mathcal{G})] = \mathbb{E}[X|\mathcal{G}]$$

- 2. Tower Property (c.f. [3] p.160): If $X \in L^1(\Omega, \mathcal{F}, P)$, and $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$, then $\mathbb{E}[X|\mathcal{H}] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}].$
- 3. Taking out what's known (c.f. [3] p.160): Suppose $Y \in m\mathcal{G}$ and $X \in L^1(\Omega, \mathcal{F}, P)$ are such that $XY \in L^1(\Omega, \mathcal{F}, P)$. Then $\mathbb{E}[XY|\mathcal{G}] = Y\mathbb{E}[X|\mathcal{G}]$.
- 4. Law of total variation: For any σ -algebra \mathcal{G} and random variable X,

$$Var(X) = \mathbb{E}[Var(X|\mathcal{G})] + Var(\mathbb{E}[X|\mathcal{G}])$$

Where $Var(X|\mathcal{G}) = \mathbb{E}[(X - \mathbb{E}[X|\mathcal{G}])^2|\mathcal{G}].$

- 5. Conditional Jensen (c.f. [3] p.162): Suppose $g(\cdot)$ is a convex function on an open interval G of \mathbb{R} . If X is an integrable R.V. with $\mathbb{P}(X \in G) = 1$ and g(X) is also integrable, then almost surely $\mathbb{E}[g(X)|\mathcal{H}] \geq g(\mathbb{E}[X|\mathcal{H}])$ for any σ -algebra \mathcal{H} .
- 6. Conditioning decreases p-norm (c.f. [3] p.163):

$$|X||_p \ge ||\mathbb{E}[X|\mathcal{G}]||_p, \forall p > 1$$

- 7. MCT, DCT, Fatou's Lemma, conditional version (c.f. [3] p.165).
- 8. U.I. of collection of conditional expectation (c.f. [3] p.165): For any $X \in L^1(\Omega, \mathcal{F}, P)$, the collection $\{\mathbb{E}[X|\mathcal{H}] : \mathcal{H} \subset \mathcal{F} \text{ is a } \sigma\text{-algebra}\}$ is U.I.
- 9. C.E. minimizes L^2 norm (c.f. [3] p.170): Suppose $X \in L^2(\Omega, \mathcal{F}, P)$, $\mathcal{G} \subset \mathcal{F}$ is a σ -algebra. If $Y = \mathbb{E}[X|\mathcal{G}]$, among all $Z \in m\mathcal{G}$, $\mathbb{E}[(X - Y)^2] \leq \mathbb{E}[(X - Z)^2]$.
- 10. Definition of R.C.P.D (c.f. [3] p.172): Let $Y : \Omega \to \mathbb{S}$ be an $(\mathbb{S}, \mathcal{S})$ -valued R.V. in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathcal{G} \subset \mathcal{F}$ a σ -algebra. The collection $\hat{\mathbb{P}}_{Y|\mathcal{G}}(\cdot, \cdot) : \mathcal{S} \times \Omega \to [0, 1]$ is called the regular conditional probability distribution (R.C.P.D.) of Y given \mathcal{G} if:

(a) $\mathbb{P}(A, \cdot)$ is a version of the C.E. $\mathbb{E}[1_{Y \in A} | \mathcal{G}]$ for each fixed $A \in \mathcal{S}$. (b) For any fixed $\omega \in \Omega$, the set function $\mathbb{P}_{Y|G}(\cdot, \omega)$ is a probability measure on $(\mathbb{S}, \mathcal{S})$.

In case $\mathbb{S} = \Omega, \mathcal{S} = \mathcal{F}$ and $Y(\omega) = \omega$, we call this collection the regular conditional probability on \mathcal{F} given \mathcal{G} , denoted by $\hat{\mathbb{P}}(A|\mathcal{G})(\omega)$.

11. C.E. and R.C.P.D. (c.f [3] p.174): $\mathbb{E}[X|\mathcal{G}](\omega) = \int_{\mathbb{R}} x d\hat{\mathbb{P}}_{X|\mathcal{G}}(x,\omega).$

6 Martingale

- 1. (c.f. [3] p.182): Suppose $\phi : \mathbb{R} \to \mathbb{R}$ is convex and $\mathbb{E}[\phi(X_n)] < \infty, \forall n$. If $\{X_n\}$ is a martingale then $\{\phi(X_n)\}$ is a sub-martingale. Moreover, if ϕ is non-decreasing, then $\{X_n\}$ a sub-martingale $\Rightarrow \{\phi(X_n)\}$ a sub-martingale.
- 2. Martingale transform (c.f. [3] p.183): Suppose $\{Y_n\}$ is the martingale transform of \mathcal{F}_n -predictable $\{V_n\}$ with respect to a sub or super martingale (X_n, \mathcal{F}_n) , i.e.

$$Y_n = \sum_{k=1}^{n} V_k (X_k - X_{k-1})$$

Then

- (a) If Y_n is integrable and (X_n, \mathcal{F}_n) is a martingale, then (Y_n, \mathcal{F}_n) is also a martingale.
- (b) If Y_n is integrable, $V_n \ge 0$ and (X_n, \mathcal{F}_n) is a sub-(sup)martingale, then (Y_n, \mathcal{F}_n) is also a sub-(sup)martingale.
- (c) For the integrability of Y_n it suffices in both cases to have $|V_n| \le c_n$ for some non-random finite constants c_n , or alternatively to have $V_n \in L^q$, and $X_n \in L^p$ for all n and some p, q > 1 such that 1/p + 1/q = 1.
- 3. Stopping time decomposition (c.f. [3] p.185): Suppose $\{X_n\}$ is a sub-(sup)martingale, and $\theta \leq \tau$ are two stopping times, then

$$X_{n \wedge \tau} - X_{n \wedge \theta} = \sum_{k=1}^{n} \mathbb{1}_{\{\theta < k \le \tau\}} (X_k - X_{k-1})$$

is a sub-(sup)martingale.

- 4. Doob's Decomposition (c.f. [3] p.186): Given an integrable stochastic process $\{X_n\}$ adapted to a filtration $\{\mathcal{F}_n\}, n \geq 0$, there exists $X_n = Y_n + A_n$ such that:
 - (a) (Y_n, \mathcal{F}_n) is a martingale and
 - (b) $\{A_n\}$ is an \mathcal{F}_n -predictable sequence. This decomposition is unique up to $Y_0 \in m\mathcal{F}_0$.

6.1 Inequalities

5. Doob's Inequality (c.f. [3] p.188): Suppose $\{X_n\}$ is a sub-martingale and x > 0. Define $\tau_x = \min\{k : X_k \ge x\}$. Then for any $n \ge 0$,

$$\mathbb{P}(\max_{0 \le k \le n} X_k \ge x) \le x^{-1} \mathbb{E}[X_n \mathbb{1}_{\{\tau_x \le n\}}] \le x^{-1} \mathbb{E}[(X_n)_+] \le x^{-1} \mathbb{E}[|X_n|]$$

6. L^p maximal (c.f. [3] p.191): If $\{X_n\}$ is a sub-martingale then for any n and p > 1, Then

$$\mathbb{E}[(\max_{k \le n} X_k)_+^p] \le q^p \mathbb{E}[(X_n)_+^p]$$

where q = p/(p-1). If $\{Y_n\}$ is a martingale then for any n and p > 1,

$$\mathbb{E}[(\max_{k \le n} |Y_k|)^p] \le q^p \mathbb{E}[|Y_n|^p]$$

7. (c.f. [3] p.189): Suppose Z_n is a non-negative sub-martingale with $Z_0 = 0$. Let A_n be the predictable sequence in Doob's Decomposition, and $V_n = \max_{1 \le k \le n} Z_k$. Then for any stopping time τ and any x, y > 0,

$$\mathbb{P}(V_{\tau} \ge x, A_{\tau} \le y) \le \frac{1}{x} \mathbb{E}[A_{\tau} \land y]$$

Further $\mathbb{E}[V_{\tau}^p] \leq c_p \mathbb{E}[A_{\tau}^p], c_p = 1 + 1/(1-p), \forall p \in (0,1).$

8. Azuma: Suppose $\{X_n\}$ a sub-martingale with bounded increament, *i.e.* $|X_k - X_{k-1}| < c_k$ a.c. Then for any positive integer n and positive t,

$$\mathbb{P}(X_n - X_0 \ge t) \le e^{\left(\frac{-t^2}{2\sum_{k=1}^n c_k^2}\right)}, \mathbb{P}(X_n - X_0 \le -t) \le e^{\left(\frac{-t^2}{2\sum_{k=1}^n c_k^2}\right)}$$

6.2 Convergence

9. Doob's Up Crossing (c.f. [3] p.192): Suppose $\{X_n\}$ is a sup-martingale. Then for any a < b,

$$(b-a)\mathbb{E}[U_n[a,b]] \le \mathbb{E}[(X_n-a)_-] - \mathbb{E}[(X_0-a)_-]$$

10. Doob's Convergence (c.f. [3] p.194): Suppose (X_n, \mathcal{F}_n) is a sup-(sub)martingale with $\sup_n \{\mathbb{E}[(X_n)_-]\} < \infty$ (or $\sup_n \{\mathbb{E}[(X_n)_+]\} < \infty$). Then $X_n \xrightarrow{a.c.} X_\infty$ and $\mathbb{E}[|X_\infty|] \le \liminf \mathbb{E}[|X_n|]$ which is finite.

11. Bounded difference (c.f. [3] p.195): Suppose $\{X_n\}$ is a martingale of uniformly bounded difference. Consider the two events:

$$A = \{\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \in (-\infty, \infty)\}$$
$$B = \{\omega : \liminf_{n \to \infty} X_n(\omega) = -\infty, \limsup_{n \to \infty} X_n(\omega) = \infty\}$$

Then $\mathbb{P}(A \cup B) = 1$.

12. Martingale CLT: Suppose (X_n, \mathcal{F}_n) is a martingale with bounded difference, $|X_1| < k$ and $|X_i - X_{i-1}| < k$ for all *i* and some constant *k*. Define $\sigma_k^2 = \mathbb{E}[(X_{k+1} - X_k)^2 | \mathcal{F}_k]$, and let $\tau_{\nu} = \min\{k : \sum_{i=1}^k \sigma_i^2 \ge \nu\}$. Then $\frac{X_{\tau_{\nu}}}{\sqrt{\nu}}$ converges in distribution to a standard Gaussian distribution.

6.3 Uniform Integrable Martingale

13. If X_n is a sub-martingale then $\{X_n\}$ is U.I. if and only if $X_n \xrightarrow{L^1} X_\infty$. In this case, we also have $X_n \xrightarrow{a.c.} X_\infty$ and $X_n \leq \mathbb{E}[X_\infty | \mathcal{F}_n]$.

Remark: (X_n, \mathcal{F}_n) is a U.I. martingale if and only if $X_n = \mathbb{E}[X|\mathcal{F}_n]$ for some X, and $X_n \xrightarrow{a.c.} X$ in this case.

- 14. Lévy's Upward Theorem (c.f. [3] p.198): Suppose $\sup |X_n|$ is integrable, $X_n \xrightarrow{a.c.} X_\infty$ and $\mathcal{F}_n \uparrow \mathcal{F}_\infty$. Then $\mathbb{E}[X_n | \mathcal{F}_n] \to \mathbb{E}[X_\infty | \mathcal{F}_\infty]$ both a.c. and in L^1 .
- 15. Lévy's 0-1 Law (c.f. [3] p.199): If $\mathcal{F}_n \uparrow \mathcal{F}_\infty$, and $A \in \mathcal{F}_\infty$, then $\mathbb{E}[1_A | \mathcal{F}_n] \to 1_A$.
- 16. L^p martingale convergence (c.f. [3] p.201): Suppose X_n is a martingale and $\sup \mathbb{E}[|X_n|^p] < \infty$ for some p > 1, then $X_n \xrightarrow{a.c.} X_\infty$ and also $X_n \xrightarrow{L^p} X_\infty$ for some random variable X_∞ .

6.4 Square Integrable Martingale

17. Predictable compensator (c.f. [3] p.202): Let (X_n, \mathcal{F}_n) be a square integrable martingale. Suppose $X_n^2 = A_n + M_n$ in Doob's decomposition, where $A_n = X_0^2 + \sum_{k=1}^n \mathbb{E}[(X_k - X_{k-1})^2 | \mathcal{F}_{k-1}]$ is the predictable compensator, denoted by $A_n = \langle X \rangle_n$, and M_n is a martingale.

18. There exist finite constants $c_q, q \in (0, 1]$, such that if (X_n, \mathcal{F}_n) is an L^2 martingale with $X_0 = 0$, then

$$\mathbb{E}[\sup |X_k|^{2q}] \le c_q \mathbb{E}[\langle X \rangle_{\infty}^q]$$

where $\langle X \rangle_{\infty}$ is the pointwise limit of $\langle X \rangle_n$.

- 19. Suppose (X_n, \mathcal{F}_n) is a L^2 martingale with $X_0 = 0$. Then
 - (a) X_n converges to a finite limit a.c. for ω where $\langle X \rangle_{\infty}(\omega)$ is finite.
 - (b) $X_n(\omega)/\langle X \rangle_n(\omega) \to 0$ a.c. for $\{\omega : \langle X \rangle_\infty(\omega) < \infty\}$.
 - (c) If $|X_n X_{n-1}|$ is uniformly bounded then the converse of (a) holds, *i.e.* $\langle X \rangle_{\infty} < \infty$ a.c. for $\{\omega : X_n(\omega) \text{ converging to a finite limit}\}$.
- 20. Borel Cantelli III (c.f. [3] p.204): Consider events $A_n \in \mathcal{F}_n$ for some filtration $\{\mathcal{F}_n\}$. Let $S_n = \sum_{k=1}^n \mathbf{1}_{A_k}$ count the number of events occurring among the first n, with $S_{\infty} = \sum_{k=1}^{\infty} \mathbf{1}_{A_k}$ the corresponding total number of occurrences. Similarly, let $Z_n = \sum_{k=1}^n \xi_k$ denote the sum of the first n conditional probabilities $\xi_k = \mathbb{P}(A_k | \mathcal{F}_{k-1})$, and $Z_{\infty} = \sum_{k=1}^{\infty} \xi_k$. Then a.c.
 - (a) If $Z_{\infty}(\omega)$ is finite, so is $S_{\infty}(\omega)$.
 - (b) If $Z_{\infty}(\omega)$ is infinite, then $S_{\infty}(\omega)/Z_{\infty}(\omega) \to 1$.

6.5 Optional Stopping

- 21. U.I. of stopped process (c.f. [3] p.208): Suppose $\{Y_n\}$ is integrable and τ is a stopping time. Then $\{Y_{n\wedge\tau}\}$ is U.I. if any of the following conditions hold:
 - (a) $\mathbb{E}[\tau] < \infty$ and $\mathbb{E}[|Y_n Y_{n-1}|\mathcal{F}_{n-1}] < c$ a.c. for some constant c;
 - (b) $\{Y_n \mathbb{1}_{\{\tau > n\}}\}$ is U.I. and $Y_\tau \mathbb{1}_{\{\tau < \infty\}}$ is integrable;
 - (c) $\{Y_n\}$ is a U.I. sub(sup)-martingale.
- 22. Optional stopping I: Suppose $\theta < \tau$ are stopping times and X_n nonpositive sub-martingales for the filtration \mathcal{F}_n . Then X_{θ} and X_{τ} are integrable and $\mathbb{E}[X_0] \leq \mathbb{E}[X_{\theta}] \leq \mathbb{E}[X_{\tau}]$.
- 23. Optional stopping II: Suppose $\theta < \tau$ are stopping times and X_n submartingales for the filtration \mathcal{F}_n such that $X_{n\wedge\tau}$ is U.I. Then X_{θ} and X_{τ} are integrable and $\mathbb{E}[X_0] \leq \mathbb{E}[X_{\theta}] \leq \mathbb{E}[X_{\tau}]$.

- 24. Optional stopping III (c.f. [3] p.207): Suppose θ, τ are two stopping times such that $\tau \geq \theta$ a.c., X_{θ} is integrable and $\mathbb{E}[X_{\tau}] \geq \mathbb{E}[X_{\theta}]$. Then $\mathbb{E}[X_{\tau}|\mathcal{F}_{\theta}] \geq X_{\theta}$ a.c.
- 25. Suppose $\{X_n\}$ is a sub-martingale and $\{\tau_k\}$ a sequence of non-decreasing stopping times. Then $(X_{\tau_k}, \mathcal{F}_{\tau_k})$ is a sub-martingale if either $\sup \tau_k < \infty$ or $X_n \leq \mathbb{E}[X|\mathcal{F}_n]$ for some integrable X and all n.

6.6 Branching Process

- 26. Suppose Z_n is a branching process, *i.e.* $Z_0 = 1$ and $Z_n = \sum_{i=1}^{Z_{n-1}} N_i^{(n)}$ for some random variables $N_i^{(n)}, \mathbb{E}[N_i^{(n)}] < \infty$. If $N_i^{(n)} \stackrel{d}{=} N, \mathbb{P}(N = 0) > 0$, then almost certainly either $Z_n \neq 0$ for finitely many n, or $Z_n \to \infty$.
- 27. Generating function: $L(s) = \mathbb{E}[s^N]$ is called the generating function of a branching process Z_n .
- 28. Associated martingales (c.f. [3] p.214): Suppose Z_n a branching process with $0 < \mathbb{P}(N = 0) < 1$. Then $(m_N^{-n}Z_n, \mathcal{F}_n)$ is a martingale where $m_N = \mathbb{E}[N] < \infty$. If Z_n is super-critical, *i.e.* $m_N > 1$, $(\rho^{Z_n}, \mathcal{F}_n)$ is a martingale where $0 < \rho < 1$ is the unique solution for L(x) = x. In the sub-critical case, $(\rho^{Z_n}, \mathcal{F}_n)$ is a martingale where $\rho > 1$ is a solution for L(x) = x if exists.
- 29. Extinction probability: Suppose $0 < \mathbb{P}(N = 0) < 1$. if $m_N \leq 1$ then $p_{ex} = 1$. If $m_N > 1$, $p_{ex} = \rho$ is the solution of L(x) = x. In this case, $m_N^{-n} Z_n \xrightarrow{a.c.} X_\infty$ and $Z_n \xrightarrow{a.c.} Z_\infty \in \{0,\infty\}$.
- 30. Moment generating function (c.f. [3] p.216): Consider the moment generating function for Z_n : $M_n(s) = \mathbb{E}[s^{Z_n}]$ for $s \in [0,1]$. Then recursively $M_0(s) = s$ and $M_n(s) = L(M_{n-1}(s))$. The moment generating function $\hat{M}_{\infty}(s)$ for $(m_N^{-n}Z_n)_{\infty}$ is a solution of $\hat{M}_{\infty}(s) = L(\hat{M}_{\infty}(s^{1/m_N}))$.

6.7 Reversed Martingale

31. Kakutani: (c.f. [3] p.218): Suppose $M_n = \prod_{k=1}^n Y_k$, with $M_0 = 1$ and independent $Y_k > 0$ such that $\mathbb{E}[Y_k] = 1$. Further let $a_k = \mathbb{E}[\sqrt{Y_k}]$. The following statements are equivalent:

- (a) $\{M_n\}$ is U.I.;
- (b) $M_n \xrightarrow{L^1} M_\infty;$
- (c) $\mathbb{E}[M_{\infty}] = 1;$
- (d) $\prod_{k=1}^{\infty} a_k > 0;$
- (e) $\sum_{k=1}^{\infty} (1-a_k) < \infty$.

If any of these conditions fail, $M_{\infty} = 0$ a.c.

32. Let \mathbb{P}, \mathbb{Q} be two probability measures on $(\Omega, \mathcal{F}_{\infty})$. Let $\mathbb{P}_n, \mathbb{Q}_n$ denoting \mathbb{P}, \mathbb{Q} restricted on a filtration $\{\mathcal{F}_n\} \uparrow \mathcal{F}_{\infty}$. Suppose \mathbb{Q}_n is absolutely continuous with respect to \mathbb{P}_n , and $M_n = d\mathbb{Q}_n/d\mathbb{P}_n$. Then (M_n, \mathcal{F}_n) is a martingale on $(\Omega, \mathcal{F}_{\infty}, \mathbb{P})$ and $M_n \xrightarrow{a.c.} M_{\infty}$ where M_{∞} is finite a.c. If $\{M_n\}$ is U.I. then \mathbb{Q} is absolutely continuous with respect to \mathbb{P} , and $M_{\infty} = d\mathbb{Q}/d\mathbb{P}$.

Moreover, generally the Lebesgue decomposition of \mathbb{Q} with respect to \mathbb{P} is

$$\mathbb{Q} = \mathbb{Q}_{ac} + \mathbb{Q}_s = M_{\infty}\mathbb{P} + \mathbb{1}_{\{M_{\infty} = \infty\}}\mathbb{Q}$$

i.e. $\mathbb{Q}_{ac}(A) = \int_A M_{\infty}(\omega)d\mathbb{P}, \ \mathbb{Q}_s(A) = \int_A \mathbb{1}_{\{M_{\infty} = \infty\}}d\mathbb{Q}.$

33. Likelihood ratios (c.f. [3] p.220): Suppose \mathbb{P}, \mathbb{Q} are two measures on $(\mathbb{R}^{\infty}, \mathcal{B}^{\infty})$, and under both the \mathbb{P} and \mathbb{Q} , the coordinate maps $X_n(\omega) = \omega_n$ are independent. Further suppose $\mathbb{Q} \cdot X_k^{-1}$ is absolutely continuous with respect to $\mathbb{P} \cdot X_k^{-1}$. Let $Y_k(\omega) = \frac{d(\mathbb{Q} \cdot X_k^{-1})}{d(\mathbb{P} \cdot X_k^{-1})} (X_k(\omega))$. Then $M_{\infty} = \prod_k Y_k$ exists under both

 \mathbb{P} and \mathbb{Q} . Moreover if $\alpha = \prod_{k=1}^{\infty} \mathbb{P}(\sqrt{Y_k}) > 0$ then \mathbb{Q} is absolutely continuous with respect to \mathbb{P} and $d\mathbb{Q}/d\mathbb{P} = M_{\infty}$. If $\alpha = 0$ then \mathbb{Q} is singular with respect to \mathbb{P} and $M_{\infty} \stackrel{\mathbb{Q}-a.c.}{=} \infty$ and $M_{\infty} \stackrel{\mathbb{P}-a.c.}{=} 0$.

34. Reversed martingale convergence: Suppose X_0 is integrable, (X_n, \mathcal{F}_n) , $n \leq 0$ is a reversed margtingale if and only if $X_n = \mathbb{E}[X_0|\mathcal{F}_n]$ for all $n \leq 0$. Further

$$X_n \stackrel{a.c.}{\underset{L^1}{\longrightarrow}} \mathbb{E}[X_0 | \mathcal{F}_{-\infty}] \text{ as } n \to -\infty$$

- 35. Lévy's downward theorem: Suppose $\mathcal{F}_n \downarrow \mathcal{F}_{-\infty}$ and $X_n \stackrel{a.c.}{\to} X_{-\infty}$. If $\sup_n |X_n|$ is integrable, then $\mathbb{E}[X_n|\mathcal{F}_n] \stackrel{a.c.}{\to} \mathbb{E}[X_{-\infty}|\mathcal{F}_{-\infty}]$.
- 36. L^p convergence of reversed martingale: Suppose $(X_n, \mathcal{F}_n), n \leq 0$ is a reversed martingale. If for some positive p, $\mathbb{E}[|X_0|^p] < \infty$, then $X_n \stackrel{L^p}{\to} X_{-\infty}$.

37. Hewitt-Savage 0-1 law: (c.f. [3] p.224): The exchangable σ -algebra $\mathcal{E} = \bigcap_{n>0} \mathcal{E}_n$, where

$$\mathcal{E}_n = \sigma(\{A: \forall \omega = (\omega_1, \omega_2, ..) \in A, (\omega_{\pi(1)}, .., \omega_{\pi(n)}, \omega_{n+1} ..) \in A\})$$

of a sequence of iid random variables $\xi_k(\omega)=\omega_k$ is $\mathbb{P}\text{-trivial}.$

38. *De-Finetti*: If $\xi_k(\omega) = \omega_k$ is an exchangable sequence, then conditioned on \mathcal{E} , the random variables ξ_k are iid.

7 Markov Chains

7.1 Canonical Construction

1. Transition kernel (c.f. [3] p.228): Suppose $\{X_n\}$ is an \mathcal{F}_n Markov chain, and p_n is its *n*-th state transition kernel. For any bounded measurable function h,

$$\mathbb{E}[h(X_{n+1})|\mathcal{F}_n] = \int_{\mathcal{S}} h(y)p(X_n, dy)$$

2. Chain rule: Suppose $\{X_n\}$ is a Markov chain on $(\mathbb{S}, \mathcal{S})$, *n*-th state transition kernel $p_n(\cdot, \cdot)$ and initial distribution $\nu(A) = \mathbb{P}(X_0 \in A)$. Then for all bounded measurable functions h_l on \mathcal{S} and all $k \in \mathbb{N}$,

$$\mathbb{E}\left[\prod_{l=0}^{k} h_{l}(X_{l})\right] = \int h_{0}(x_{0}) \int h_{1}(x_{1}) \dots \int h_{k}(x_{k}) p_{k-1}(x_{k-1}, dx_{k}) \dots p_{0}(x_{0}, dx_{1}) \nu(dx_{0})\right]$$

3. Canonical construction (c.f. [3] p.230): If $(\mathbb{S}, \mathcal{S})$ is Borel-isomorphic, $\{p_n\}$ a set of transition kernels, and $\nu \neq \sigma$ -finite measure on \mathcal{S} . Then there corresponds a Markov chain X_n with initial distribution ν and transition kernel p_n , such that

$$\mathbb{P}_{\nu}((X_0,..,X_k) \in A) = \nu \otimes p_0 .. \otimes p_{k-1}(A), \forall A \in \mathcal{S}^{k+1}$$

The space $(\mathbb{S}^{\infty}, \mathcal{S}^{\infty}, P_{\nu})$ is the *canonical measurable space* of the Markov chain X_n where $\forall \omega = (\omega_0, \omega_1, ..) \in \mathbb{S}^{\infty}, \omega_n = X_n(\omega_0)$.

7.2 Strong Markov Property

4. strong Markov property: Suppose $(\mathbb{S}^{\infty}, \mathcal{S}^{\infty}, P_{\nu})$ is the canonical measurable space, and X_n its corresponding Markov chain. If X_n is homogeneous, for any class of bounded measurable functions $\{h_n\}$ on \mathcal{S}^{∞} with $\sup_{n,\omega} |h_n(\omega)| < \infty$,

$$E_{\nu}[h_{\tau}(\theta^{\tau}\omega)|\mathcal{F}_{\tau}^{X}]1_{\tau<\infty} = E_{X_{\tau}}[h_{\tau}]1_{\tau<\infty}$$

where θ is the left-shift operator and τ is a \mathcal{F}_n^X stopping time.

5. shift invariance (c.f. [3] p.234): Suppose ν is a σ -finite measure on $(\mathbb{S}, \mathcal{S})$, and $p_n(\cdot, \cdot)$ are transition kernels. If $\nu \otimes p_0(\mathbb{S} \times A) = \nu(A)$ for all $A \in \mathcal{S}$, then for all $A \in \mathcal{S}^{k+1}$,

$$\nu \otimes p_0 \otimes \ldots \otimes p_k(\mathbb{S} \times A) = \nu \otimes p_1 \otimes \ldots \otimes p_k(A)$$

6. A positive σ -finite measure μ on a Borel-isomorphic space $(\mathbb{S}, \mathcal{S})$ is invariant for homogeneous kernels $p(\cdot, \cdot)$ if and only if $\mu \otimes p(\mathbb{S} \times A) = \mu(A)$ for all $A \in \mathcal{S}$.

7.3 Countable State Space Markov Chain

7. Definitions:

- (a) x is accessible from $y \in \mathbb{S}$ if $\rho_{yx} = P_y(T_x < \infty) > 0$.
- (b) If $x \neq y$ and x, y are accessible from each other, x, y are *inter-communicate*.
- (c) A non empty set $C \subset \mathbb{S}$ is *closed* if $\forall y \in \mathbb{S} C$, y is not accessible from any $x \in C$.
- (d) A non empty set $C \subset \mathbb{S}$ is *irreducible* if $\forall x, y \in C, x, y$ are intercommunicate.
- (e) A state $y \in \mathbb{S}$ is recurrent if $\rho_{yy} = 1$, otherwise y is transient.
- (f) The k-th return T_y^k to state $y \in \mathbb{S}$ is recursively defined as $T_y^k = \inf\{n > T_y^{k-1} : X_n = y\}$ for k > 0 and $T_y^0 = 0$.
- 8. Harmonic functions on Markov chains: $f : \mathbb{S} \to \mathbb{R}$ is (super,sub) harmonic for a transition probability $p(\cdot, \cdot)$ if $f(x) = \sum p(x, y)f(y)$. When $f(X_0)$ is integrable, $\{f(X_n)\}$ is a (sub, sup) martingale if f is (sub, super) harmonic when f is bounded above or below.
- 9. Chapman-Kolmogorov (c.f. [3] p.235): Suppose X_n is a homogeneous Markov chain with countable state space \mathbb{S} , then for any $x, y \in \mathbb{S}$,

$$\mathbb{P}_x(X_n = y) = \sum_{s \in \mathbb{S}} \mathbb{P}_x(X_k = s) \mathbb{P}_s(X_{n-k} = y)$$

10. Expected visit time: For any $x, y \in \mathbb{S}$ and k > 0,

$$\mathbb{P}_x(T_y^k < \infty) = \rho_{xy}\rho_{yy}^{k-1}$$

Define $N_{\infty}(y)$ be the expected number of visits to y at finite time, then

$$\mathbb{E}[N_{\infty}(y)] = \frac{\rho_{xy}}{1 - \rho_{yy}}$$

- 11. Decomposition of Markov chain (c.f. [3] p.239): A countable state space S of a homogeneous Markov chain can be partitioned uniquely as $S = \mathbb{T} \cup \mathbf{R}_1 \cup \mathbf{R}_2 \cup ...$, where \mathbb{T} is the set of all transient states and \mathbf{R}_i are disjoint, irreducible closed sets of recurrent states with $\rho_{xy} = 1, \forall x, y \in \mathbf{R}_i$.
- 12. If F is a finite set of transient states then $\mathbb{P}_{\nu}(X_n \in F \ i.o.) = 0$ for any initial distribution ν . Hence if a finite closed set C contains at least one recurrent state, and if C is also irreducible then C is recurrent.

7.4 Ways to Show Recurrence

- 13. Suppose S is irreducible for a Markov chain $\{X_n\}$ and there exists $h : \mathbb{S} \to \mathbb{R}^+$ such that $\exists r > 0, G_r = \{x : h(x) < r\}$ is finite and non-empty, and h is super-harmonic on $\mathbb{S} G_r$. Then X_n is recurrent.
- 14. Suppose S is irreducible for a homogeneous Markov chain X_n . Then X_n is recurrent if and only if the only non-negative super-harmonic functions on S are constant functions.

7.5 Invariant Measure

15. Suppose X_n is a homogeneous Markov chain, and $T_z = \inf\{k \ge 1 : X_k = z\}$. Then

$$\mu_z(y) = \mathbb{E}_z[\sum_{k=0}^{I_z - 1} 1_{X_k = y}]$$

is an excessive measure, *i.e.* $\mu(y) \ge \sum \mu(x)p(x,y), \forall y \in \mathbb{S}$. Moreover if z is recurrent then $\mu_z(\cdot)$ is an invariant measure.

- 16. The invariant measure on a recurrent and irreducible Markov chain is unique up to a multiplicative constant.
- 17. If $\mu(\cdot) = c > 0$ is an invariant measure for a homogeneous Markov chain with transition probability $p(\cdot, \cdot)$, then it is *doubly stochastic*, *i.e.* $\sum_{x} p(x, y) = 1, \forall y$.

- 18. If $\mu(\cdot)$ is an invariant measure for transition probability $p(\cdot, \cdot)$, then for $\mu(x) \neq 0$, $q(x, y) \stackrel{\Delta}{=} \mu(y)p(y, x)/\mu(x)$ is a transition probability and corresponds to the reversed chain of the original Markov chain.
- 19. Kolmogorov cycle condition (c.f. [3] p.247): An irreducible Markov chain with transition probability $p(\cdot, \cdot)$ is reversible if and only if p(x, y) > 0 whenever p(y, x) > 0 and

$$\prod_{i=1}^{k} p(x_{i-1}, x_i) = \prod_{i=1}^{k} p(x_i, x_{i-1})$$

for all k > 2 and $x_0 = x_k$, in which case $\exists \mu$ a positive measure on \mathbb{S} , such that $\mu(x)p(x,y) = \mu(y)p(y,x), \forall x, y \in \mathbb{S}$.

- 20. Invariant probability: If $\pi(\cdot)$ is an invariant probability measure then $z \in \mathbb{S}$ is positive recurrent for all $z, \pi(z) > 0$. Conversely, if π is supported on an irreducible and positive recurrent set $\mathbf{R} \subset \mathbb{S}$, uniquely $\pi(z) = 1/\mathbb{E}_z[T_z], \forall z \in \mathbf{R}$.
- 21. Second law of thermodynamics (c.f. [5] p.81):
 - (a) Suppose μ, ν are two initial distributions of a homogeneous Markov chain X_n with transition probability \mathbb{P} . Let μ_n, ν_n be the measure of *n*-th coordinate of $\mu \otimes p^n, \nu \otimes p^n$. Then $D(\mu_n || \nu_n) \geq D(\mu_{n+1} || \nu_{n+1})$.
 - (b) Suppose X_n admits an invariant measure π . Then for any starting distribution μ , $D(\mu_n || \pi) \ge D(\mu_{n+1} || \pi)$.

7.6 Aperiodic Markov Chains

22. Asymptotic occupation time: For any initial distribution ν and all $y \in \mathbb{S}$,

$$\lim_{n \to \infty} \frac{1}{n} N_n(y) \stackrel{P_{\nu} = a.c.}{=} \frac{1}{E_y[T_y]} \mathbf{1}_{\{T_y < \infty\}}$$

where $N_n(y) = \sum_{k=1}^n \mathbb{1}_{\{X_k = y\}}$. Moreover, for all $x, y \in \mathbb{S}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{P}_x(X_k = y) = \frac{\rho_{xy}}{E_y[T_y]}$$

- 23. $\mathcal{I}_x = \{n \ge 1 : \mathbb{P}_x(X_n = x) > 0\}$ contains all large enough integer multiples of $d_x = gcd(\mathcal{I}_x)$ and if x, y intercommunicates, $d_x = d_y$.
- 24. Coupling of independent chains (c.f. [3] p.253): If X_n, Y_n are two copies of an aperiodic irreducible Markov chain, and further suppose $Z_n = (X_n, Y_n)$ is recurrent. Then $\tau = \min\{l \ge 0 : X_l = Y_l\}$ is finite a.c. regardless of the initial distributions (μ, ν) , and

$$||\mu_n - \nu_n||_{TV} \le 2\mathbb{P}(\tau > n)$$

Remark: This conclusion is stronger than the 2nd law of thermodynamics. If one can show the convergence of KL divergence then the coupling theorem is concluded via Pinsker's inequality.

25. If X_n is irreducible, positive recurrent and aperiodic, then for any $x \in \mathbb{S}$,

$$\lim_{n \to \infty} ||\mathbb{P}_x(X_n \in \cdot) - \pi(\cdot)||_{TV} = 0$$

8 Stochastic Processes

1. Cylindrical sets and Borel sets: Let $\mathbb{R}^{[0,\infty)}$ be the set of all functions from $[0,\infty) \to \mathbb{R}$. $\mathcal{B}(\mathbb{R}^{[0,\infty)})$ is the Borel sets generated by the basic open sets

$$\{f \in \mathbb{R}^{[0,\infty)} : f(x_1) \in U_1, .., f(x_n) \in U_n, \forall x_1, .., x_n, \forall U_1, .., U_n \text{ open} \}$$

- 2. Kolmogorov consistency theorem: A family of measures $\{Q_t\}$ is consistent if:
 - (a) $\mathbf{t} = (t_1, ..., t_n)$, and $\mathbf{s} = \pi(\mathbf{t})$ a permutation of \mathbf{t} , Then $\forall A_1, ..., A_n \in \mathcal{B}(\mathbb{R})$,

$$Q_{\mathbf{t}}(A_1 \times .. \times A_n) = Q_{\mathbf{s}}(A_{\pi(1)} \times .. \times A_{\pi(n)})$$

(b) $\mathbf{t} = (t_1, ..., t_n), \mathbf{s} = (t_1, ..., t_{n-1})$, then

$$Q_{\mathbf{s}}(A) = Q_{\mathbf{t}}(A \times \mathbb{R}), \ \forall A \in \mathcal{B}(\mathbb{R}^{n-1})$$

Then there exists a measure on $\mathbb{R}^{[0,\infty)}$, such that

$$\mathbb{P}(\{\omega \in \mathbb{R}^{[0,\infty)} : (\omega(t_1), .., \omega(t_n)) \in A\}) = Q_{\mathbf{t}}(A), \forall n, \mathbf{t}, A \in \mathcal{B}(\mathbb{R}^n)$$

3. Kolmogorov-Chentsov: Suppose that $X_t : \Omega \to \mathbb{R}^{[0,\infty)}$ is a stochastic process. If there exists positive α, β, C , such that

$$\mathbb{E}[|X_t - X_s|^{\alpha}] < C|t - s|^{1+\beta}, \forall 0 \le s < t \le T < \infty$$

Then there exists a continuous stochastic process $\tilde{X}_t : \Omega \to C[0,T]$, such that \tilde{X}_t is measurable, and for any $t \in [0,T]$, $\mathbb{P}(\tilde{X}_t = X_t) = 1$.

- 4. Lévy process: For any infinitely divisible distribution μ , there exists a random process Y_t , which is almost certainly Càdlàg, *i.e.* has left limit and is right continuous, with independent and stationary increment $Y_t Y_s$ distributed according to μ .
- 5. Wiener-Khinchin: Suppose X_t is a wide sense stationary process. Then its power spectrum density

$$S(\omega) = \lim_{T \to \infty} \mathbb{E}[|\hat{x}_T(\omega)|^2], \ \hat{x}_T(\omega) = \frac{1}{\sqrt{T}} \int_0^T X_t e^{-i\omega t} dt$$

equals $S(\omega) = \int_{-\infty}^{\infty} \gamma(\tau) e^{-i\omega\tau} d\tau$, where $\gamma(\tau) = \langle X_t, X_{t+\tau} \rangle = \mathbb{E}[X_t X_{t+\tau}^*]$.

9 Brownian Motion

 B_t , without further clarification, denotes a standard 1-dimensional Brownian motion starting at 0.

9.1 General Properties

- 1. *f.d.d.* of *BM*: Suppose B_t is a standard Brownian motion. For any $0 \le t_1 \le t_2 \le \dots \le t_n$, $(B_{t_1}, \dots, B_{t_n})$ is multivariate Gaussian, with $\mathbb{E}[B_{t_i}] = 0$, $Cov(B_{t_i}, B_{t_j}) = \min(t_i, t_j)$.
- 2. Brownian filtration: Let $\mathcal{F}_t^0 = \sigma(\{B_s : s \leq t\})$. Define $\mathcal{F}_t^+ = \bigcap_{s>t} \mathcal{F}_s^0$. Then \mathcal{F}_t^+ is a right continuous filtration, *i.e.* $\mathcal{F}_t^+ = \bigcap_{s>t} \mathcal{F}_s^+$, and B_t is measurable on \mathcal{F}_t^+ .
- 3. Scaling and time inversion of B_t :

(a)
$$W'_t(\omega) = c^{-1} B_{c^2 t}(\omega)$$

(b)
 $W''_t(\omega) = \begin{cases} t B_{\frac{1}{t}}(\omega), t > 0\\ 0, t < 0 \end{cases}$
(3)

Both W'_t and W''_t are Brownian motions.

- 4. Blumenthal's 0-1 law: If $A \in \mathcal{F}_0^+$, then $\mathbb{P}(A)$ is either 0 or 1.
- 5. Donsker's Invariance Principle (c.f. [4] p.134): Let $X_1, X_2, ...$ be iid random variables with $\mathbb{E}[X_1] = 0$, $\operatorname{Var}(X_1) = 1$. Let $S_n = \sum_{i=1}^n X_i$. Define a random function $W^{(n)} : [0, 1] \to \mathbb{R}$ by

$$W^{(n)}(\frac{k}{n}) = \frac{S_k}{\sqrt{n}}, k = 0, 1, ..., n$$

and linear interpolation in between. Then $W^{(n)} \Rightarrow B$ where B is a standard Brownian motion on [0,1], *i.e.* $\mu_n(A) = \mathbb{P}(W^{(n)} \in A),$ $\mu_n \Rightarrow \mu$ where μ is the Wiener measure on C[0,1].

9.2 Path Regularity

6. Almost certaily B_t has no interval of increase of decrease.

- 7. Nowhere differentiability (c.f. [6] p.306): B_t is nowhere differentiable a.c.
- 8. Local maxima (c.f. [4] p.46): The set of local maxima is almost certainly dense and countable.
- 9. Zero set (c.f. [4] p.52): Let $Z = \{t \ge 0 : B_t = 0\}$. Then almost certainly, Z is a perfect set, *i.e.* Z is closed with no isolated points.
- 10. Hölder continuity (c.f. [4] p.30): For any $\alpha < 1/2$, B_t is almost certainly locally α -Hölder continuous, which means for any $t \ge 0$, there exists $\epsilon > 0, c > 0$ such that

$$|B_s - B_t| < c|s - t|^{\alpha}, y \in \mathbb{R}^+ \cap (x - \epsilon, x + \epsilon)$$

11. Lower bound of growth (c.f. [4] p.32): Almost certainly,

$$\limsup_{n \to \infty} \frac{B_n}{\sqrt{n}} = +\infty, \liminf_{n \to \infty} \frac{B_n}{\sqrt{n}} = -\infty$$

12. Quadratic Variation (c.f. [4] p.35): Suppose there is a nested sequence of partition $0 = t_0^{(n)} \leq ... \leq t_{k_n}^{(n)} = t$ with mesh size $\sup\{t_j^{(n)} - t_{j-1}^{(n)}\}$ going to 0. Then almost certainly,

$$\lim_{n \to \infty} \sum_{j=1}^{k_n} (B_{t_j} - B_{t_{j-1}})^2 = t$$

Remark: This implies almost certainly B_t has unbounded variation.

9.2.1 Dimension

Definitions:

(a) Hausdorff content: Given a metric space E and a covering $E_1, E_2, ..., E_k$. The α -Hausdorff content of E is defined as:

$$\mathcal{H}^{\alpha}_{\infty}(E) = \inf\{\sum |Ei|^{\alpha} : E_1, E_2, \dots a \text{ covering of } E\}$$

Remark: If $\alpha \leq \beta$, then $\mathcal{H}^{\alpha}_{\infty} = 0 \Rightarrow \mathcal{H}^{\beta}_{\infty} = 0$.

(b) α -Hausdorff measure: for any fixed $\delta > 0$,

$$\mathcal{H}^{\alpha}_{\delta}(E) = \inf\{\sum |E_i|^{\alpha} : E_1, E_2, \dots \text{ cover } E \text{ and } |E_i| \le \delta, \forall i\}$$

The α -Hausdorff measure of E is

$$\mathcal{H}^{\alpha}(E) = \lim_{\delta \to 0} \mathcal{H}^{\alpha}_{\delta}(E) = \sup_{\delta > 0} \mathcal{H}^{\alpha}_{\delta}(E)$$

Remark: $\mathcal{H}^{\alpha}(E)$ is either 0 or ∞ .

(c) Hausdorff Dimension: The Hausdorff dimension of E is

$$dim(E) = \inf\{\alpha \ge 0 : \mathcal{H}^{\alpha}_{\infty}(E) = 0\} = \sup\{\alpha \ge 0 : \mathcal{H}^{\alpha}_{\infty} > 0\}$$

Remark: $dim(E) = \inf\{\alpha \ge 0 : \mathcal{H}^{\alpha}(E) = 0\} = \sup\{\alpha \ge 0 : \mathcal{H}^{\alpha}(E) = \infty\}.$

13. Dimension of BM: Almost certainly $\mathcal{H}^2(B[0,\infty)) = 0$. In particular, $dim(B[0,\infty)) = 2$ for d-dimensional Brownian motion, $d \ge 2$.

9.3 Maximum Process

- 14. 1-D distribution: Suppose $M_t = \max_{0 \le s \le t} B_s$, for any $t, M_t \stackrel{d}{=} |N_t|$, where N_t follows Gaussian N(0, t).
- 15. Joint distribution of BM and Maximum process (c.f. [8] p.10): Suppose B_t is a Brownian motion and M_t is its maximum process. Then

$$\mathbb{P}(X_t \le x, M_t \le y) = \Phi(\frac{x}{\sqrt{t}}) - \Phi(\frac{x - 2y}{\sqrt{t}})$$

where $\Phi(\cdot)$ is the CDF of a standard Gaussian.

16. (c.f. [7] p.73): Supose B_t is a Brownian with drift $\mu < 0$, and M_t corresponds to its maximum process. Then $M = \lim_{t\to\infty} M_t$ is finite a.c., and has exponential distribution with parameter 2μ .

9.4 Martingale Property

17. Both B_t and $B_t^2 - t$ are continuous martingales with respect to \mathcal{F}_t^+ .

- 18. Optional stopping: Suppose X_t is a right-continuous martingale, and T a stopping time such that there exists $c, T \leq c$ almost certainly. Moreover, if $\mathbb{E}[\sup_{0 \leq t \leq c+1} |X_t|] < \infty$, then $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.
- 19. Wald's Lemma: Let B_t be a standard Brownian motion, and T is a stopping time. If $\mathbb{E}[T] < \infty$, then $\mathbb{E}[B_T] = 0, \mathbb{E}[T] = \mathbb{E}[B_T^2]$.

9.4.1 Exponential Martingale and Girsanov Theorem

- 20. Exponential martingale: Suppose B_t is a Brownian motion with drift μ and variance σ . Then $V_t^{\theta} = e^{\theta B_t (\mu \theta + \frac{1}{2}\sigma^2 \theta^2)t}$ is a martingale for any $\theta \in \mathbb{R}$.
- 21. Change of measure: Suppose B_t is a Brownian motion with drift μ and variance σ . B_t is a Brownian motion with drift $\mu + \theta$ and variance σ under new measure $P^* : d\mathbb{P}^* = V_t^{(\theta/\sigma^2)} d\mathbb{P}$.

9.5 Stopping Times

- 22. *T* is a stopping time if $\{T < t\} \in \mathcal{F}_t^+, \forall t \in [0, +\infty)$. Equivalently, by right continuity, *T* is a stopping time if $\{T \le t\} \in \mathcal{F}_t^+, \forall t \in [0, +\infty)$
- 23. Strong Markov Property: Suppose T is a stopping time. Let $W_t = B_{T+t} B_T, \forall t \geq 0$. Then W_t is a Brownian motion and independent of \mathcal{F}_T^+ the stopped σ -algebra.
- 24. Skorohod embedding: If X is a random variable, with $\mathbb{E}[X] = 0, \mathbb{E}[X^2] < \infty$. Then there exists two random variables (U, V), U < 0, V > 0, which are independent of B_t such that if $T = \inf\{t : B_t \notin (U, V)\}$, then $X \stackrel{d}{=} B_T, \mathbb{E}[T] = \mathbb{E}[X^2]$.
- 25. *KMT embedding*: If $X_1, X_2, ...$ are iid random variables with mean 0 and variance 1. Moreover, $\mathbb{E}[e^{\theta|X_1|}] < \infty$ for some positive θ . Let $S_n = \sum_{i=1}^n X_i$, then there exists constants C, k, λ depending only on the distributions of X_1 such that the following is true: For any n, there is a Brownian motion constructed on the same space (expand if necessary) such that for any x > 0, $\mathbb{P}(\max|S_k - B_k| >$

(expand if necessary) such that for any x > 0, $\mathbb{P}(\max |S_k - B_k| > C \log n + x) < ke^{-\lambda x}$.

9.6 Distributions

- 26. Hitting 0 in an interval: The probability that a standard Brownian motion hits zero in the interval [s, t] is $\frac{2}{\pi} \arccos(\sqrt{\frac{s}{t}})$.
- 27. Arcsin law of last zero: Let L_t be the time of the last zero of a standard Brownian motion. Then L_t is arcsin distributed, *i.e.* $\mathbb{P}(L_t < s) = 1 \frac{2}{\pi} \arccos(\sqrt{\frac{s}{t}}) = \frac{2}{\pi} \arcsin(\sqrt{\frac{s}{t}}).$
- 28. Arcsin law: Suppose $X(\omega) = \lambda(\{t \in [0, 1] : B_t > 0\}) = \int_0^1 \mathbb{1}_{\{B_s > 0\}}(\omega) ds$ is the Lebesgue measure of time a Brownian motion $B_t(\omega)$ spends above 0. Then X is arcsin distributed, *i.e.* $\mathbb{P}(X \le x) = \frac{2}{\pi} \arcsin(x)$.

9.6.1 Hitting Times

29. Hitting time I: Suppose B_t a standard Brownian motion, and $T_a = \inf\{t \ge 0 : B_t = a\}$. Then T_a is finite a.c. and follows inverse Gaussian distribution with density

$$f(x) = \frac{|a|e^{-a^2/(2t)}}{\sqrt{2\pi t^3}}$$

- 30. Hitting time II: Let $T = \sup\{t \ge 0 : B_t = t\}$, where B_t is a standard Brownian motion. Then T is chi-square distributed with one degree of freedom, *i.e.* it has density $f(x) = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2}$.
- 31. With drift: Suppose B_t is a Brownian motion with drift μ and variance σ , and T_y be the first hitting time of y. Then

$$\mathbb{P}(T_y > t) = \Phi(\frac{y - \mu t}{\sigma t^{\frac{1}{2}}}) - e^{-\frac{2\mu y}{\sigma^2}} \Phi(\frac{-y - \mu t}{\sigma t^{\frac{1}{2}}})$$

32. Planar BM (c.f. [7] p.108): Suppose $B_t = (B_t^{(1)}, B_t^{(2)})$ is a 2-D Brownian motion starting at the origin. For any a > 0, let $\tau = \inf\{t \ge 0 : B_t^{(1)} = a\}$. Then $B_{\tau}^{(2)}$ follows Cauchy distribution with density $f(x) = \frac{a}{\pi(a^2 + x^2)}$

9.7 Characterizations

- 33. Lévy's characterization: Suppose X_t is a continuous stochastic process such that X_t and $X_t^2 - t$ are both martingales adapted to \mathcal{F}_t^+ . Then X_t is a Brownian motion with no drift.
- 34. Quadratic variation (c.f. [8] p.7): Suppose X_t adapted to \mathcal{F}_t^+ is continuous such that X_t is a martingale and X_t has quadratic variation t on [0, t]. Then X_t is a standard Brownian motion.
- 35. Exponential martingale (c.f. [8] p.7): Suppose X_t adapted to \mathcal{F}_t^+ is continuous. If

$$V_{\beta}(t) = e^{\beta X_t - (\beta \mu t + \frac{1}{2}\beta^2 \sigma^2 t)}$$

is a martingale for any $\beta \in \mathbb{R}$, then X_t is a Brownian motion with drift μ and variance $\sigma^2 t$.

36. Characterization function: If X_t is a process adapted to \mathcal{F}_s^+ , then X_t is a Brownian motion if and only if for any 0 < s < t, the conditional expectation

$$\mathbb{E}[e^{iu(W_t - W_s)}|\mathcal{F}_s^+] = e^{-\frac{u^2(t-s)}{2}}$$

- 37. martingale representation theorem: Suppose X_t is a continuous L^2 martingale adapted to \mathcal{F}_t^+ . Then there exists an adapted process f_t such that for any $t, X_t = \int_0^t f_s dB_s$.
- 38. Ito representation: For any t > 0, if X is measurable on \mathcal{F}_t^+ , and $\mathbb{E}[X^2] < \infty$. Then there exists an adapted process $f_s, 0 \le s \le t$, such that $X = \mathbb{E}[X] + \int_0^t f_s dB_s$.

9.8 PDE

- 39. heat equation (c.f. [4] p.207): Suppose u = u(x,t) such that $\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$ and with initial condition u(x,0) = f(x). Then $u(x,t) = \mathbb{E}_x[f(B_t)]$ solves this PDE.
- 40. Feynman-Kac (c.f. [4] p.207): If $V : \mathbb{R} \to \mathbb{R}$ is a bounded measurable function, $f : \mathbb{R} \to \mathbb{R}$ is bounded and continuous. Define

$$u(x,t) = \mathbb{E}_x[f(B_t)e^{\int_0^t V(B_s)ds}]$$

Then we have

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + V(x)u(x,t)$$

and

$$\lim_{t \to 0, x \to x_0} u(x, t) = f(x_0)$$

t

Conversely, if u satisfies the above two equations and u is twice differentiable on $\mathbb{R} \times (0, +\infty)$, such that its first order partial derivatives are bounded on $\mathbb{R} \times (0, +\infty), \forall t > 0$. Then u must have the form

$$u(x,t) = \mathbb{E}_x[f(B_t)e^{\int_0^t V(B_s)ds}]$$

41. Ornstein-Uhlenbeck process: If X_t is the Ornstein-Uhlenbeck process starting at x, *i.e.* $X_t = e^{-t}x + e^{-t}B_{e^{2t}-1}$, and $f : \mathbb{R} \to \mathbb{R}$ is in C^{∞} with bounded derivatives. Define $u(x,t) = \mathbb{E}_x[f(X_t)]$, then we have

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - x \frac{\partial u}{\partial t}$$

and

$$u(x,0) = f(x)$$

9.9 Harmonic Functions

- 42. Harmonic function: A Domain in \mathbb{R}^d is an open connected set. $f: U \to \mathbb{R}$ is harmonic if f is twice differentiable and $\Delta f = \sum_{i=1}^d \frac{\partial^2 f}{\partial x_i^2} = 0$ on U.
- 43. Mean value property: If U is a domain and u is a measurable and locally bounded function on U. Then the following statements are equivalent:
 - (a) u is harmonic;
 - (b) For any balls contained in U, $u(x) = \frac{1}{Vol(B_r(x))} \int_{B_r(x)} u(y) dy$; (c) For any balls contained in U, $u(x) = \frac{1}{\sigma(\partial B_r(x))} \int_{\partial B_r(x)} u(y) d\sigma(y)$.
- 44. Maximum principle: U is a domain and u on U is harmonic. If u attains maximum in U then u must be a constant. Moreover, if u extends continuously to \overline{U} and U is bounded, then u attains maximum on ∂U .

9.9.1 Dirichlet Problem

- 45. Poincare Cone condition: A domain U satisfies the Poincare Cone condition if for any $z \in \partial U$, there exists a cone C_z at z of nonzero volumn, such that for some r > 0, $B_r(z) \cap C_z \subset U^c$.
- 46. Dirichlet problem (c.f. [4] p.73): Let U be a domain, $\varphi : \partial U \to \mathbb{R}$ is measurable. Let

$$u(x) = \mathbb{E}_x[\varphi(B_\tau) | \tau < \infty], where \ \tau = \inf\{t : B_t \in \partial U\}$$

Then u is harmonic. Moreover if φ is continuous and U is bounded satisfying the Poincare Cone condition, then $u \to \varphi$ on the boundary.

9.9.2 Recurrence of Brownian Motions

47. Fix 0 < r < R, define $U = \{x \in \mathbb{R}^d : r < |x| < R\}$ be an annulus. Consider

$$u(x) = \begin{cases} |x|, d = 1\\ \log |x|, d = 2\\ |x|^{2-d}, d \ge 3 \end{cases}$$
(4)

Then u is harmonic in U.

48. First hitting time: (c.f. [4] p.76): Suppose B_t is a d-dimensional Brownian motion started at $x \in U = \{x \in \mathbb{R}^d : r < |x| < R\}$, and T_r, T_R the first hitting times of the inner and outer boundary. Then

$$\mathbb{P}(T_r < T_R) = \begin{cases} \frac{R - |x|}{R - r}, d = 1\\ \frac{\log R - \log |x|}{\log R - \log r}, d = 2\\ \frac{R^{2-d} - |x|^{2-d}}{R^{2-d} - r^{2-d}}, d \ge 3 \end{cases}$$
(5)

- 49. The d-dimensional Brownian motion B_t is
 - (a) point recurrent if d = 1;
 - (b) neighborhood recurrent if d = 2;
 - (c) transient if $d \ge 3$.

9.10 Local Time

- 50. Dimension of zero set: Almost certainly the zero set $Z = \{s \in [0, t) : B_s = 0\}$ is of Hausdorff dimension 1/2. And the 1/2-Hausdorff measure $\mathcal{H}^{\frac{1}{2}}(Z) = 0$.
- 51. The Brownian local time at 0 is $L_t^0 = \lim_{\epsilon \to 0} \int_0^t \mathbb{1}_{\{-\epsilon \leq B_s \leq \epsilon\}} ds$. This limit exists and has the same law as $M_t = \max_{0 \leq s \leq t} B_s$. Moreover, $(|B_t|, L_t^0) \stackrel{d}{=} (M_t B_t, M_t)$.
- 52. Tanaka (c.f. [7] p.222): If $W_t = \int_0^t sgn(B_s) dB_s$, then W_t is a standard Brownian motion. Moreover, $|B_t| = W_t + L_t^0$ and $L_t^0 = \tilde{M}_t = \max_{0 \le s \le t} (-W_s)$. Remark:
 - (a) The first conclusion is by Lévy's construction of BM,
 - (b) The first equation is by Ito's formula on $f_{\epsilon}(B_t)$ where $f'_{\epsilon}(\cdot)$ is a continuous estimation of the Heavyside step function, and
 - (c) The second equation is by the first equation and increasing properties of L_t^0 and \tilde{M}_t .
- 53. Ray-Knight I (c.f. [4] p.164): Suppose B_t is a standard Brownian motion and $T_a = \inf\{t \ge 0 : B_t = a\}$. Then the process $L_T^{a-t} \stackrel{d}{=} |W_t|^2, t \in [0, a]$ where W_t is a 2-D standard Brownian motion.
- 54. Ray-Knight II (c.f. [7] p.456): Let $T_a = \inf\{t \ge 0 : L_t^0 > a\}$. Then the processes $L_{T_a}^t + W_t^2 \stackrel{d}{=} (W_t + \sqrt{a})^2, \forall t \ge 0$, where W_t is a 1-D standard Brownian motion.

10 Stochastic Integration

1. Existence of Solution: For a SDE of the form

$$dY_t = f(t, Y_t)dt + g(t, Y_t)dB_t$$

i.e. find Y_t such that $Y_t = Y_0 + \int_0^t f(s, Y_s) ds + \int_0^t g(s, Y_s) dB_s$. A unique continuous solution in C[0, T] exists if there exists L > 0, such that

$$\forall t, x, y, |f(t, x) - f(t, y)| + |g(t, x) - g(t, y)| \le L|x - y|$$

And the solution is given by the L^2 limit of

$$Y_t^{(n)} = x + \int_0^t f(s, Y_s^{(n-1)}) ds + \int_0^t g(s, Y_s^{(n-1)}) dB_s$$

starting at $Y_t^{(0)} = x$.

2. Geometric Brownian motion: The solution to the SDE

$$dY_t = \mu Y_t dt + \sigma Y_t dB_t$$

is $Y_t = Y_0 e^{(\mu - \frac{1}{2}\sigma^2)t} e^{\sigma B_t}$.

3. Bessel Process: The solution to the SDE

$$dY_t = dB_t + \frac{n-1}{2Y_t}dt$$

is $Y_t = ||W_t||$ where W_t is a n-dimensional Brownian motion.

10.1 Formulae

4. (c.f. [4] p.189): Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, t > 0 and s_n is a mesh going to zero. Then

$$\sum_{i=0}^{n-1} f(B_{s_i})(B_{s_{i+1}} - B_{s_i})^2 \to \sum_{i=0}^{n-1} f(B_{s_i})(s_{i+1} - s_i) \to \int_0^t f(B_s)ds$$

5. Ito's lemma: Suppose X_t is a drift-diffusion process, *i.e.*

$$dX_t = \mu_t dt + \sigma_t dB_t$$

Then for any twice differentiable function f(t, x),

$$df(t, X_t) = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2}\sigma_t^2 \frac{\partial^2 f}{\partial x^2}\right)dt + \sigma_t \frac{\partial f}{\partial x}dB_t$$

6. Ito's formula (c.f. [4] p.189): Suppose $f \in C^\infty$ and all derivatives bounded. Then

$$f(B_t) = f(B_0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds$$

Also if f = f(t, x),

$$f(t, B_t) = f(0, B_0) + \int_0^t \frac{\partial f}{\partial s}(s, B_s) ds + \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, B_s) ds$$

7. General Ito lemma:

$$df(t, B_t) = \frac{\partial f}{\partial t}(t, B_t)dt + \frac{\partial f}{\partial x}(t, B_t)dB_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t, B_t)dt$$

And for square integrable martingale X_t ,

$$df(t, X_t) = \frac{\partial f}{\partial t}(t, X_t)dt + \frac{\partial f}{\partial x}(t, X_t)dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t, X_t)d\langle X_t \rangle$$

where $\langle X_t \rangle$ is the quadratic variation of X_t .

8. Isometry: Suppose f_s is a L^2 stochastic process, then

$$\mathbb{E}[(\int_0^t f_s dB_s)^2] = \int_0^t \mathbb{E}[f_s^2] ds$$

9. Generalized Ito's Formula: If $V_t = f(U_t)$, then

$$dV_t = f'(U_t)dU_t + \frac{1}{2}f''(U_t)(dU_t)^2$$

11 List of References

[1] Probability and Measure, Patrick Billingsley

[2] Convergence of Probability Measures, Patrick Billingsley

[3] Lecture notes, Amir Dembo

- [4] Brownian Motion, Peter Mörters, Yuval Peres
- [5] Elements of Information Theory, Thomas M. Cover
- [6] Probability-Theory and Examples, Rick Durrett
- [7] Continuous Martingales and Brownian Motion, Daniel Revuz, Marc Yor
- [8] Brownian Models of Performance and Control, Michael J. Harrison
- [9] Network Information Theory, Abbas El Gamal, Young Han Kim