Theorems in Probability

Zi Yin
Department of Electrical Engineering, Stanford University

September 24, 2015

Contents

1 General Theorems on Measure Theory 4
1.1 Integration and Expectation 4
1.2 Uniform Integrability 4
1.3 Moments and Characteristic Function 5
1.4 Zero One Laws 5
2 Convergence Theorems 7
2.1 Basic Theorems 7
2.2 Weak Convergence 8
2.3 Convergence of Random Series 9
3 Inequalities 10
3.1 Basic Inequalities 10
3.2 Maximal Inequalities 10
4 Asymptotics 11
4.1 LLN, CLT, LIL and Extreme Values 11
4.2 Stein-Chen Method 12
4.2.1 Gaussian Approximation 12
4.2.2 Poisson Approximation 13
4.3 Method of Types 13
4.4 Large Deviation 14
4.5 KL Divergence 16
5 Conditional Expectation 17
6 Martingale 19
6.1 Inequalities 20
6.2 Convergence 20
6.3 Uniform Integrable Martingale 21
6.4 Square Integrable Martingale 21
6.5 Optional Stopping 22
6.6 Branching Process 23
6.7 Reversed Martingale 23
7 Markov Chains 26
7.1 Canonical Construction 26
7.2 Strong Markov Property 26
7.3 Countable State Space Markov Chain 27
7.4 Ways to Show Recurrence 28
7.5 Invariant Measure 28
7.6 Aperiodic Markov Chains 29
8 Stochastic Processes 31
9 Brownian Motion 32
9.1 General Properties 32
9.2 Path Regularity 32
9.2.1 Dimension 33
9.3 Maximum Process 34
9.4 Martingale Property 34
9.4.1 Exponential Martingale and Girsanov Theorem 35
9.5 Stopping Times 35
9.6 Distributions 36
9.6.1 Hitting Times 36
9.7 Characterizations 37
9.8 PDE 37
9.9 Harmonic Functions 38
9.9.1 Dirichlet Problem 39
9.9.2 Recurrence of Brownian Motions 39
9.10 Local Time 40
10 Stochastic Integration 41
10.1 Formulae 41
11 List of References 43

1 General Theorems on Measure Theory

1.1 Integration and Expectation

1. Independence (c.f. [1] p.55): If $\mathcal{A}_{1}, \mathcal{A}_{2}, . ., \mathcal{A}_{n}$ are independent and each \mathcal{A}_{i} is a π-system then $\sigma\left(\mathcal{A}_{1}\right), \ldots, \sigma\left(\mathcal{A}_{n}\right)$ are independent.
2. Fatou's Lemma: For nonnegative $f_{n}, \int \liminf f_{n} d \mu \leq \liminf \int f_{n} d \mu$.
3. Change of variable: If f is continuous, g is one-one, g^{\prime} exists and is continuous, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(y) d y
$$

For higher dimensions $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$, substitute $g^{\prime}(x)$ with $\left|J_{g}(x)\right|$ the determinant of the Jacobian of g.
4. Exchangibility of derivative and integration (c.f. [1] p.212): Suppose $f(\omega, x)$ has derivative $f^{\prime}(\omega, x)$ with respect to x, and $\left|f^{\prime}(\omega, x)\right| \leq$ $g(\omega)$ for all ω and x, where g is integrable. Then $\frac{d\left(\int f(\omega, x) \mu d \omega\right)}{d x}=$ $\int f^{\prime}(\omega, x) \mu d \omega$.
5. $\mathbb{E}\left[|X|^{p}\right]=\int_{0}^{\infty} p x^{p-1} \mathbb{P}(|X|>x) d x=\int_{0}^{\infty} p x^{p-1} \mathbb{P}(|X| \geq x) d x$.
6. Radon-Nikodym (c.f. [1] p.423, [3] p.165): If μ and ν are two σ-finite measures on (Ω, \mathcal{F}) such that $\nu \ll \mu$, then there exists f measurable on \mathcal{F}, such that $\int_{A} h d \nu=\int_{A} f h d \mu, \forall A \in \mathcal{F}, h$ measurable. Moreover, f is unique up to a null set with respect to $\mu . f=\frac{d \nu}{d \mu}$ is called the Radon-Nikodym derivative.

1.2 Uniform Integrability

7. (c.f. [3] p.45): X_{n} U.I. $\Rightarrow \sup \mathbb{E}\left[\left|X_{n}\right|\right]<\infty$.
8. U.I. of collection of conditional expectation (c.f. [3] p.165): For any $X \in L^{1}(\Omega, \mathcal{F}, P)$, the collection $\{\mathbb{E}[X \mid \mathcal{H}]: \mathcal{H} \subset \mathcal{F}$ is a σ-algebra $\}$ is U.I.
9. (c.f. [3] p.48, p.200): If $p>1, \sup \mathbb{E}\left[\left|X_{n}\right|^{p}\right]<\infty \Rightarrow X_{n}$ U.I.

1.3 Moments and Characteristic Function

10. Uniqueness of moment generating function (c.f. [1] p.285): Suppose that μ and ν are two probability measures on $[0,+\infty$) (one sided). If

$$
\int_{0}^{\infty} e^{-s x} \mu d x=\int_{0}^{\infty} e^{-s x} \nu d x, s \geq s_{0}
$$

then $\mu=\nu$.
11. Uniqueness and inversion of characteristic function (c.f. [1] p.346): Suppose $\phi(t)=\mathbb{E}\left[e^{i t X}\right]=\int e^{i t x} \mu d x$ is the characteristic function of X with distribution μ. Then $\phi_{1}=\phi_{2} \Rightarrow \mu_{1}=\mu_{2}$.
Moreover, if $\mu(a)=\mu(b)=0$,

$$
\mu(a, b]=\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t
$$

12. Method of Moments (c.f. [1] p.388): Let μ be a probability measure on the real line having finite moments $m_{n}=\int_{-\infty}^{\infty} \mu d x$ of all orders. If the power series $\sum_{k} m_{k} r^{k} / k!$ has a positive radius of convergence then μ is the unique probability measure with moments M_{0}, M_{1}, \ldots

Remark: A counter example is the log-normal where $X=e^{N}, N \sim$ $N(0,1)$, where all its moments exist but no positive ROC for the moment generating function.

1.4 Zero One Laws

13. Borel-Cantelli:
(a) If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty, \mathbb{P}\left(A_{n}\right.$ i.o. $)=0$.
(b) If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$ and A_{n} independent, $\mathbb{P}\left(A_{n}\right.$ i.o. $)=1$.
14. Kolmogorov: If $\left\{X_{n}\right\}$ mutually independent and $\mathcal{T}=\cap_{n=0}^{\infty} \sigma\left(X_{i}, i \geq n\right)$ is the tail σ-algebra, then $\mathbb{P}(A), A \in \mathcal{T}$ is either 0 or 1 .
15. Hewlett-Savage (c.f. [3] p.224): Define an exchangable σ-algebra to be $\mathcal{E}=\cap_{m} \mathcal{E}_{m}$, where
$\mathcal{E}_{m}=\left\{A: \omega=\left(\omega_{1}, \omega_{2}, \ldots\right) \in A \Rightarrow\left(\omega_{\pi(1)}, \omega_{\pi(2)}, . ., \omega_{\pi(m)}, \omega_{m+1} \ldots\right) \in A\right\}$
Suppose \mathcal{E} is the exchangable σ-algebra of iid random variables ξ_{i}, $\omega_{i}(\omega)=\xi_{i}(\omega)$. Then $\mathbb{P}(A), A \in \mathcal{E}$ is either 0 or 1 .
16. Suppose φ is a measure preserving homomoerphism:

$$
\varphi: \Omega \rightarrow \Omega, \mathbb{P}\left(\varphi^{-1}(A)\right)=\mathbb{P}(A), \forall A \in \mathcal{F}
$$

If φ is ergodic, i.e.

$$
\forall X \in L^{1}(\Omega, \mathcal{F}, P), \frac{1}{n} \sum_{m=0}^{n-1} X\left(\varphi^{m}(\omega)\right) \xrightarrow{\text { a.c. }} \mathbb{E}[X],
$$

then for the invariant σ-algebra $\mathcal{I}=\left\{A: \mathbb{P}\left(\varphi^{-1}(A) \Delta A\right)=0\right\}, \forall A \in \mathcal{I}$, $\mathbb{P}(A)$ is either 0 or 1 .

2 Convergence Theorems

2.1 Basic Theorems

1. Relationships between convergence:
(a) Converge a.c. \Rightarrow converge in probability \Rightarrow weak convergence.
(b) Converge in $L^{p} \Rightarrow$ converge in $L^{q} \Rightarrow$ converge in probability \Rightarrow converge weakly, $p \geq q \geq 1$.
(c) Convergence in KL divergence \Rightarrow Convergence in total variation \Rightarrow strong convergence of measure \Rightarrow weak convergence, where
i. $\mu_{n} \xrightarrow{T V} \mu$ means $\lim \left\|\mu_{n}-\mu\right\|_{T V}=0$, where

$$
\|\mu-\nu\|_{T V}=\sup _{\|f\|_{\infty} \leq 1}\left\{\int f d \mu-\int f d \nu\right\}
$$

which also equals

$$
\|\mu-\nu\|_{T V}=2 \sup _{A \in \mathcal{F}}|\mu(A)-\nu(A)|
$$

ii. $\mu_{n} \rightarrow \mu$ strongly if $\lim \mu_{n}(A)=\mu(A), \forall A \in \mathcal{F}$.
2. Subsequence of a.c. convergence: If $X_{n} \xrightarrow{p} X$, then there exists an subsequence $n_{k}, X_{n_{k}} \xrightarrow{\text { a.c. }} X$.
3. Equivalence of convergence in probability and a.c. convergence (c.f. [1] p.290): Let $S_{n}=\sum_{i=1}^{n} X_{i}$. If $\left\{X_{n}\right\}$ is independent, then S_{n} converges a.c. iff S_{n} converges in probability.
4. When a.c. convergence implies L^{1} convergence: Monotone convergence (MCT), Dominated convergence (DCT), Uniform integrability (U.I.).
5. Vitali (c.f. [3] p.46): If $X_{n} \xrightarrow{p} X$, then X_{n} is U.I. iff $X_{n} \xrightarrow{L^{1}} X$, which is again equivalent to X, X_{n} integrable and $\mathbb{E}\left[\left|X_{n}\right|\right] \rightarrow \mathbb{E}[|X|]$.
6. Scheffé (c.f. [1] p.215): Suppose $\mu_{n}(A)=\int_{A} \delta_{n} d \mu$ and $\mu(A)=\int_{A} \delta d \mu$ for densities δ_{n} and δ. If $\mu_{n}(\Omega)=\mu(\Omega)<\infty$, and $\delta_{n} \rightarrow \delta$ a.c., then

$$
\sup _{A \in \mathcal{F}}\left|\mu(A)-\mu_{n}(A)\right| \leq \int_{\Omega}\left|\delta-\delta_{n}\right| d \mu \rightarrow 0
$$

7. Slutsky: If $X_{n} \Rightarrow X$ and $X_{n}-Y_{n} \Rightarrow 0$, then $Y_{n} \Rightarrow X$.

Remark: $Y_{n} \Rightarrow c$ is equivalent to $Y_{n} \xrightarrow{p} c$ if c is a constant, in the sense that $\lim _{n} \mathbb{P}\left(\left|Y_{n}-c\right|>\epsilon\right)=0$.
8. Skorohod (c.f. [1] p.333): Suppose $\mu_{n} \Rightarrow \mu$ where μ_{n} and μ are probability measures on the real line. Then there exist some Y_{n} and Y on a common probability space (Ω, \mathcal{F}, P) such that $Y_{n}(\omega) \rightarrow Y(\omega), \forall \omega \in \Omega$, and Y_{n}, Y have distributions μ_{n}, μ.

2.2 Weak Convergence

9. Portmanteau (c.f. [2] p.16): The following five conditions are equivalent concerning weak convergence of probability measures:
(a) $\mathbb{P}_{n} \Rightarrow \mathbb{P}$;
(b) $\int f d \mathbb{P}_{n} \rightarrow \int f d \mathbb{P}$ for any bounded continuous function f;
(c) $\limsup _{n} \mathbb{P}_{n}(F) \leq \mathbb{P}(F)$ for all closed set F;
(d) $\lim \inf _{n} \mathbb{P}_{n}(G) \geq \mathbb{P}(G)$ for all open sets G;
(e) $\mathbb{P}_{n}(A) \rightarrow \mathbb{P}(A)$ for all P-continuous set A.
10. Helly selection: For $\left\{F_{n}\right\}$ a sequence of distribution functions, there exists a subsequence $\left\{F_{n_{k}}\right\}$, such that there exists a right-continuous non-decreasing function $F, \lim F_{n_{k}}(x)=F(x)$ at all continuity points of F. Moreover, F is a distribution function if and only if $\left\{F_{n}\right\}$ is tight.
11. Continuous mapping preserves weak convergence (c.f. [1] p.380): Suppose h is measurable and the discontinuity set has measure 0 . If $\mu_{n} \Rightarrow \mu$, then $\mu_{n} h^{-1} \Rightarrow \mu h^{-1}$, where $\mu h^{-1}(A) \stackrel{\text { def }}{=} \mu\left(h^{-1}(A)\right)$.
12. Characteristic functions and convergence in distribution (c.f. [1] p.383): $\mu_{n} \Rightarrow \mu$ iff $\varphi_{n}(t) \rightarrow \varphi(t)$.
13. Necessary and sufficient conditions for multivariate weak convergence (c.f. [1] p.383): Suppose $X_{n} \in \mathbb{R}^{k}, X_{n}=\left(X_{n 1}, \ldots, X_{n k}\right), X=\left(X_{1}, \ldots, X_{k}\right)$. $X_{n} \Rightarrow X$ iff $\sum_{i=1}^{k} t_{i} X_{n i} \Rightarrow \sum_{i=1}^{k} t_{i} X_{i}$ for every $\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{R}^{k}$.

2.3 Convergence of Random Series

14. (c.f. [1] p.289): Suppose $\left\{X_{n}\right\}$ independent with $\mathbb{E}\left[X_{i}\right]=0, \forall i$. Further if $\sum \operatorname{Var}\left(X_{n}\right)<\infty$, then $\sum X_{n}$ converges a.c.
15. Kolmogorov three-series theorem (c.f [1] p.290): Suppose $\left\{X_{n}\right\}$ is independent. Consider the three series $\sum \mathbb{P}\left(\left|X_{n}\right|>c\right), \sum \mathbb{E}\left[\left|X_{n}^{(c)}\right|\right]$, and $\sum \operatorname{Var}\left(X_{n}^{(c)}\right)$, where $X_{n}^{(c)}=X_{n} 1_{\left\{\left|X_{n}\right| \leq c\right\}}$. Then $\sum X_{n}$ converges a.c. implies above series converge for all c. On the other hand, if the above three series converge for some positive c, then $\sum X_{n}$ converges a.c.

3 Inequalities

3.1 Basic Inequalities

1. Markov: $\mathbb{P}(|X|>\alpha) \leq \frac{1}{\alpha^{k}} \mathbb{E}\left[|X|^{k}\right]$.
2. Chebyshev: $\mathbb{P}(|X-\mu|>\alpha) \leq \frac{1}{\alpha^{2}} \operatorname{Var}(X)$.
3. Jensen: If f is convex, $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$.
4. Hölder: $\mathbb{E}[|X Y|] \leq\|X\|_{p}\|Y\|_{q}, \frac{1}{p}+\frac{1}{q}=1, p \geq 1$.
5. Minkowski: $\|X+Y\|_{p} \leq\|X\|_{p}+\|Y\|_{p}, p \geq 1$.
6. Lyapounov: $\|X\|_{p} \leq\|X\|_{q}, 0<p \leq q$.

3.2 Maximal Inequalities

7. Kolmogorov (c.f. [1] p.287): Suppose $\left\{X_{n}\right\}$ independent with zero mean and finite second moments. Then for $\alpha>0$,

$$
\mathbb{P}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq \alpha\right) \leq \frac{1}{\alpha^{2}} \operatorname{Var}\left(S_{n}\right)
$$

8. Etemadi (c.f. [1] p.288): Suppose $\left\{X_{n}\right\}$ independent, for $\alpha>0$,

$$
\mathbb{P}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq \alpha\right) \leq 3 \max _{1 \leq k \leq n} \mathbb{P}\left(\left|S_{k}\right| \geq \frac{\alpha}{3}\right)
$$

4 Asymptotics

4.1 LLN, CLT, LIL and Extreme Values

1. Strong LLN: Suppose X_{1}, X_{2}, \ldots are iid random variables with finite first moment. Then with probability $1, S_{n} / n \rightarrow \mathbb{E}\left[X_{1}\right]$.
2. Law of iterated logarithm (c.f. [1] p.154): Suppose $X_{1}, . ., X_{n}$ are iid simple random variables with mean 0 and variance 1 . Then

$$
\mathbb{P}\left(\limsup _{n} \frac{S_{n}}{\sqrt{2 n \log \log n}}=1\right)=1
$$

3. Glivenko-Cantelli: Suppose X_{n} is a stationary ergodic process, then

$$
\left\|F_{n}-F\right\|_{\infty} \stackrel{\text { a.c. }}{=} 0
$$

where $F_{n}(x)=\frac{1}{n} \sum 1_{(-\infty, x]}\left(X_{i}\right)$ is the empirical distribution function.
4. Lindeberg CLT (c.f. [1] p.359): Suppose $\left\{X_{n k}\right\}$ is a triangular array. Let $S_{n}=\sum_{i=1}^{r_{n}} X_{n i}$. If for all $X_{n k}, 1 \leq k \leq r_{n}$,

$$
\mathbb{E}\left[X_{n k}\right]=0, \sigma_{n k}^{2}=\mathbb{E}\left[X_{n k}^{2}\right], s_{n}^{2}=\sum_{i=1}^{r_{n}} \sigma_{n i}^{2}
$$

and the Lindeberg condition holds for all $\epsilon>0$:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{r_{n}} \frac{1}{s_{n}^{2}} \int_{\left|x_{n i}\right| \geq \epsilon s_{n}} x_{n i}^{2} d \mathbb{P}_{X_{n i}}=0
$$

Then $S_{n} / s_{n} \Rightarrow N(0,1)$.
5. Fisher-Tippett-Gnedenko: Suppose $X_{1}, X_{2}, .$. are iid random variables, and $M_{n}=\max \left\{X_{1}, . ., X_{n}\right\}$. If there exists a sequence of pairs of reals $\left(a_{n}, b_{n}\right), a_{n}>0$ such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right)=F(x)
$$

where F is non-degenerate, then F can only be one of the following three distributions:
(a) Gumbel: $F(x)=e^{-e^{-x}}$;
(b) Fréchet:

$$
F(x)=\left\{\begin{array}{l}
0, x \leq 0 \tag{1}\\
e^{-x^{-\alpha}}, x>0
\end{array}\right.
$$

(c) reversed Weibull:

$$
F(x)=\left\{\begin{array}{l}
e^{-(-x)^{\alpha}}, x \leq 0 \tag{2}\\
1, x>0
\end{array}\right.
$$

6. Suppose $X_{1}, X_{2}, .$. are iid random variables with mean 0 and variance 1 , and $S_{n}=\sum_{i=1}^{n} X_{i}$. For each $\epsilon>0$, let $N(\epsilon)=\inf \left\{n: S_{k} / k<\right.$ $\epsilon, \forall k>n\}$. Then $\epsilon^{2} N(\epsilon)$ converges in distribution to a 1-DoF chisquare distribution.
Remark: It is related to the Brownian hitting time $\sup \left\{t \geq 0: B_{t}=t\right\}$.

4.2 Stein-Chen Method

7. Wasserstein metric: the distance $d_{\mathcal{H}}(X, Y)$ between two random variables with respect to a set of test functions \mathcal{H} is defined by

$$
d_{\mathcal{H}}(X, Y)=\sup _{h \in \mathcal{H}}|\mathbb{E}[h(X)]-\mathbb{E}[h(Y)]|
$$

When $\mathcal{H}=\{h:|h(x)-h(y)| \leq|x-y|, \forall x, y\}$, this distance is defined to be the Wasserstein distance.

4.2.1 Gaussian Approximation

8. Stein's Lemma: Define a differential operator \mathcal{D} by

$$
\mathcal{D}(f)(x)=f^{\prime}(x)-x f(x)
$$

If $\mathbb{E}[\mathcal{D}(f)(Z)]=0$ for all absolutely continuous function f with $\left\|f^{\prime}\right\|_{\infty}<$ ∞, then Z is a standard Gaussian random variable.
Conversely, if Z is a standard Gaussian random variable, then $\mathbb{E}[\mathcal{D}(f)(Z)]=$ 0 for all absolutely continuous function f with $\mathbb{E}\left[\left|f^{\prime}(Z)\right|\right]<\infty$.
9. If W is a random variable and Z is a standard Gaussian random variable, define the set of functions $\mathcal{F}=\left\{f:\|f\|_{\infty} \leq 2,\left\|f^{\prime \prime}\right\|_{\infty} \leq\right.$ $\left.2,\left\|f^{\prime}\right\|_{\infty} \leq \sqrt{2 / \pi}\right\}$. Then

$$
d_{W}(W, Z) \leq \sup _{f \in \mathcal{F}}\left|\mathbb{E}\left[f^{\prime}(W)-W f(W)\right]\right|
$$

10. Approximation of dependency neighborhoods: Suppose $X_{1}, X_{2}, .$. are random variables such that $\mathbb{E}\left[X_{i}\right]=0, \sigma_{n}^{2}=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right),\left(\mathbb{E}\left[\left|X_{i}\right|^{4}\right]<\right.$ ∞. Let $D=\max _{1 \leq i \leq n}\left|N_{i}\right|, S_{n}=\sum X_{i} / \sigma_{n}$. Then

$$
d_{W}\left(S_{n}, Z\right) \leq \frac{D^{2}}{\sigma_{n}^{3}} \sum_{i=1}^{n} \mathbb{E}\left[\left|X_{i}\right|^{3}\right]+\frac{\sqrt{28} D^{3 / 2}}{\sqrt{\pi} \sigma_{n}^{2}} \sqrt{\sum_{i=1}^{n} \mathbb{E}\left[\left|X_{i}\right|^{4}\right]}
$$

4.2.2 Poisson Approximation

11. Poisson characteristic operator: For $\lambda>0$, define operator \mathcal{D} by

$$
\mathcal{D}(f)(k)=\lambda f(k+1)-k f(k)
$$

If for some nonnegative integer valued random variable $W, \mathbb{E}[\mathcal{D}(f)(W)]=$ 0 for all bounded functions f, then $W \sim P o(\lambda)$.
Conversely, if $W \sim P o(\lambda)$, then $\mathbb{E}[\mathcal{D}(f)(W)]=0$ for all bounded f.
12. Let $\mathcal{F}=\left\{f:\|f\|_{\infty} \leq \min \left\{1, \lambda^{-1 / 2}\right\}\right.$, and $\|\Delta f\|_{\infty} \leq \frac{1-e^{-\lambda}}{\lambda} \leq$ $\left.\min \left\{1, \lambda^{-1}\right\}\right\}$, and W is an integer valued nonnegative random variable with mean λ. If $Z \sim \operatorname{Po}(\lambda)$, then

$$
d_{T V}(W, Z) \leq \sup _{f \in \mathcal{F}}|\mathbb{E}[\lambda f(W+1)-W f(W)]|
$$

13. Approximation of dependency neighborhoods: Suppose $X_{1}, X_{2}, .$. are binary random variables with $\mathbb{P}\left(X_{i}=1\right)=p_{i}$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $\lambda_{n}=\sum p_{i}$. Define $p_{i j}=\mathbb{E}\left[X_{i} X_{j}\right]$, and $Z \sim P o(\lambda)$. Then

$$
d_{T V}\left(S_{n}, Z\right) \leq \min \left\{1, \lambda^{-1}\right\}\left(\sum_{i=1}^{n} \sum_{j \in N_{i}} p_{i} p_{j}+\sum_{i=1}^{n} \sum_{j \in N_{i}-\{i\}} p_{i j}\right)
$$

4.3 Method of Types

Suppose X_{1}, \ldots, X_{n} are iid random variables taking values from a discrete set \mathcal{X}. The type $P_{\mathbf{x}^{n}}$ of sequence \mathbf{x}^{n} is the empirical distribution of \mathbf{x}^{n}. The type class $T\left(P_{\mathbf{x}^{n}}\right)$ of a type $P_{\mathbf{x}^{n}}$ is defined to be $\left\{\mathbf{y}^{n}: \mathbf{y}^{n}\right.$ has empirical distribution $\left.P_{\mathbf{x}^{n}}\right\}$. \mathcal{P}_{n} is the set of all types with respect to n and alphabet \mathcal{X}.
14. If X_{1}, \ldots, X_{n} are drawn iid according to a distribution $Q(x)$, then the probability of \mathbf{x}^{n} depends only on its type and equals:

$$
Q^{n}\left(\mathbf{x}^{n}\right)=2^{-n\left(H\left(P_{\mathbf{x}^{n}}\right)+D\left(P_{\mathbf{x}^{n}} \| Q\right)\right)}
$$

15. Size of a type class $T(P)$: For any $P \in \mathcal{P}_{n}$,

$$
\frac{1}{(n+1)^{|\mathcal{X}|}} 2^{n H(P)} \leq|T(P)| \leq 2^{n H(P)}
$$

Remark: Here no underlying distribution is assumed.
16. Probability of a type class: for any $P \in \mathcal{P}_{n}$ and any distribution \mathbb{Q}, the probability of the type class $T(P)$ under Q^{n} is $2^{-n D(P \| Q)}$ to first order in the exponent. More precisely,

$$
\frac{1}{(n+1)^{|\mathcal{X}|}} 2^{-n D(P \| Q)} \leq Q^{n}(T(P)) \leq 2^{-n D(P \| Q)}
$$

17. LLN for empirical distribution (c.f. [5] p.356): Suppose X_{1}, \ldots, X_{n} are iid according to $\mathbb{P}(x), x \in \mathcal{X}$. Then,

$$
D\left(P_{\mathbf{x}^{n}} \| P\right) \xrightarrow{\text { a.c. }} 0
$$

4.4 Large Deviation

18. Berry-Esseen: Suppose $X_{1}, X_{2}, .$. are independent random variables with $\mathbb{E}\left[X_{i}\right]=0, \mathbb{E}\left[X_{i}^{2}\right]=\sigma_{i}^{2}>0$ and $\mathbb{E}\left[\left|X_{i}\right|^{3}\right]=\rho_{i}<\infty$. Let $s_{n}^{2}=$ $\sum_{i=1}^{n} \sigma_{i}^{2}, S_{n}=\sum_{i=1}^{n} X_{i} / s_{n}$. Then for Z a standard Gaussian random variable,

$$
d_{K}\left(S_{n}, Z\right) \leq C_{0} \psi_{n}
$$

Where

$$
\psi_{n}=\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)^{-3 / 2} \cdot \sum_{i=1}^{n} \rho_{i}
$$

and $d_{K}(X, Y)=\sup _{x}\left\{\left|F_{X}(x)-F_{Y}(x)\right|\right\}$ is the Kolmogorov distance.
19. Sanov: Suppose X_{1}, \ldots, X_{n} are iid according to $Q(x), x \in \mathcal{X}$. Let E be a set of probability of distributions. Then

$$
Q^{n}(E)=Q^{n}\left(E \cap \mathcal{P}_{n}\right) \leq(n+1)^{|\mathcal{X}|} 2^{-n D\left(P^{*} \| Q\right)}
$$

Where $P^{*}=\underset{P \in E}{\operatorname{argmin}} D(P \| Q)$, and

$$
Q^{n}\left(E \cap \mathcal{P}_{n}\right)=\sum_{\mathbf{x}^{n}: P_{\mathbf{x}^{n}} \in E} Q^{n}\left(\mathbf{x}^{n}\right)
$$

20. Hoeffding: Suppose X_{1}, \ldots, X_{n} are independent variables, each is a.c. bounded. Suppose for each $X_{i}, \mathbb{P}\left(X_{i} \in\left[a_{i}, b_{i}\right]\right)=1$. Let $S_{n}=$ $\sum X_{i}, \mu=\mathbb{E}\left[S_{n}\right] / n$. Then

$$
\mathbb{P}\left(\left|\frac{S_{n}}{n}-\mu\right|>\epsilon\right) \leq 2 e^{-\frac{2 n^{2} \epsilon^{2}}{\sum\left(b_{i}-a_{i}\right)^{2}}}
$$

21. Chernoff: Suppose $X_{1}, X_{2}, .$. are iid random variables with $\mathbb{E}\left[X_{1}\right]<$ $0, \mathbb{P}\left(X_{1}>0\right)>0$. Let $M(t)=\mathbb{E}\left[e^{t X_{1}}\right]$, and $\rho=\inf _{t} M(t)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq 0\right)=\log \rho
$$

22. Covering Lemma (c.f. [9] p.62): Let $(U, X, \hat{X}) \sim p(u, x, \hat{x})$ and $\epsilon^{\prime}<$ ϵ. Let $\left(U^{n}, X^{n}\right) \sim p\left(u^{n}, x^{n}\right)$ be a pair of random sequences with $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left(U^{n}, X^{n}\right) \in \mathcal{T}_{\epsilon^{\prime}}(U, X)\right)=1$. Suppose there are $x_{n} \geq 2^{n R}$ many random sequences $\hat{X}^{n}(1), . ., \hat{X}^{n}\left(x_{n}\right)$, each distributed accoding to $\prod_{i=1}^{n} p_{\hat{X} \mid U}\left(\hat{x}_{i} \mid u_{i}\right)$ which are conditionally independent of each other and X^{n} given U^{n}. Then $\exists \delta(\epsilon)$ tends to 0 as $\epsilon \rightarrow 0$, such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left(U^{n}, X^{n}, \hat{X}^{n}(m)\right) \notin \mathcal{T}_{\epsilon}(U, X, \hat{X}), \forall m=1, . ., x_{n}\right)=0
$$

if $R>I(X, \hat{X} \mid U)+\delta(\epsilon)$.
23. Packing Lemma (c.f. [9] p.46): Let $(U, X, Y) \sim p(u, x, y)$. Let $\left(\tilde{U}^{n}, \tilde{Y}^{n}\right) \sim$ $p\left(\tilde{u}^{n}, \tilde{y}^{n}\right)$ be a pair of arbitrarily distributed random sequence. Suppose there are $x_{n} \leq 2^{n R}$ random sequences $X^{n}(1), . ., X^{n}\left(x_{n}\right)$, each distributed accoding to $\prod_{i=1}^{n} p_{X \mid U}\left(x_{i} \mid u_{i}\right)$, which are independent of \tilde{Y}^{n} given U^{n}. Then $\exists \delta(\epsilon)$ tends to 0 as $\epsilon \rightarrow 0$, such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\exists m \in\left\{1, . ., x_{n}\right\},\left(\tilde{U}^{n}, X^{n}(m), \tilde{Y}^{n}\right) \in \mathcal{T}_{\epsilon}(U, X, Y)\right)=0
$$

if $R<I(X, Y \mid U)-\delta(\epsilon)$.

4.5 KL Divergence

24. Pythagorean (c.f. [5] p.367): For a closed convex set of probability distributions E and distribution $\mathbb{Q} \notin E$, let $\mathbb{P}^{*}=\underset{\mathbb{P} \in E}{\operatorname{argmin}} D(\mathbb{P} \| \mathbb{Q})$. Then

$$
D(\mathbb{P} \| \mathbb{Q}) \geq D\left(\mathbb{P} \| \mathbb{P}^{*}\right)+D\left(\mathbb{P}^{*} \| \mathbb{Q}\right)
$$

25. Pinsker: Suppose \mathbb{P} and \mathbb{Q} are two probability distributions in the same space, $\|\mathbb{P}-\mathbb{Q}\|_{T V}=2 \sup _{A \in \mathcal{F}}|\mathbb{P}(A)-\mathbb{Q}(A)|$. Then

$$
\|\mathbb{P}-\mathbb{Q}\|_{T V} \leq 2 \sqrt{2 \ln (2) D(\mathbb{P} \| \mathbb{Q})}
$$

5 Conditional Expectation

1. Independence (c.f. [3] p.159): If $X \in L^{1}(\Omega, \mathcal{F}, P)$, and \mathcal{H} is independent of $\sigma(\sigma(X), \mathcal{G})$, then

$$
\mathbb{E}[X \mid \sigma(\mathcal{H}, \mathcal{G})]=\mathbb{E}[X \mid \mathcal{G}]
$$

2. Tower Property (c.f. [3] p.160): If $X \in L^{1}(\Omega, \mathcal{F}, P)$, and $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$, then $\mathbb{E}[X \mid \mathcal{H}]=\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}]$.
3. Taking out what's known (c.f. [3] p.160): Suppose $Y \in m \mathcal{G}$ and $X \in L^{1}(\Omega, \mathcal{F}, P)$ are such that $X Y \in L^{1}(\Omega, \mathcal{F}, P)$. Then $\mathbb{E}[X Y \mid \mathcal{G}]=$ $Y \mathbb{E}[X \mid \mathcal{G}]$.
4. Law of total variation: For any σ-algebra \mathcal{G} and random variable X,

$$
\operatorname{Var}(X)=\mathbb{E}[\operatorname{Var}(X \mid \mathcal{G})]+\operatorname{Var}(\mathbb{E}[X \mid \mathcal{G}])
$$

Where $\operatorname{Var}(X \mid \mathcal{G})=\mathbb{E}\left[(X-\mathbb{E}[X \mid \mathcal{G}])^{2} \mid \mathcal{G}\right]$.
5. Conditional Jensen (c.f. [3] p.162): Suppose $g(\cdot)$ is a convex function on an open interval G of \mathbb{R}. If X is an integrable R.V. with $\mathbb{P}(X \in$ $G)=1$ and $g(X)$ is also integrable, then almost surely $\mathbb{E}[g(X) \mid \mathcal{H}] \geq$ $g(\mathbb{E}[X \mid \mathcal{H}])$ for any σ-algebra \mathcal{H}.
6. Conditioning decreases p-norm (c.f. [3] p.163):

$$
\|X\|_{p} \geq\|\mathbb{E}[X \mid \mathcal{G}]\|_{p}, \forall p>1
$$

7. MCT, DCT, Fatou's Lemma, conditional version (c.f. [3] p.165).
8. U.I. of collection of conditional expectation (c.f. [3] p.165): For any $X \in L^{1}(\Omega, \mathcal{F}, P)$, the collection $\{\mathbb{E}[X \mid \mathcal{H}]: \mathcal{H} \subset \mathcal{F}$ is a σ-algebra $\}$ is U.I.
9. C.E. minimizes L^{2} norm (c.f. [3] p.170): Suppose $X \in L^{2}(\Omega, \mathcal{F}, P)$, $\mathcal{G} \subset \mathcal{F}$ is a σ-algebra. If $Y=\mathbb{E}[X \mid \mathcal{G}]$, among all $Z \in m \mathcal{G}, \mathbb{E}[(X-$ $\left.Y)^{2}\right] \leq \mathbb{E}\left[(X-Z)^{2}\right]$.
10. Definition of R.C.P.D (c.f. [3] p.172): Let $Y: \Omega \rightarrow \mathbb{S}$ be an $(\mathbb{S}, \mathcal{S})$ valued R.V. in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathcal{G} \subset \mathcal{F}$ a σ-algebra. The collection $\hat{\mathbb{P}}_{Y \mid \mathcal{G}}(\cdot, \cdot): \mathcal{S} \times \Omega \rightarrow[0,1]$ is called the regular conditional probability distribution (R.C.P.D.) of Y given \mathcal{G} if:
(a) $\mathbb{P}(A, \cdot)$ is a version of the C.E. $\mathbb{E}\left[1_{Y \in A} \mid \mathcal{G}\right]$ for each fixed $A \in \mathcal{S}$. (b) For any fixed $\omega \in \Omega$, the set function $\hat{\mathbb{P}}_{Y \mid G}(\cdot, \omega)$ is a probability measure on $(\mathbb{S}, \mathcal{S})$.

In case $\mathbb{S}=\Omega, \mathcal{S}=\mathcal{F}$ and $Y(\omega)=\omega$, we call this collection the regular conditional probability on \mathcal{F} given \mathcal{G}, denoted by $\hat{\mathbb{P}}(A \mid \mathcal{G})(\omega)$.
11. C.E. and R.C.P.D. (c.f [3] p.174): $\mathbb{E}[X \mid \mathcal{G}](\omega)=\int_{\mathbb{R}} x d \hat{\mathbb{P}}_{X \mid \mathcal{G}}(x, \omega)$.

6 Martingale

1. (c.f. [3] p.182): Suppose $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex and $\mathbb{E}\left[\phi\left(X_{n}\right)\right]<\infty, \forall n$. If $\left\{X_{n}\right\}$ is a martingale then $\left\{\phi\left(X_{n}\right)\right\}$ is a sub-martingale. Moreover, if ϕ is non-decreasing, then $\left\{X_{n}\right\}$ a sub-martingale $\Rightarrow\left\{\phi\left(X_{n}\right)\right\}$ a submartingale.
2. Martingale transform (c.f. [3] p.183): Suppose $\left\{Y_{n}\right\}$ is the martingale transform of \mathcal{F}_{n}-predictable $\left\{V_{n}\right\}$ with respect to a sub or super martingale $\left(X_{n}, \mathcal{F}_{n}\right)$, i.e.

$$
Y_{n}=\sum_{k=1}^{n} V_{k}\left(X_{k}-X_{k-1}\right)
$$

Then
(a) If Y_{n} is integrable and $\left(X_{n}, \mathcal{F}_{n}\right)$ is a martingale, then $\left(Y_{n}, \mathcal{F}_{n}\right)$ is also a martingale.
(b) If Y_{n} is integrable, $V_{n} \geq 0$ and $\left(X_{n}, \mathcal{F}_{n}\right)$ is a sub-(sup)martingale, then $\left(Y_{n}, \mathcal{F}_{n}\right)$ is also a sub-(sup)martingale.
(c) For the integrability of Y_{n} it suffices in both cases to have $\left|V_{n}\right| \leq$ c_{n} for some non-random finite constants c_{n}, or alternatively to have $V_{n} \in L^{q}$, and $X_{n} \in L^{p}$ for all n and some $p, q>1$ such that $1 / p+1 / q=1$.
3. Stopping time decomposition (c.f. [3] p.185): Suppose $\left\{X_{n}\right\}$ is a sub(sup)martingale, and $\theta \leq \tau$ are two stopping times, then

$$
X_{n \wedge \tau}-X_{n \wedge \theta}=\sum_{k=1}^{n} 1_{\{\theta<k \leq \tau\}}\left(X_{k}-X_{k-1}\right)
$$

is a sub-(sup)martingale.
4. Doob's Decomposition (c.f. [3] p.186): Given an integrable stochastic process $\left\{X_{n}\right\}$ adapted to a filtration $\left\{\mathcal{F}_{n}\right\}, n \geq 0$, there exists $X_{n}=$ $Y_{n}+A_{n}$ such that:
(a) $\left(Y_{n}, \mathcal{F}_{n}\right)$ is a martingale and
(b) $\left\{A_{n}\right\}$ is an \mathcal{F}_{n}-predictable sequence. This decomposition is unique up to $Y_{0} \in m \mathcal{F}_{0}$.

6.1 Inequalities

5. Doob's Inequality (c.f. [3] p.188): Suppose $\left\{X_{n}\right\}$ is a sub-martingale and $x>0$. Define $\tau_{x}=\min \left\{k: X_{k} \geq x\right\}$. Then for any $n \geq 0$,

$$
\mathbb{P}\left(\max _{0 \leq k \leq n} X_{k} \geq x\right) \leq x^{-1} \mathbb{E}\left[X_{n} 1_{\left\{\tau_{x} \leq n\right\}}\right] \leq x^{-1} \mathbb{E}\left[\left(X_{n}\right)_{+}\right] \leq x^{-1} \mathbb{E}\left[\left|X_{n}\right|\right]
$$

6. L^{p} maximal (c.f. [3] p.191): If $\left\{X_{n}\right\}$ is a sub-martingale then for any n and $p>1$, Then

$$
\mathbb{E}\left[\left(\max _{k \leq n} X_{k}\right)_{+}^{p}\right] \leq q^{p} \mathbb{E}\left[\left(X_{n}\right)_{+}^{p}\right]
$$

where $q=p /(p-1)$. If $\left\{Y_{n}\right\}$ is a martingale then for any n and $p>1$,

$$
\mathbb{E}\left[\left(\max _{k \leq n}\left|Y_{k}\right|\right)^{p}\right] \leq q^{p} \mathbb{E}\left[\left|Y_{n}\right|^{p}\right]
$$

7. (c.f. [3] p.189): Suppose Z_{n} is a non-negative sub-martingale with $Z_{0}=0$. Let A_{n} be the predictable sequence in Doob's Decomposition, and $V_{n}=\max _{1 \leq k \leq n} Z_{k}$. Then for any stopping time τ and any $x, y>$ 0 ,

$$
\mathbb{P}\left(V_{\tau} \geq x, A_{\tau} \leq y\right) \leq \frac{1}{x} \mathbb{E}\left[A_{\tau} \wedge y\right]
$$

Further $\mathbb{E}\left[V_{\tau}^{p}\right] \leq c_{p} \mathbb{E}\left[A_{\tau}^{p}\right], c_{p}=1+1 /(1-p), \forall p \in(0,1)$.
8. Azuma: Suppose $\left\{X_{n}\right\}$ a sub-martingale with bounded increament, i.e. $\left|X_{k}-X_{k-1}\right|<c_{k}$ a.c. Then for any positive integer n and positive t,

$$
\mathbb{P}\left(X_{n}-X_{0} \geq t\right) \leq e^{\left(\frac{-t^{2}}{2 \sum_{k=1}^{-c_{k}^{2}}}\right)}, \mathbb{P}\left(X_{n}-X_{0} \leq-t\right) \leq e^{\left(\frac{-t^{2}}{2 \sum_{k=1}^{n} c_{k}^{2}}\right)}
$$

6.2 Convergence

9. Doob's Up Crossing (c.f. [3] p.192): Suppose $\left\{X_{n}\right\}$ is a sup-martingale. Then for any $a<b$,

$$
(b-a) \mathbb{E}\left[U_{n}[a, b]\right] \leq \mathbb{E}\left[\left(X_{n}-a\right)_{-}\right]-\mathbb{E}\left[\left(X_{0}-a\right)_{-}\right]
$$

10. Doob's Convergence (c.f. [3] p.194): Suppose $\left(X_{n}, \mathcal{F}_{n}\right)$ is a sup-(sub)martingale with $\sup _{n}\left\{\mathbb{E}\left[\left(X_{n}\right)_{-}\right]\right\}<\infty\left(\operatorname{or~}_{\sup _{n}}\left\{\mathbb{E}\left[\left(X_{n}\right)_{+}\right]\right\}<\infty\right)$. Then $X_{n} \xrightarrow{\text { a.c. }}$ X_{∞} and $\mathbb{E}\left[\left|X_{\infty}\right|\right] \leq \liminf \mathbb{E}\left[\left|X_{n}\right|\right]$ which is finite.
11. Bounded difference (c.f. [3] p.195): Suppose $\left\{X_{n}\right\}$ is a martingale of uniformly bounded difference. Consider the two events:

$$
\begin{gathered}
A=\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega) \in(-\infty, \infty)\right\} \\
B=\left\{\omega: \liminf _{n \rightarrow \infty} X_{n}(\omega)=-\infty, \limsup _{n \rightarrow \infty} X_{n}(\omega)=\infty\right\}
\end{gathered}
$$

Then $\mathbb{P}(A \cup B)=1$.
12. Martingale CLT: Suppose $\left(X_{n}, \mathcal{F}_{n}\right)$ is a martingale with bounded difference, $\left|X_{1}\right|<k$ and $\left|X_{i}-X_{i-1}\right|<k$ for all i and some constant k. Define $\sigma_{k}^{2}=\mathbb{E}\left[\left(X_{k+1}-X_{k}\right)^{2} \mid \mathcal{F}_{k}\right]$, and let $\tau_{\nu}=\min \left\{k: \sum_{i=1}^{k} \sigma_{i}^{2} \geq \nu\right\}$. Then $\frac{X_{\tau_{\nu}}}{\sqrt{\nu}}$ converges in distribution to a standard Gaussian distribution.

6.3 Uniform Integrable Martingale

13. If X_{n} is a sub-martingale then $\left\{X_{n}\right\}$ is U.I. if and only if $X_{n} \xrightarrow{L^{1}} X_{\infty}$. In this case, we also have $X_{n} \xrightarrow{\text { a.c. }} X_{\infty}$ and $X_{n} \leq \mathbb{E}\left[X_{\infty} \mid \mathcal{F}_{n}\right]$.

Remark: $\left(X_{n}, \mathcal{F}_{n}\right)$ is a U.I. martingale if and only if $X_{n}=\mathbb{E}\left[X \mid \mathcal{F}_{n}\right]$ for some X , and $X_{n} \xrightarrow{\text { a.c. }} X$ in this case.
14. Lévy's Upward Theorem (c.f. [3] p.198): Suppose sup $\left|X_{n}\right|$ is integrable, $X_{n} \xrightarrow{\text { a.c. }} X_{\infty}$ and $\mathcal{F}_{n} \uparrow \mathcal{F}_{\infty}$. Then $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right] \rightarrow \mathbb{E}\left[X_{\infty} \mid \mathcal{F}_{\infty}\right]$ both a.c. and in L^{1}.
15. Lévy's 0-1 Law (c.f. [3] p.199):If $\mathcal{F}_{n} \uparrow \mathcal{F}_{\infty}$, and $A \in \mathcal{F}_{\infty}$, then $\mathbb{E}\left[1_{A} \mid \mathcal{F}_{n}\right] \rightarrow 1_{A}$.
16. L^{p} martingale convergence (c.f. [3] p.201): Suppose X_{n} is a martingale and $\sup \mathbb{E}\left[\left|X_{n}\right|^{p}\right]<\infty$ for some $p>1$, then $X_{n} \xrightarrow{\text { a.c. }} X_{\infty}$ and also $X_{n} \xrightarrow{L^{p}} X_{\infty}$ for some random variable X_{∞}.

6.4 Square Integrable Martingale

17. Predictable compensator (c.f. [3] p.202): Let $\left(X_{n}, \mathcal{F}_{n}\right)$ be a square integrable martingale. Suppose $X_{n}^{2}=A_{n}+M_{n}$ in Doob's decomposition, where $A_{n}=X_{0}^{2}+\sum_{k=1}^{n} \mathbb{E}\left[\left(X_{k}-X_{k-1}\right)^{2} \mid \mathcal{F}_{k-1}\right]$ is the predictable compensator, denoted by $A_{n}=\langle X\rangle_{n}$, and M_{n} is a martingale.
18. There exist finite constants $c_{q}, q \in(0,1]$, such that if $\left(X_{n}, \mathcal{F}_{n}\right)$ is an L^{2} martingale with $X_{0}=0$, then

$$
\mathbb{E}\left[\sup \left|X_{k}\right|^{2 q}\right] \leq c_{q} \mathbb{E}\left[\langle X\rangle_{\infty}^{q}\right]
$$

where $\langle X\rangle_{\infty}$ is the pointwise limit of $\langle X\rangle_{n}$.
19. Suppose $\left(X_{n}, \mathcal{F}_{n}\right)$ is a L^{2} martingale with $X_{0}=0$. Then
(a) X_{n} converges to a finite limit a.c. for ω where $\langle X\rangle_{\infty}(\omega)$ is finite.
(b) $X_{n}(\omega) /\langle X\rangle_{n}(\omega) \rightarrow 0$ a.c. for $\left\{\omega:\langle X\rangle_{\infty}(\omega)<\infty\right\}$.
(c) If $\left|X_{n}-X_{n-1}\right|$ is uniformly bounded then the converse of (a) holds, i.e. $\langle X\rangle_{\infty}<\infty$ a.c. for $\left\{\omega: X_{n}(\omega)\right.$ converging to a finite limit $\}$.
20. Borel Cantelli III (c.f. [3] p.204): Consider events $A_{n} \in \mathcal{F}_{n}$ for some filtration $\left\{\mathcal{F}_{n}\right\}$. Let $S_{n}=\sum_{k=1}^{n} 1_{A_{k}}$ count the number of events occurring among the first n , with $S_{\infty}=\sum_{k=1}^{\infty} 1_{A_{k}}$ the corresponding total number of occurrences. Similarly, let $Z_{n}=\sum_{k=1}^{n} \xi_{k}$ denote the sum of the first n conditional probabilities $\xi_{k}=\mathbb{P}\left(A_{k} \mid \mathcal{F}_{k-1}\right)$, and $Z_{\infty}=\sum_{k=1}^{\infty} \xi_{k}$. Then a.c.
(a) If $Z_{\infty}(\omega)$ is finite, so is $S_{\infty}(\omega)$.
(b) If $Z_{\infty}(\omega)$ is infinite, then $S_{\infty}(\omega) / Z_{\infty}(\omega) \rightarrow 1$.

6.5 Optional Stopping

21. U.I. of stopped process (c.f. [3] p.208): Suppose $\left\{Y_{n}\right\}$ is integrable and τ is a stopping time. Then $\left\{Y_{n \wedge \tau}\right\}$ is U.I. if any of the following conditions hold:
(a) $\mathbb{E}[\tau]<\infty$ and $\mathbb{E}\left[\left|Y_{n}-Y_{n-1}\right| \mathcal{F}_{n-1}\right]<c$ a.c. for some constant c ;
(b) $\left\{Y_{n} 1_{\{\tau>n\}}\right\}$ is U.I. and $Y_{\tau} 1_{\{\tau<\infty\}}$ is integrable;
(c) $\left\{Y_{n}\right\}$ is a U.I. sub(sup)-martingale.
22. Optional stopping I: Suppose $\theta<\tau$ are stopping times and X_{n} nonpositive sub-martingales for the filtration \mathcal{F}_{n}. Then X_{θ} and X_{τ} are integrable and $\mathbb{E}\left[X_{0}\right] \leq \mathbb{E}\left[X_{\theta}\right] \leq \mathbb{E}\left[X_{\tau}\right]$.
23. Optional stopping II: Suppose $\theta<\tau$ are stopping times and X_{n} submartingales for the filtration \mathcal{F}_{n} such that $X_{n \wedge \tau}$ is U.I. Then X_{θ} and X_{τ} are integrable and $\mathbb{E}\left[X_{0}\right] \leq \mathbb{E}\left[X_{\theta}\right] \leq \mathbb{E}\left[X_{\tau}\right]$.
24. Optional stopping III (c.f. [3] p.207): Suppose θ, τ are two stopping times such that $\tau \geq \theta$ a.c., X_{θ} is integrable and $\mathbb{E}\left[X_{\tau}\right] \geq \mathbb{E}\left[X_{\theta}\right]$. Then $\mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\theta}\right] \geq X_{\theta}$ a.c.
25. Suppose $\left\{X_{n}\right\}$ is a sub-martingale and $\left\{\tau_{k}\right\}$ a sequence of non-decreasing stopping times. Then $\left(X_{\tau_{k}}, \mathcal{F}_{\tau_{k}}\right)$ is a sub-martingale if either $\sup \tau_{k}<$ ∞ or $X_{n} \leq \mathbb{E}\left[X \mid \mathcal{F}_{n}\right]$ for some integrable X and all n.

6.6 Branching Process

26. Suppose Z_{n} is a branching process, i.e. $Z_{0}=1$ and $Z_{n}=\sum_{i=1}^{Z_{n-1}} N_{i}^{(n)}$ for some random variables $N_{i}^{(n)}, \mathbb{E}\left[N_{i}^{(n)}\right]<\infty$. If $N_{i}^{(n)} \stackrel{d}{=} N, \mathbb{P}(N=$ $0)>0$, then almost certainly either $Z_{n} \neq 0$ for finitely many n, or $Z_{n} \rightarrow \infty$.
27. Generating function: $L(s)=\mathbb{E}\left[s^{N}\right]$ is called the generating function of a branching process Z_{n}.
28. Associated martingales (c.f. [3] p.214): Suppose Z_{n} a branching process with $0<\mathbb{P}(N=0)<1$. Then $\left(m_{N}^{-n} Z_{n}, \mathcal{F}_{n}\right)$ is a martingale where $m_{N}=\mathbb{E}[N]<\infty$.
If Z_{n} is super-critical, i.e. $m_{N}>1,\left(\rho^{Z_{n}}, \mathcal{F}_{n}\right)$ is a martingale where $0<\rho<1$ is the unique solution for $L(x)=x$. In the sub-critical case, $\left(\rho^{Z_{n}}, \mathcal{F}_{n}\right)$ is a martingale where $\rho>1$ is a solution for $L(x)=x$ if exists.
29. Extinction probability: Suppose $0<\mathbb{P}(N=0)<1$. if $m_{N} \leq 1$ then $p_{e x}=1$. If $m_{N}>1, p_{e x}=\rho$ is the solution of $L(x)=x$. In this case, $m_{N}^{-n} Z_{n} \xrightarrow{\text { a.c. }} X_{\infty}$ and $Z_{n} \xrightarrow{\text { a.c. }} Z_{\infty} \in\{0, \infty\}$.
30. Moment generating function (c.f. [3] p.216): Consider the moment generating function for $Z_{n}: M_{n}(s)=\mathbb{E}\left[s^{Z_{n}}\right]$ for $s \in[0,1]$. Then recursively $M_{0}(s)=s$ and $M_{n}(s)=L\left(M_{n-1}(s)\right)$.
The moment generating function $\hat{M}_{\infty}(s)$ for $\left(m_{N}^{-n} Z_{n}\right)_{\infty}$ is a solution of $\hat{M}_{\infty}(s)=L\left(\hat{M}_{\infty}\left(s^{1 / m_{N}}\right)\right)$.

6.7 Reversed Martingale

31. Kakutani: (c.f. [3] p.218): Suppose $M_{n}=\prod_{k=1}^{n} Y_{k}$, with $M_{0}=1$ and independent $Y_{k}>0$ such that $\mathbb{E}\left[Y_{k}\right]=1$. Further let $a_{k}=\mathbb{E}\left[\sqrt{Y_{k}}\right]$. The following statements are equivalent:
(a) $\left\{M_{n}\right\}$ is U.I.;
(b) $M_{n} \xrightarrow{L^{1}} M_{\infty}$;
(c) $\mathbb{E}\left[M_{\infty}\right]=1$;
(d) $\prod_{k=1}^{\infty} a_{k}>0$;
(e) $\sum_{k=1}^{\infty}\left(1-a_{k}\right)<\infty$.

If any of these conditions fail, $M_{\infty}=0$ a.c.
32. Let \mathbb{P}, \mathbb{Q} be two probability measures on $\left(\Omega, \mathcal{F}_{\infty}\right)$. Let $\mathbb{P}_{n}, \mathbb{Q}_{n}$ denoting \mathbb{P}, \mathbb{Q} restricted on a filtration $\left\{\mathcal{F}_{n}\right\} \uparrow \mathcal{F}_{\infty}$. Suppose \mathbb{Q}_{n} is absolutely continuous with respect to \mathbb{P}_{n}, and $M_{n}=d \mathbb{Q}_{n} / d \mathbb{P}_{n}$. Then $\left(M_{n}, \mathcal{F}_{n}\right)$ is a martingale on $\left(\Omega, \mathcal{F}_{\infty}, \mathbb{P}\right)$ and $M_{n} \xrightarrow{\text { a.c. }} M_{\infty}$ where M_{∞} is finite a.c. If $\left\{M_{n}\right\}$ is U.I. then \mathbb{Q} is absolutely continuous with respect to \mathbb{P}, and $M_{\infty}=d \mathbb{Q} / d \mathbb{P}$.
Moreover, generally the Lebesgue decomposition of \mathbb{Q} with respect to \mathbb{P} is

$$
\mathbb{Q}=\mathbb{Q}_{a c}+\mathbb{Q}_{s}=M_{\infty} \mathbb{P}+1_{\left\{M_{\infty}=\infty\right\}} \mathbb{Q}
$$

i.e. $\mathbb{Q}_{a c}(A)=\int_{A} M_{\infty}(\omega) d \mathbb{P}, \mathbb{Q}_{s}(A)=\int_{A} 1_{\left\{M_{\infty}=\infty\right\}} d \mathbb{Q}$.
33. Likelihood ratios (c.f. [3] p.220): Suppose \mathbb{P}, \mathbb{Q} are two measures on $\left(\mathbb{R}^{\infty}, \mathcal{B}^{\infty}\right)$, and under both the \mathbb{P} and \mathbb{Q}, the coodinate maps $X_{n}(\omega)=$ ω_{n} are independent. Further suppose $\mathbb{Q} \cdot X_{k}^{-1}$ is absolutely continuous with respect to $\mathbb{P} \cdot X_{k}^{-1}$.
Let $Y_{k}(\omega)=\frac{d\left(\mathbb{Q} \cdot X_{k}^{-1}\right)}{d\left(\mathbb{P} \cdot X_{k}^{-1}\right)}\left(X_{k}(\omega)\right)$. Then $M_{\infty}=\prod_{k} Y_{k}$ exists under both \mathbb{P} and \mathbb{Q}. Moreover if $\alpha=\prod_{k=1}^{\infty} \mathbb{P}\left(\sqrt{Y_{k}}\right)>0$ then \mathbb{Q} is absolutely continuous with respect to \mathbb{P} and $d \mathbb{Q} / d \mathbb{P}=M_{\infty}$. If $\alpha=0$ then \mathbb{Q} is singular with respect to \mathbb{P} and $M_{\infty} \stackrel{\mathbb{Q} \text {-a.c. }}{=} \infty$ and $M_{\infty} \stackrel{\mathbb{P} \text {-a.c. }}{=} 0$.
34. Reversed martingale convergence: Suppose X_{0} is integrable, $\left(X_{n}, \mathcal{F}_{n}\right), n \leq$ 0 is a reversed margtingale if and only if $X_{n}=\mathbb{E}\left[X_{0} \mid \mathcal{F}_{n}\right]$ for all $n \leq 0$. Further

$$
X_{n} \underset{L^{1}}{\text { a.c. }} \mathbb{E}\left[X_{0} \mid \mathcal{F}_{-\infty}\right] \text { as } n \rightarrow-\infty
$$

35. Lévy's downward theorem: Suppose $\mathcal{F}_{n} \downarrow \mathcal{F}_{-\infty}$ and $X_{n} \xrightarrow{\text { a.c. }} X_{-\infty}$. If $\sup _{n}\left|X_{n}\right|$ is integrable, then $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right] \xrightarrow{\text { a.c. }} \mathbb{E}\left[X_{-\infty} \mid \mathcal{F}_{-\infty}\right]$.
36. L^{p} convergence of reversed martingale: Suppose $\left(X_{n}, \mathcal{F}_{n}\right), n \leq 0$ is a reversed martingale. If for some positive $p, \mathbb{E}\left[\left|X_{0}\right|^{p}\right]<\infty$, then $X_{n} \xrightarrow{L^{p}} X_{-\infty}$.
37. Hewitt-Savage 0-1 law: (c.f. [3] p.224): The exchangable σ-algebra $\mathcal{E}=\cap_{n>0} \mathcal{E}_{n}$, where

$$
\mathcal{E}_{n}=\sigma\left(\left\{A: \forall \omega=\left(\omega_{1}, \omega_{2}, . .\right) \in A,\left(\omega_{\pi(1)}, . ., \omega_{\pi(n)}, \omega_{n+1} . .\right) \in A\right\}\right)
$$

of a sequence of iid random variables $\xi_{k}(\omega)=\omega_{k}$ is \mathbb{P}-trivial.
38. De-Finetti: If $\xi_{k}(\omega)=\omega_{k}$ is an exchangable sequence, then conditioned on \mathcal{E}, the random variables ξ_{k} are iid.

7 Markov Chains

7.1 Canonical Construction

1. Transition kernel (c.f. [3] p.228): Suppose $\left\{X_{n}\right\}$ is an \mathcal{F}_{n} Markov chain, and p_{n} is its n-th state transition kernel. For any bounded measurable function h,

$$
\mathbb{E}\left[h\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right]=\int_{\mathcal{S}} h(y) p\left(X_{n}, d y\right)
$$

2. Chain rule: Suppose $\left\{X_{n}\right\}$ is a Markov chain on $(\mathbb{S}, \mathcal{S})$, n-th state transition kernel $p_{n}(\cdot, \cdot)$ and initial distribution $\nu(A)=\mathbb{P}\left(X_{0} \in A\right)$. Then for all bounded measurable functions h_{l} on \mathcal{S} and all $k \in \mathbb{N}$,

$$
\mathbb{E}\left[\prod_{l=0}^{k} h_{l}\left(X_{l}\right)\right]=\int h_{0}\left(x_{0}\right) \int h_{1}\left(x_{1}\right) . . \int h_{k}\left(x_{k}\right) p_{k-1}\left(x_{k-1}, d x_{k}\right) . . p_{0}\left(x_{0}, d x_{1}\right) \nu\left(d x_{0}\right)
$$

3. Canonical construction (c.f. [3] p.230): If $(\mathbb{S}, \mathcal{S})$ is Borel-isomorphic, $\left\{p_{n}\right\}$ a set of transition kernels, and ν a σ-finite measure on \mathcal{S}. Then there corresponds a Markov chain X_{n} with initial distribution ν and transition kernel p_{n}, such that

$$
\mathbb{P}_{\nu}\left(\left(X_{0}, . ., X_{k}\right) \in A\right)=\nu \otimes p_{0} . . \otimes p_{k-1}(A), \forall A \in \mathcal{S}^{k+1}
$$

The space $\left(\mathbb{S}^{\infty}, \mathcal{S}^{\infty}, P_{\nu}\right)$ is the canonical measurable space of the Markov chain X_{n} where $\forall \omega=\left(\omega_{0}, \omega_{1}, ..\right) \in \mathbb{S}^{\infty}, \omega_{n}=X_{n}\left(\omega_{0}\right)$.

7.2 Strong Markov Property

4. strong Markov property: Suppose $\left(\mathbb{S}^{\infty}, \mathcal{S}^{\infty}, P_{\nu}\right)$ is the canonical measurable space, and X_{n} its corresponding Markov chain. If X_{n} is homogeneous, for any class of bounded measurable functions $\left\{h_{n}\right\}$ on \mathcal{S}^{∞} with $\sup _{n, \omega}\left|h_{n}(\omega)\right|<\infty$,

$$
E_{\nu}\left[h_{\tau}\left(\theta^{\tau} \omega\right) \mid \mathcal{F}_{\tau}^{X}\right] 1_{\tau<\infty}=E_{X_{\tau}}\left[h_{\tau}\right] 1_{\tau<\infty}
$$

where θ is the left-shift operator and τ is a \mathcal{F}_{n}^{X} stopping time.
5. shift invariance (c.f. [3] p.234): Suppose ν is a σ-finite measure on $(\mathbb{S}, \mathcal{S})$, and $p_{n}(\cdot, \cdot)$ are transition kernels. If $\nu \otimes p_{0}(\mathbb{S} \times A)=\nu(A)$ for all $A \in \mathcal{S}$, then for all $A \in \mathcal{S}^{k+1}$,

$$
\nu \otimes p_{0} \otimes . . \otimes p_{k}(\mathbb{S} \times A)=\nu \otimes p_{1} \otimes . . \otimes p_{k}(A)
$$

6. A positive σ-finite measure μ on a Borel-isomorphic space $(\mathbb{S}, \mathcal{S})$ is invariant for homogeneous kernels $p(\cdot, \cdot)$ if and only if $\mu \otimes p(\mathbb{S} \times A)=$ $\mu(A)$ for all $A \in \mathcal{S}$.

7.3 Countable State Space Markov Chain

7. Definitions:

(a) x is accessible from $y \in \mathbb{S}$ if $\rho_{y x}=P_{y}\left(T_{x}<\infty\right)>0$.
(b) If $x \neq y$ and x, y are accessible from each other, x, y are intercommunicate.
(c) A non empty set $C \subset \mathbb{S}$ is closed if $\forall y \in \mathbb{S}-C, y$ is not accessible from any $x \in C$.
(d) A non empty set $C \subset \mathbb{S}$ is irreducible if $\forall x, y \in C, x, y$ are intercommunicate.
(e) A state $y \in \mathbb{S}$ is recurrent if $\rho_{y y}=1$, otherwise y is transient.
(f) The k-th return T_{y}^{k} to state $y \in \mathbb{S}$ is recursively defined as $T_{y}^{k}=$ $\inf \left\{n>T_{y}^{k-1}: X_{n}=y\right\}$ for $k>0$ and $T_{y}^{0}=0$.
8. Harmonic functions on Markov chains: $f: \mathbb{S} \rightarrow \mathbb{R}$ is (super,sub) harmonic for a transition probability $p(\cdot, \cdot)$ if $f(x)=\sum p(x, y) f(y)$. When $f\left(X_{0}\right)$ is integrable, $\left\{f\left(X_{n}\right)\right\}$ is a (sub, sup) martingale if f is (sub, super) harmonic when f is bounded above or below.
9. Chapman-Kolmogorov (c.f. [3] p.235): Suppose X_{n} is a homogeneous Markov chain with countable state space \mathbb{S}, then for any $x, y \in \mathbb{S}$,

$$
\mathbb{P}_{x}\left(X_{n}=y\right)=\sum_{s \in \mathbb{S}} \mathbb{P}_{x}\left(X_{k}=s\right) \mathbb{P}_{s}\left(X_{n-k}=y\right)
$$

10. Expected visit time: For any $x, y \in \mathbb{S}$ and $k>0$,

$$
\mathbb{P}_{x}\left(T_{y}^{k}<\infty\right)=\rho_{x y} \rho_{y y}^{k-1}
$$

Define $N_{\infty}(y)$ be the expected number of visits to y at finite time, then

$$
\mathbb{E}\left[N_{\infty}(y)\right]=\frac{\rho_{x y}}{1-\rho_{y y}}
$$

11. Decomposition of Markov chain (c.f. [3] p.239): A countable state space \mathbb{S} of a homogeneous Markov chain can be partitioned uniquely as $\mathbb{S}=\mathbb{T} \cup \mathbf{R}_{1} \cup \mathbf{R}_{2} \cup .$. , where \mathbb{T} is the set of all transient states and \mathbf{R}_{i} are disjoint, irreducible closed sets of recurrent states with $\rho_{x y}=1, \forall x, y \in \mathbf{R}_{i}$.
12. If F is a finite set of transient states then $\mathbb{P}_{\nu}\left(X_{n} \in F\right.$ i.o. $)=0$ for any initial distribution ν. Hence if a finite closed set C contains at least one recurrent state, and if C is also irreducible then C is recurrent.

7.4 Ways to Show Recurrence

13. Suppose \mathbb{S} is irreducible for a Markov chain $\left\{X_{n}\right\}$ and there exists $h: \mathbb{S} \rightarrow \mathbb{R}^{+}$such that $\exists r>0, G_{r}=\{x: h(x)<r\}$ is finite and non-empty, and h is super-harmonic on $\mathbb{S}-G_{r}$. Then X_{n} is recurrent.
14. Suppose \mathbb{S} is irreducible for a homogeneous Markov chain X_{n}. Then X_{n} is recurrent if and only if the only non-negative super-harmonic functions on \mathbb{S} are constant functions.

7.5 Invariant Measure

15. Suppose X_{n} is a homogeneous Markov chain, and $T_{z}=\inf \{k \geq 1$: $\left.X_{k}=z\right\}$. Then

$$
\mu_{z}(y)=\mathbb{E}_{z}\left[\sum_{k=0}^{T_{z}-1} 1_{X_{k}=y}\right]
$$

is an excessive measure, i.e. $\mu(y) \geq \sum \mu(x) p(x, y), \forall y \in \mathbb{S}$. Moreover if z is recurrent then $\mu_{z}(\cdot)$ is an invariant measure.
16. The invariant measure on a recurrent and irreducible Markov chain is unique up to a multiplicative constant.
17. If $\mu(\cdot)=c>0$ is an invariant measure for a homogeneous Markov chain with transition probability $p(\cdot, \cdot)$, then it is doubly stochastic, i.e. $\sum_{x} p(x, y)=1, \forall y$.
18. If $\mu(\cdot)$ is an invariant measure for transition probability $p(\cdot, \cdot)$, then for $\mu(x) \neq 0, q(x, y) \triangleq \mu(y) p(y, x) / \mu(x)$ is a transition probability and corresponds to the reversed chain of the original Markov chain.
19. Kolmogorov cycle condition (c.f. [3] p.247): An irreducible Markov chain with transition probability $p(\cdot, \cdot)$ is reversible if and only if $p(x, y)>0$ whenever $p(y, x)>0$ and

$$
\prod_{i=1}^{k} p\left(x_{i-1}, x_{i}\right)=\prod_{i=1}^{k} p\left(x_{i}, x_{i-1}\right)
$$

for all $k>2$ and $x_{0}=x_{k}$, in which case $\exists \mu$ a positive measure on \mathbb{S}, such that $\mu(x) p(x, y)=\mu(y) p(y, x), \forall x, y \in \mathbb{S}$.
20. Invariant probability: If $\pi(\cdot)$ is an invariant probability measure then $z \in \mathbb{S}$ is positive recurrent for all $z, \pi(z)>0$. Conversely, if π is supported on an irreducible and positive recurrent set $\mathbf{R} \subset \mathbb{S}$, uniquely $\pi(z)=1 / \mathbb{E}_{z}\left[T_{z}\right], \forall z \in \mathbf{R}$.
21. Second law of thermodynamics (c.f. [5] p.81):
(a) Suppose μ, ν are two initial distributions of a homogeneous Markov chain X_{n} with transition probability \mathbb{P}. Let μ_{n}, ν_{n} be the measure of n-th coodinate of $\mu \otimes p^{n}, \nu \otimes p^{n}$. Then $D\left(\mu_{n} \| \nu_{n}\right) \geq$ $D\left(\mu_{n+1} \| \nu_{n+1}\right)$.
(b) Suppose X_{n} admits an invariant measure π. Then for any starting distribution $\mu, D\left(\mu_{n} \| \pi\right) \geq D\left(\mu_{n+1} \| \pi\right)$.

7.6 Aperiodic Markov Chains

22. Asymptotic occupation time: For any initial distribution ν and all $y \in$ \mathbb{S},

$$
\lim _{n \rightarrow \infty} \frac{1}{n} N_{n}(y) \stackrel{P_{\nu}-\text { a.c. }}{=} \frac{1}{E_{y}\left[T_{y}\right]} 1_{\left\{T_{y}<\infty\right\}}
$$

where $N_{n}(y)=\sum_{k=1}^{n} 1_{\left\{X_{k}=y\right\}}$. Moreover, for all $x, y \in \mathbb{S}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{P}_{x}\left(X_{k}=y\right)=\frac{\rho_{x y}}{E_{y}\left[T_{y}\right]}
$$

23. $\mathcal{I}_{x}=\left\{n \geq 1: \mathbb{P}_{x}\left(X_{n}=x\right)>0\right\}$ contains all large enough integer multiples of $d_{x}=\operatorname{gcd}\left(\mathcal{I}_{x}\right)$ and if x, y intercommunicates, $d_{x}=d_{y}$.
24. Coupling of independent chains (c.f. [3] p.253): If X_{n}, Y_{n} are two copies of an aperiodic irreducible Markov chain, and further suppose $Z_{n}=\left(X_{n}, Y_{n}\right)$ is recurrent. Then $\tau=\min \left\{l \geq 0: X_{l}=Y_{l}\right\}$ is finite a.c. regardless of the initial distributions (μ, ν), and

$$
\left\|\mu_{n}-\nu_{n}\right\|_{T V} \leq 2 \mathbb{P}(\tau>n)
$$

Remark: This conclusion is stronger than the 2nd law of thermodynamics. If one can show the convergence of KL divergence then the coupling theorem is concluded via Pinsker's inequality.
25. If X_{n} is irreducible, positive recurrent and aperiodic, then for any $x \in \mathbb{S}$,

$$
\lim _{n \rightarrow \infty}\left\|\mathbb{P}_{x}\left(X_{n} \in \cdot\right)-\pi(\cdot)\right\|_{T V}=0
$$

8 Stochastic Processes

1. Cylindrical sets and Borel sets: Let $\mathbb{R}^{[0, \infty)}$ be the set of all functions from $[0, \infty) \rightarrow \mathbb{R} . \mathcal{B}\left(\mathbb{R}^{[0, \infty)}\right)$ is the Borel sets generated by the basic open sets

$$
\left\{f \in \mathbb{R}^{[0, \infty)}: f\left(x_{1}\right) \in U_{1}, . ., f\left(x_{n}\right) \in U_{n}, \forall x_{1}, . ., x_{n}, \forall U_{1}, . ., U_{n} \text { open }\right\}
$$

2. Kolmogorov consistency theorem: A family of measures $\left\{Q_{\mathbf{t}}\right\}$ is consistent if:
(a) $\mathbf{t}=\left(t_{1}, . ., t_{n}\right)$, and $\mathbf{s}=\pi(\mathbf{t})$ a permutation of \mathbf{t}, Then $\forall A_{1}, . ., A_{n} \in$ $\mathcal{B}(\mathbb{R})$,

$$
Q_{\mathbf{t}}\left(A_{1} \times \ldots \times A_{n}\right)=Q_{\mathbf{s}}\left(A_{\pi(1)} \times \ldots \times A_{\pi(n)}\right)
$$

(b) $\mathbf{t}=\left(t_{1}, . ., t_{n}\right), \mathbf{s}=\left(t_{1}, . ., t_{n-1}\right)$, then

$$
Q_{\mathbf{s}}(A)=Q_{\mathbf{t}}(A \times \mathbb{R}), \forall A \in \mathcal{B}\left(\mathbb{R}^{n-1}\right)
$$

Then there exists a measure on $\mathbb{R}^{[0, \infty)}$, such that

$$
\mathbb{P}\left(\left\{\omega \in \mathbb{R}^{[0, \infty)}:\left(\omega\left(t_{1}\right), . ., \omega\left(t_{n}\right)\right) \in A\right\}\right)=Q_{\mathbf{t}}(A), \forall n, \mathbf{t}, A \in \mathcal{B}\left(\mathbb{R}^{n}\right)
$$

3. Kolmogorov-Chentsov: Suppose that $X_{t}: \Omega \rightarrow \mathbb{R}^{[0, \infty)}$ is a stochastic process. If there exists positive α, β, C, such that

$$
\mathbb{E}\left[\left|X_{t}-X_{s}\right|^{\alpha}\right]<C|t-s|^{1+\beta}, \forall 0 \leq s<t \leq T<\infty
$$

Then there exists a continuous stochastic process $\tilde{X}_{t}: \Omega \rightarrow C[0, T]$, such that \tilde{X}_{t} is measurable, and for any $t \in[0, T], \mathbb{P}\left(\tilde{X}_{t}=X_{t}\right)=1$.
4. Lévy process: For any infinitely divisible distribution μ, there exists a random process Y_{t}, which is almost certainly Càdlàg, i.e. has left limit and is right continuous, with independent and stationary increment $Y_{t}-Y_{s}$ distributed according to μ.
5. Wiener-Khinchin: Suppose X_{t} is a wide sense stationary process. Then its power spectrum density

$$
S(\omega)=\lim _{T \rightarrow \infty} \mathbb{E}\left[\left|\hat{x}_{T}(\omega)\right|^{2}\right], \hat{x}_{T}(\omega)=\frac{1}{\sqrt{T}} \int_{0}^{T} X_{t} e^{-i \omega t} d t
$$

equals $S(\omega)=\int_{-\infty}^{\infty} \gamma(\tau) e^{-i \omega \tau} d \tau$, where $\gamma(\tau)=\left\langle X_{t}, X_{t+\tau}\right\rangle=\mathbb{E}\left[X_{t} X_{t+\tau}^{*}\right]$.

9 Brownian Motion

B_{t}, without further clarification, denotes a standard 1-dimensional Brownian motion starting at 0 .

9.1 General Properties

1. f.d.d. of $B M$: Suppose B_{t} is a standard Brownian motion. For any $0 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{n},\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ is multivariate Gaussian, with $\mathbb{E}\left[B_{t_{i}}\right]=0, \operatorname{Cov}\left(B_{t_{i}}, B_{t_{j}}\right)=\min \left(t_{i}, t_{j}\right)$.
2. Brownian filtration: Let $\mathcal{F}_{t}^{0}=\sigma\left(\left\{B_{s}: s \leq t\right\}\right)$. Define $\mathcal{F}_{t}^{+}=\cap_{s>t} \mathcal{F}_{s}^{0}$. Then \mathcal{F}_{t}^{+}is a right continuous filtration, i.e. $\mathcal{F}_{t}^{+}=\cap_{s>t} \mathcal{F}_{s}^{+}$, and B_{t} is measurable on \mathcal{F}_{t}^{+}.
3. Scaling and time inversion of B_{t} :
(a) $W_{t}^{\prime}(\omega)=c^{-1} B_{c^{2} t}(\omega)$
(b)

$$
W_{t}^{\prime \prime}(\omega)=\left\{\begin{array}{l}
t B_{\frac{1}{t}}(\omega), t>0 \tag{3}\\
0, t<0
\end{array}\right.
$$

Both W_{t}^{\prime} and $W_{t}^{\prime \prime}$ are Brownian motions.
4. Blumenthal's 0 - 1 law: If $A \in \mathcal{F}_{0}^{+}$, then $\mathbb{P}(A)$ is either 0 or 1 .
5. Donsker's Invariance Principle (c.f. [4] p.134): Let X_{1}, X_{2}, \ldots be iid random variables with $\mathbb{E}\left[X_{1}\right]=0, \operatorname{Var}\left(X_{1}\right)=1$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$.
Define a random function $W^{(n)}:[0,1] \rightarrow \mathbb{R}$ by

$$
W^{(n)}\left(\frac{k}{n}\right)=\frac{S_{k}}{\sqrt{n}}, k=0,1, . ., n
$$

and linear interpolation in between. Then $W^{(n)} \Rightarrow B$ where B is a standard Brownian motion on $[0,1]$, i.e. $\mu_{n}(A)=\mathbb{P}\left(W^{(n)} \in A\right)$, $\mu_{n} \Rightarrow \mu$ where μ is the Wiener measure on $C[0,1]$.

9.2 Path Regularity

6. Almost certaily B_{t} has no interval of increase of decrease.
7. Nowhere differentiability (c.f. [6] p.306): B_{t} is nowhere differentiable a.c.
8. Local maxima (c.f. [4] p.46): The set of local maxima is almost certainly dense and countable.
9. Zero set (c.f. [4] p.52): Let $Z=\left\{t \geq 0: B_{t}=0\right\}$. Then almost certainly, Z is a perfect set, i.e. Z is closed with no isolated points.
10. Hölder continuity (c.f. [4] p.30): For any $\alpha<1 / 2, B_{t}$ is almost certainly locally α-Hölder continuous, which means for any $t \geq 0$, there exists $\epsilon>0, c>0$ such that

$$
\left|B_{s}-B_{t}\right|<c|s-t|^{\alpha}, y \in \mathbb{R}^{+} \cap(x-\epsilon, x+\epsilon)
$$

11. Lower bound of growth (c.f. [4] p.32): Almost certainly,

$$
\limsup _{n \rightarrow \infty} \frac{B_{n}}{\sqrt{n}}=+\infty, \liminf _{n \rightarrow \infty} \frac{B_{n}}{\sqrt{n}}=-\infty
$$

12. Quadratic Variation (c.f. [4] p.35): Suppose there is a nested sequence of partition $0=t_{0}^{(n)} \leq \ldots \leq t_{k_{n}}^{(n)}=t$ with mesh $\operatorname{size} \sup \left\{t_{j}^{(n)}-t_{j-1}^{(n)}\right\}$ going to 0 . Then almost certainly,

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{k_{n}}\left(B_{t_{j}}-B_{t_{j-1}}\right)^{2}=t
$$

Remark: This implies almost certainly B_{t} has unbounded variation.

9.2.1 Dimension

Definitions:
(a) Hausdorff content: Given a metric space E and a covering $E_{1}, E_{2}, \ldots, E_{k}$. The α-Hausdorff content of E is defined as:

$$
\mathcal{H}_{\infty}^{\alpha}(E)=\inf \left\{\sum|E i|^{\alpha}: E_{1}, E_{2}, . . \text { a covering of } E\right\}
$$

Remark: If $\alpha \leq \beta$, then $\mathcal{H}_{\infty}^{\alpha}=0 \Rightarrow \mathcal{H}_{\infty}^{\beta}=0$.
(b) α-Hausdorff measure: for any fixed $\delta>0$,

$$
\mathcal{H}_{\delta}^{\alpha}(E)=\inf \left\{\sum\left|E_{i}\right|^{\alpha}: E_{1}, E_{2}, . . \text { cover } E \text { and }\left|E_{i}\right| \leq \delta, \forall i\right\}
$$

The α-Hausdorff measure of E is

$$
\mathcal{H}^{\alpha}(E)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{\alpha}(E)=\sup _{\delta>0} \mathcal{H}_{\delta}^{\alpha}(E)
$$

Remark: $\mathcal{H}^{\alpha}(E)$ is either 0 or ∞.
(c) Hausdorff Dimension: The Hausdorff dimension of E is

$$
\operatorname{dim}(E)=\inf \left\{\alpha \geq 0: \mathcal{H}_{\infty}^{\alpha}(E)=0\right\}=\sup \left\{\alpha \geq 0: \mathcal{H}_{\infty}^{\alpha}>0\right\}
$$

Remark: $\operatorname{dim}(E)=\inf \left\{\alpha \geq 0: \mathcal{H}^{\alpha}(E)=0\right\}=\sup \{\alpha \geq 0$: $\left.\mathcal{H}^{\alpha}(E)=\infty\right\}$.
13. Dimension of $B M$: Almost certainly $\mathcal{H}^{2}(B[0, \infty))=0$. In particular, $\operatorname{dim}(B[0, \infty))=2$ for d-dimensional Brownian motion, $d \geq 2$.

9.3 Maximum Process

14. 1-D distribution: Suppose $M_{t}=\max _{0 \leq s \leq t} B_{s}$, for any $t, M_{t} \stackrel{d}{=}\left|N_{t}\right|$, where N_{t} follows Gaussian $N(0, t)$.
15. Joint distribution of BM and Maximum process (c.f. [8] p.10): Suppose B_{t} is a Brownian motion and M_{t} is its maximum process. Then

$$
\mathbb{P}\left(X_{t} \leq x, M_{t} \leq y\right)=\Phi\left(\frac{x}{\sqrt{t}}\right)-\Phi\left(\frac{x-2 y}{\sqrt{t}}\right)
$$

where $\Phi(\cdot)$ is the CDF of a standard Gaussian.
16. (c.f. [7] p.73): Supose B_{t} is a Brownian with drift $\mu<0$, and M_{t} corresponds to its maximum process. Then $M=\lim _{t \rightarrow \infty} M_{t}$ is finite a.c., and has exponential distribution with parameter 2μ.

9.4 Martingale Property

17. Both B_{t} and $B_{t}^{2}-t$ are continuous martingales with respect to \mathcal{F}_{t}^{+}.
18. Optional stopping: Suppose X_{t} is a right-continuous martingale, and T a stopping time such that there exists $c, T \leq c$ almost certainly. Moreover, if $\mathbb{E}\left[\sup _{0 \leq t \leq c+1}\left|X_{t}\right|\right]<\infty$, then $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.
19. Wald's Lemma: Let B_{t} be a standard Brownian motion, and T is a stopping time. If $\mathbb{E}[T]<\infty$, then $\mathbb{E}\left[B_{T}\right]=0, \mathbb{E}[T]=\mathbb{E}\left[B_{T}^{2}\right]$.

9.4.1 Exponential Martingale and Girsanov Theorem

20. Exponential martingale: Suppose B_{t} is a Brownian motion with drift μ and variance σ. Then $V_{t}^{\theta}=e^{\theta B_{t}-\left(\mu \theta+\frac{1}{2} \sigma^{2} \theta^{2}\right) t}$ is a martingale for any $\theta \in \mathbb{R}$.
21. Change of measure: Suppose B_{t} is a Brownian motion with drift μ and variance $\sigma . B_{t}$ is a Brownian motion with drift $\mu+\theta$ and variance σ under new measure $P^{*}: d \mathbb{P}^{*}=V_{t}^{\left(\theta / \sigma^{2}\right)} d \mathbb{P}$.

9.5 Stopping Times

22. T is a stopping time if $\{T<t\} \in \mathcal{F}_{t}^{+}, \forall t \in[0,+\infty)$. Equivalently, by right continuity, T is a stopping time if $\{T \leq t\} \in \mathcal{F}_{t}^{+}, \forall t \in[0,+\infty)$
23. Strong Markov Property: Suppose T is a stopping time. Let $W_{t}=$ $B_{T+t}-B_{T}, \forall t \geq 0$. Then W_{t} is a Brownian motion and independent of \mathcal{F}_{T}^{+}the stopped σ-algebra.
24. Skorohod embedding: If X is a random variable, with $\mathbb{E}[X]=0, \mathbb{E}\left[X^{2}\right]<$ ∞. Then there exists two random variables $(U, V), U<0, V>0$, which are independent of B_{t} such that if $T=\inf \left\{t: B_{t} \notin(U, V)\right\}$, then $X \stackrel{d}{=} B_{T}, \mathbb{E}[T]=\mathbb{E}\left[X^{2}\right]$.
25. KMT embedding: If $X_{1}, X_{2}, .$. are iid random variables with mean 0 and variance 1. Moreover, $\mathbb{E}\left[e^{\theta\left|X_{1}\right|}\right]<\infty$ for some positive θ. Let $S_{n}=\sum_{i=1}^{n} X_{i}$, then there exists constants C, k, λ depending only on the distributions of X_{1} such that the following is true:
For any n , there is a Brownian motion constructed on the same space (expand if necessary) such that for any $x>0, \mathbb{P}\left(\max \left|S_{k}-B_{k}\right|>\right.$ $C \log n+x)<k e^{-\lambda x}$.

9.6 Distributions

26. Hitting 0 in an interval: The probability that a standard Brownian motion hits zero in the interval $[s, t]$ is $\frac{2}{\pi} \arccos \left(\sqrt{\frac{s}{t}}\right)$.
27. Arcsin law of last zero: Let L_{t} be the time of the last zero of a standard Brownian motion. Then L_{t} is arcsin distributed, i.e. $\mathbb{P}\left(L_{t}<s\right)=$ $1-\frac{2}{\pi} \arccos \left(\sqrt{\frac{S}{t}}\right)=\frac{2}{\pi} \arcsin \left(\sqrt{\frac{S}{t}}\right)$.
28. Arcsin law: Suppose $X(\omega)=\lambda\left(\left\{t \in[0,1]: B_{t}>0\right\}\right)=\int_{0}^{1} 1_{\left\{B_{s}>0\right\}}(\omega) d s$ is the Lebesgue measure of time a Brownian motion $B_{t}(\omega)$ spends above 0 . Then X is \arcsin distributed, i.e. $\mathbb{P}(X \leq x)=\frac{2}{\pi} \arcsin (x)$.

9.6.1 Hitting Times

29. Hitting time I: Suppose B_{t} a standard Brownian motion, and $T_{a}=$ $\inf \left\{t \geq 0: B_{t}=a\right\}$. Then T_{a} is finite a.c. and follows inverse Gaussian distribution with density

$$
f(x)=\frac{|a| e^{-a^{2} /(2 t)}}{\sqrt{2 \pi t^{3}}}
$$

30. Hitting time II: Let $T=\sup \left\{t \geq 0: B_{t}=t\right\}$, where B_{t} is a standard Brownian motion. Then T is chi-square distributed with one degree of freedom, i.e. it has density $f(x)=\frac{1}{\sqrt{2 \pi}} x^{-1 / 2} e^{-x / 2}$.
31. With drift: Suppose B_{t} is a Brownian motion with drift μ and variance σ, and T_{y} be the first hitting time of y. Then

$$
\mathbb{P}\left(T_{y}>t\right)=\Phi\left(\frac{y-\mu t}{\sigma t^{\frac{1}{2}}}\right)-e^{-\frac{2 \mu y}{\sigma^{2}}} \Phi\left(\frac{-y-\mu t}{\sigma t^{\frac{1}{2}}}\right)
$$

32. Planar BM (c.f. [7] p.108): Suppose $B_{t}=\left(B_{t}^{(1)}, B_{t}^{(2)}\right)$ is a 2-D Brownian motion starting at the origin. For any $a>0$, let $\tau=\inf \{t \geq$ $\left.0: B_{t}^{(1)}=a\right\}$. Then $B_{\tau}^{(2)}$ follows Cauchy distribution with density $f(x)=\frac{a}{\pi\left(a^{2}+x^{2}\right)}$

9.7 Characterizations

33. Lévy's characterization: Suppose X_{t} is a continuous stochastic process such that X_{t} and $X_{t}^{2}-t$ are both martingales adapted to \mathcal{F}_{t}^{+}. Then X_{t} is a Brownian motion with no drift.
34. Quadratic variation (c.f. [8] p.7): Suppose X_{t} adapted to \mathcal{F}_{t}^{+}is continuous such that X_{t} is a martingale and X_{t} has quadratic variation t on $[0, t]$. Then X_{t} is a standard Brownian motion.
35. Exponential martingale (c.f. [8] p.7): Suppose X_{t} adapted to \mathcal{F}_{t}^{+}is continuous. If

$$
V_{\beta}(t)=e^{\beta X_{t}-\left(\beta \mu t+\frac{1}{2} \beta^{2} \sigma^{2} t\right)}
$$

is a martingale for any $\beta \in \mathbb{R}$, then X_{t} is a Brownian motion with drift μ and variance $\sigma^{2} t$.
36. Characterization function: If X_{t} is a process adapted to \mathcal{F}_{s}^{+}, then X_{t} is a Brownian motion if and only if for any $0<s<t$, the conditional expectation

$$
\mathbb{E}\left[e^{i u\left(W_{t}-W_{s}\right)} \mid \mathcal{F}_{s}^{+}\right]=e^{-\frac{u^{2}(t-s)}{2}}
$$

37. martingale representation theorem: Suppose X_{t} is a continuous L^{2} martingale adapted to \mathcal{F}_{t}^{+}. Then there exists an adapted process f_{t} such that for any $t, X_{t}=\int_{0}^{t} f_{s} d B_{s}$.
38. Ito representation: For any $t>0$, if X is measurable on \mathcal{F}_{t}^{+}, and $\mathbb{E}\left[X^{2}\right]<\infty$. Then there exists an adapted process $f_{s}, 0 \leq s \leq t$, such that $X=\mathbb{E}[X]+\int_{0}^{t} f_{s} d B_{s}$.

9.8 PDE

39. heat equation (c.f. [4] p.207): Suppose $u=u(x, t)$ such that $\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}$ and with initial condition $u(x, 0)=f(x)$. Then $u(x, t)=\mathbb{E}_{x}\left[f\left(B_{t}\right)\right]$ solves this PDE.
40. Feynman-Kac (c.f. [4] p.207): If $V: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded measurable function, $f: \mathbb{R} \rightarrow \mathbb{R}$ is bounded and coutinuous. Define

$$
u(x, t)=\mathbb{E}_{x}\left[f\left(B_{t}\right) e^{e_{0}^{t} V\left(B_{s}\right) d s}\right]
$$

Then we have

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+V(x) u(x, t)
$$

and

$$
\lim _{t \rightarrow 0, x \rightarrow x_{0}} u(x, t)=f\left(x_{0}\right)
$$

Conversly, if u satisfies the above two equations and u is twice differentiable on $\mathbb{R} \times(0,+\infty)$, such that its first order partial derivatives are bounded on $\mathbb{R} \times(0,+\infty), \forall t>0$. Then u must have the form

$$
u(x, t)=\mathbb{E}_{x}\left[f\left(B_{t}\right) e^{\int_{0}^{t} V\left(B_{s}\right) d s}\right]
$$

41. Ornstein-Uhlenbeck process: If X_{t} is the Ornstein-Uhlenbeck process starting at x , i.e. $X_{t}=e^{-t} x+e^{-t} B_{e^{2 t}-1}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is in C^{∞} with bounded derivatives. Define $u(x, t)=\mathbb{E}_{x}\left[f\left(X_{t}\right)\right]$, then we have

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-x \frac{\partial u}{\partial t}
$$

and

$$
u(x, 0)=f(x)
$$

9.9 Harmonic Functions

42. Harmonic function: A Domain in \mathbb{R}^{d} is an open connected set. f : $U \rightarrow \mathbb{R}$ is harmonic if f is twice differentiable and $\Delta f=\sum_{i=1}^{d} \frac{\partial^{2} f}{\partial x_{i}^{2}}=0$ on U.
43. Mean value property: If U is a domain and u is a measurable and locally bounded function on U. Then the following statements are equivalent:
(a) u is harmonic;
(b) For any balls contained in $U, u(x)=\frac{1}{\operatorname{Vol}\left(B_{r}(x)\right)} \int_{B_{r}(x)} u(y) d y$;
(c) For any balls contained in $U, u(x)=\frac{1}{\sigma\left(\partial B_{r}(x)\right)} \int_{\partial B_{r}(x)} u(y) d \sigma(y)$.
44. Maximum principle: U is a domain and u on U is harmonic. If u attains maximum in U then u must be a constant. Moreover, if u extends continuously to \bar{U} and U is bounded, then u attains maximum on ∂U.

9.9.1 Dirichlet Problem

45. Poincare Cone condition: A domain U satisfies the Poincare Cone condition if for any $z \in \partial U$, there exists a cone C_{z} at z of nonzero volumn, such that for some $r>0, B_{r}(z) \cap C_{z} \subset U^{c}$.
46. Dirichlet problem (c.f. [4] p.73): Let U be a domain, $\varphi: \partial U \rightarrow \mathbb{R}$ is measurable. Let

$$
u(x)=\mathbb{E}_{x}\left[\varphi\left(B_{\tau}\right) 1_{\tau<\infty}\right], \text { where } \tau=\inf \left\{t: B_{t} \in \partial U\right\}
$$

Then u is harmonic. Moreover if φ is continuous and U is bounded satisfying the Poincare Cone condition, then $u \rightarrow \varphi$ on the boundary.

9.9.2 Recurrence of Brownian Motions

47. Fix $0<r<R$, define $U=\left\{x \in \mathbb{R}^{d}: r<|x|<R\right\}$ be an annulus. Consider

$$
u(x)=\left\{\begin{array}{l}
|x|, d=1 \tag{4}\\
\log |x|, d=2 \\
|x|^{2-d}, d \geq 3
\end{array}\right.
$$

Then u is harmonic in U.
48. First hitting time: (c.f. [4] p.76): Suppose B_{t} is a d-dimensional Brownian motion started at $x \in U=\left\{x \in \mathbb{R}^{d}: r<|x|<R\right\}$, and T_{r}, T_{R} the first hitting times of the inner and outer boundary. Then

$$
\mathbb{P}\left(T_{r}<T_{R}\right)=\left\{\begin{array}{l}
\frac{R-|x|}{R-r}, d=1 \tag{5}\\
\frac{\log R-\log |x|}{\log R-\log r}, d=2 \\
\frac{R^{2-d}-|x|^{2-d}}{R^{2-d}-r^{2-d}}, d \geq 3
\end{array}\right.
$$

49. The d-dimensional Brownian motion B_{t} is
(a) point recurrent if $d=1$;
(b) neighborhood recurrent if $d=2$;
(c) transient if $d \geq 3$.

9.10 Local Time

50. Dimension of zero set: Almost certainly the zero set $Z=\{s \in[0, t)$: $\left.B_{s}=0\right\}$ is of Hausdorff dimension $1 / 2$. And the $1 / 2$-Hausdorff measure $\mathcal{H}^{\frac{1}{2}}(Z)=0$.
51. The Brownian local time at 0 is $L_{t}^{0}=\lim _{\epsilon \rightarrow 0} \int_{0}^{t} 1_{\left\{-\epsilon \leq B_{s} \leq \epsilon\right\}} d s$. This limit exists and has the same law as $M_{t}=\max _{0 \leq s \leq t} B_{s}$. Moreover, $\left(\left|B_{t}\right|, L_{t}^{0}\right) \stackrel{d}{=}\left(M_{t}-B_{t}, M_{t}\right)$.
52. Tanaka (c.f. [7] p.222): If $W_{t}=\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s}$, then W_{t} is a standard Brownian motion. Moreover, $\left|B_{t}\right|=W_{t}+L_{t}^{0}$ and $L_{t}^{0}=\tilde{M}_{t}=$ $\max _{0 \leq s \leq t}\left(-W_{s}\right)$.
Remark:
(a) The first conclusion is by Lévy's construction of BM,
(b) The first equation is by Ito's formula on $f_{\epsilon}\left(B_{t}\right)$ where $f_{\epsilon}^{\prime}(\cdot)$ is a continuous estimation of the Heavyside step function, and
(c) The second equation is by the first equation and increasing properties of L_{t}^{0} and \tilde{M}_{t}.
53. Ray-Knight I (c.f. [4] p.164): Suppose B_{t} is a standard Brownian motion and $T_{a}=\inf \left\{t \geq 0: B_{t}=a\right\}$. Then the process $L_{T}^{a-t} \stackrel{d}{=}$ $\left|W_{t}\right|^{2}, t \in[0, a]$ where W_{t} is a 2-D standard Brownian motion.
54. Ray-Knight II (c.f. [7] p.456): Let $T_{a}=\inf \left\{t \geq 0: L_{t}^{0}>a\right\}$. Then the processes $L_{T_{a}}^{t}+W_{t}^{2} \stackrel{d}{=}\left(W_{t}+\sqrt{a}\right)^{2}, \forall t \geq 0$, where W_{t} is a 1-D standard Brownian motion.

10 Stochastic Integration

1. Existence of Solution: For a SDE of the form

$$
d Y_{t}=f\left(t, Y_{t}\right) d t+g\left(t, Y_{t}\right) d B_{t}
$$

i.e. find Y_{t} such that $Y_{t}=Y_{0}+\int_{0}^{t} f\left(s, Y_{s}\right) d s+\int_{0}^{t} g\left(s, Y_{s}\right) d B_{s}$. A unique continuous solution in $C[0, T]$ exists if there exists $L>0$, such that

$$
\forall t, x, y,|f(t, x)-f(t, y)|+|g(t, x)-g(t, y)| \leq L|x-y|
$$

And the solution is given by the L^{2} limit of

$$
Y_{t}^{(n)}=x+\int_{0}^{t} f\left(s, Y_{s}^{(n-1)}\right) d s+\int_{0}^{t} g\left(s, Y_{s}^{(n-1)}\right) d B_{s}
$$

starting at $Y_{t}^{(0)}=x$.
2. Geometric Brownian motion: The solution to the SDE

$$
d Y_{t}=\mu Y_{t} d t+\sigma Y_{t} d B_{t}
$$

is $Y_{t}=Y_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t} e^{\sigma B_{t}}$.
3. Bessel Process: The solution to the SDE

$$
d Y_{t}=d B_{t}+\frac{n-1}{2 Y_{t}} d t
$$

is $Y_{t}=\left\|W_{t}\right\|$ where W_{t} is a n-dimensional Brownian motion.

10.1 Formulae

4. (c.f. [4] p.189): Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t>0$ and s_{n} is a mesh going to zero. Then

$$
\sum_{i=0}^{n-1} f\left(B_{s_{i}}\right)\left(B_{s_{i+1}}-B_{s_{i}}\right)^{2} \rightarrow \sum_{i=0}^{n-1} f\left(B_{s_{i}}\right)\left(s_{i+1}-s_{i}\right) \rightarrow \int_{0}^{t} f\left(B_{s}\right) d s
$$

5. Ito's lemma: Suppose X_{t} is a drift-diffusion process, i.e.

$$
d X_{t}=\mu_{t} d t+\sigma_{t} d B_{t}
$$

Then for any twice differentiable function $f(t, x)$,

$$
d f\left(t, X_{t}\right)=\left(\frac{\partial f}{\partial t}+\mu_{t} \frac{\partial f}{\partial x}+\frac{1}{2} \sigma_{t}^{2} \frac{\partial^{2} f}{\partial x^{2}}\right) d t+\sigma_{t} \frac{\partial f}{\partial x} d B_{t}
$$

6. Ito's formula (c.f. [4] p.189): Suppose $f \in C^{\infty}$ and all derivatives bounded. Then

$$
f\left(B_{t}\right)=f\left(B_{0}\right)+\int_{0}^{t} f^{\prime}\left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) d s
$$

Also if $f=f(t, x)$,

$$
f\left(t, B_{t}\right)=f\left(0, B_{0}\right)+\int_{0}^{t} \frac{\partial f}{\partial s}\left(s, B_{s}\right) d s+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, B_{s}\right) d s
$$

7. General Ito lemma:

$$
d f\left(t, B_{t}\right)=\frac{\partial f}{\partial t}\left(t, B_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, B_{t}\right) d B_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, B_{t}\right) d t
$$

And for square integrable martingale X_{t},

$$
d f\left(t, X_{t}\right)=\frac{\partial f}{\partial t}\left(t, X_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, X_{t}\right) d X_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, X_{t}\right) d\left\langle X_{t}\right\rangle
$$

where $\left\langle X_{t}\right\rangle$ is the quadratic variation of X_{t}.
8. Isometry: Suppose f_{s} is a L^{2} stochastic process, then

$$
\mathbb{E}\left[\left(\int_{0}^{t} f_{s} d B_{s}\right)^{2}\right]=\int_{0}^{t} \mathbb{E}\left[f_{s}^{2}\right] d s
$$

9. Generalized Ito's Formula: If $V_{t}=f\left(U_{t}\right)$, then

$$
d V_{t}=f^{\prime}\left(U_{t}\right) d U_{t}+\frac{1}{2} f^{\prime \prime}\left(U_{t}\right)\left(d U_{t}\right)^{2}
$$

11 List of References

[1] Probability and Measure, Patrick Billingsley
[2] Convergence of Probability Measures, Patrick Billingsley
[3] Lecture notes, Amir Dembo
[4] Brownian Motion, Peter Mörters, Yuval Peres
[5] Elements of Information Theory, Thomas M. Cover
[6] Probability-Theory and Examples, Rick Durrett
[7] Continuous Martingales and Brownian Motion, Daniel Revuz, Marc Yor
[8] Brownian Models of Performance and Control, Michael J. Harrison
[9] Network Information Theory, Abbas El Gamal, Young Han Kim

