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1 General Theorems on Measure Theory

1.1 Integration and Expectation

1. Independence (c.f. [1] p.55): If A1,A2, ..,An are independent and each
Ai is a π-system then σ(A1), ..., σ(An) are independent.

2. Fatou’s Lemma: For nonnegative fn,
∫

lim inf fndµ ≤ lim inf
∫
fndµ.

3. Change of variable: If f is continuous, g is one-one, g′ exists and is
continuous, then ∫ b

a
f(g(x))g′(x)dx =

∫ g(b)

g(a)
f(y)dy

For higher dimensions g : Rk → Rk, substitute g′(x) with |Jg(x)| the
determinant of the Jacobian of g.

4. Exchangibility of derivative and integration (c.f. [1] p.212): Suppose
f(ω, x) has derivative f ′(ω, x) with respect to x, and |f ′(ω, x)| ≤
g(ω) for all ω and x, where g is integrable. Then

d(
∫
f(ω,x)µdω)
dx =∫

f ′(ω, x)µdω.

5. E[|X|p] =
∫∞

0 pxp−1P(|X| > x)dx =
∫∞

0 pxp−1P(|X| ≥ x)dx.

6. Radon-Nikodym (c.f. [1] p.423, [3] p.165): If µ and ν are two σ-finite
measures on (Ω,F) such that ν � µ, then there exists f measurable
on F , such that

∫
A hdν =

∫
A fhdµ,∀A ∈ F , h measurable. Moreover,

f is unique up to a null set with respect to µ. f = dν
dµ is called the

Radon-Nikodym derivative.

1.2 Uniform Integrability

7. (c.f. [3] p.45): Xn U.I. ⇒ supE[|Xn|] <∞.

8. U.I. of collection of conditional expectation (c.f. [3] p.165): For any
X ∈ L1(Ω,F , P ), the collection {E[X|H] : H ⊂ F is a σ-algebra} is
U.I.

9. (c.f. [3] p.48, p.200): If p > 1, supE[|Xn|p] <∞ ⇒ Xn U.I.
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1.3 Moments and Characteristic Function

10. Uniqueness of moment generating function (c.f. [1] p.285): Suppose
that µ and ν are two probability measures on [0,+∞) (one sided). If∫ ∞

0
e−sxµdx =

∫ ∞
0

e−sxνdx, s ≥ s0

then µ = ν.

11. Uniqueness and inversion of characteristic function (c.f. [1] p.346):
Suppose φ(t) = E[eitX ] =

∫
eitxµdx is the characteristic function of X

with distribution µ. Then φ1 = φ2 ⇒ µ1 = µ2.
Moreover, if µ(a) = µ(b) = 0,

µ(a, b] = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t)dt

12. Method of Moments (c.f. [1] p.388): Let µ be a probability measure
on the real line having finite moments mn =

∫∞
−∞ µdx of all orders. If

the power series
∑

kmkr
k/k! has a positive radius of convergence then

µ is the unique probability measure with moments M0,M1, ...

Remark: A counter example is the log-normal where X = eN , N ∼
N(0, 1), where all its moments exist but no positive ROC for the mo-
ment generating function.

1.4 Zero One Laws

13. Borel-Cantelli:

(a) If
∑∞

n=1 P(An) <∞, P(An i.o.) = 0.

(b) If
∑∞

n=1 P(An) =∞ and An independent, P(An i.o.) = 1.

14. Kolmogorov: If {Xn}mutually independent and T = ∩∞n=0σ(Xi, i ≥ n)
is the tail σ-algebra, then P(A), A ∈ T is either 0 or 1.

15. Hewlett-Savage (c.f. [3] p.224): Define an exchangable σ-algebra to be
E = ∩mEm, where

Em = {A : ω = (ω1, ω2, ...) ∈ A⇒ (ωπ(1), ωπ(2), .., ωπ(m), ωm+1...) ∈ A}

Suppose E is the exchangable σ-algebra of iid random variables ξi,
ωi(ω) = ξi(ω). Then P(A), A ∈ E is either 0 or 1.
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16. Suppose ϕ is a measure preserving homomoerphism:

ϕ : Ω→ Ω,P(ϕ−1(A)) = P(A), ∀A ∈ F

If ϕ is ergodic, i.e.

∀X ∈ L1(Ω,F , P ),
1

n

n−1∑
m=0

X(ϕm(ω))
a.c.→ E[X],

then for the invariant σ-algebra I = {A : P(ϕ−1(A)∆A) = 0}, ∀A ∈ I,
P(A) is either 0 or 1.
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2 Convergence Theorems

2.1 Basic Theorems

1. Relationships between convergence:

(a) Converge a.c. ⇒ converge in probability ⇒ weak convergence.

(b) Converge in Lp ⇒ converge in Lq ⇒ converge in probability ⇒
converge weakly, p ≥ q ≥ 1.

(c) Convergence in KL divergence ⇒ Convergence in total variation
⇒ strong convergence of measure ⇒ weak convergence, where

i. µn
TV→ µ means lim ||µn − µ||TV = 0, where

||µ− ν||TV = sup
||f ||∞≤1

{
∫
fdµ−

∫
fdν}

which also equals

||µ− ν||TV = 2 sup
A∈F
|µ(A)− ν(A)|

ii. µn → µ strongly if limµn(A) = µ(A), ∀A ∈ F .

2. Subsequence of a.c. convergence: If Xn
p→ X, then there exists an

subsequence nk, Xnk
a.c.→ X.

3. Equivalence of convergence in probability and a.c. convergence (c.f. [1]
p.290): Let Sn =

∑n
i=1Xi. If {Xn} is independent, then Sn converges

a.c. iff Sn converges in probability.

4. When a.c. convergence implies L1 convergence: Monotone conver-
gence (MCT), Dominated convergence (DCT), Uniform integrability
(U.I.).

5. Vitali (c.f. [3] p.46): If Xn
p→ X, then Xn is U.I. iff Xn

L1

→ X, which
is again equivalent to X,Xn integrable and E[|Xn|]→ E[|X|].

6. Scheffé (c.f. [1] p.215): Suppose µn(A) =
∫
A δndµ and µ(A) =

∫
A δdµ

for densities δn and δ. If µn(Ω) = µ(Ω) <∞, and δn → δ a.c., then

sup
A∈F
|µ(A)− µn(A)| ≤

∫
Ω
|δ − δn|dµ→ 0

7



7. Slutsky: If Xn ⇒ X and Xn − Yn ⇒ 0, then Yn ⇒ X.

Remark: Yn ⇒ c is equivalent to Yn
p→ c if c is a constant, in the

sense that limn P(|Yn − c| > ε) = 0.

8. Skorohod (c.f. [1] p.333): Suppose µn ⇒ µ where µn and µ are proba-
bility measures on the real line. Then there exist some Yn and Y on a
common probability space (Ω,F , P ) such that Yn(ω)→ Y (ω), ∀ω ∈ Ω,
and Yn, Y have distributions µn, µ.

2.2 Weak Convergence

9. Portmanteau (c.f. [2] p.16): The following five conditions are equiva-
lent concerning weak convergence of probability measures:

(a) Pn ⇒ P;

(b)
∫
fdPn →

∫
fdP for any bounded continuous function f ;

(c) lim supn Pn(F ) ≤ P(F ) for all closed set F ;

(d) lim infn Pn(G) ≥ P(G) for all open sets G;

(e) Pn(A)→ P(A) for all P-continuous set A.

10. Helly selection: For {Fn} a sequence of distribution functions, there
exists a subsequence {Fnk}, such that there exists a right-continuous
non-decreasing function F , limFnk(x) = F (x) at all continuity points
of F . Moreover, F is a distribution function if and only if {Fn} is
tight.

11. Continuous mapping preserves weak convergence (c.f. [1] p.380): Sup-
pose h is measurable and the discontinuity set has measure 0. If

µn ⇒ µ, then µnh
−1 ⇒ µh−1, where µh−1(A)

def
= µ(h−1(A)).

12. Characteristic functions and convergence in distribution (c.f. [1] p.383):
µn ⇒ µ iff ϕn(t)→ ϕ(t).

13. Necessary and sufficient conditions for multivariate weak convergence
(c.f. [1] p.383): SupposeXn ∈ Rk, Xn = (Xn1, ..., Xnk), X = (X1, ..., Xk).
Xn ⇒ X iff

∑k
i=1 tiXni ⇒

∑k
i=1 tiXi for every t = (t1, ..., tk) ∈ Rk.
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2.3 Convergence of Random Series

14. (c.f. [1] p.289): Suppose {Xn} independent with E[Xi] = 0, ∀i. Fur-
ther if

∑
V ar(Xn) <∞, then

∑
Xn converges a.c.

15. Kolmogorov three-series theorem (c.f [1] p.290): Suppose {Xn} is in-

dependent. Consider the three series
∑

P(|Xn| > c),
∑

E[|X(c)
n |], and∑

V ar(X
(c)
n ), where X

(c)
n = Xn1{|Xn|≤c}. Then

∑
Xn converges a.c.

implies above series converge for all c. On the other hand, if the above
three series converge for some positive c, then

∑
Xn converges a.c.
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3 Inequalities

3.1 Basic Inequalities

1. Markov: P(|X| > α) ≤ 1
αk

E[|X|k].

2. Chebyshev: P(|X − µ| > α) ≤ 1
α2V ar(X).

3. Jensen: If f is convex, f(E[X]) ≤ E[f(X)].

4. Hölder: E[|XY |] ≤ ||X||p||Y ||q, 1
p + 1

q = 1, p ≥ 1.

5. Minkowski: ||X + Y ||p ≤ ||X||p + ||Y ||p, p ≥ 1.

6. Lyapounov: ||X||p ≤ ||X||q, 0 < p ≤ q.

3.2 Maximal Inequalities

7. Kolmogorov (c.f. [1] p.287): Suppose {Xn} independent with zero
mean and finite second moments. Then for α > 0,

P( max
1≤k≤n

|Sk| ≥ α) ≤ 1

α2
V ar(Sn)

8. Etemadi (c.f. [1] p.288): Suppose {Xn} independent, for α > 0,

P( max
1≤k≤n

|Sk| ≥ α) ≤ 3 max
1≤k≤n

P(|Sk| ≥
α

3
)
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4 Asymptotics

4.1 LLN, CLT, LIL and Extreme Values

1. Strong LLN: Suppose X1, X2, ... are iid random variables with finite
first moment. Then with probability 1, Sn/n→ E[X1].

2. Law of iterated logarithm (c.f. [1] p.154): Suppose X1, .., Xn are iid
simple random variables with mean 0 and variance 1. Then

P(lim sup
n

Sn√
2n log log n

= 1) = 1

3. Glivenko-Cantelli: Suppose Xn is a stationary ergodic process, then

||Fn − F ||∞
a.c.
= 0

where Fn(x) = 1
n

∑
1(−∞,x](Xi) is the empirical distribution function.

4. Lindeberg CLT (c.f. [1] p.359): Suppose {Xnk} is a triangular array.
Let Sn =

∑rn
i=1Xni. If for all Xnk, 1 ≤ k ≤ rn,

E[Xnk] = 0, σ2
nk = E[X2

nk], s
2
n =

rn∑
i=1

σ2
ni

and the Lindeberg condition holds for all ε > 0:

lim
n→∞

rn∑
i=1

1

s2
n

∫
|xni|≥εsn

x2
nidPXni = 0

Then Sn/sn ⇒ N(0, 1).

5. Fisher-Tippett-Gnedenko: Suppose X1, X2, .. are iid random variables,
and Mn = max{X1, .., Xn}. If there exists a sequence of pairs of reals
(an, bn), an > 0 such that

lim
n→∞

P(
Mn − bn

an
≤ x) = F (x)

where F is non-degenerate, then F can only be one of the following
three distributions:

(a) Gumbel: F (x) = e−e
−x

;
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(b) Fréchet:

F (x) =

{
0, x ≤ 0

e−x
−α
, x > 0

(1)

(c) reversed Weibull:

F (x) =

{
e−(−x)α , x ≤ 0
1, x > 0

(2)

6. Suppose X1, X2, .. are iid random variables with mean 0 and variance
1, and Sn =

∑n
i=1Xi. For each ε > 0, let N(ε) = inf{n : Sk/k <

ε, ∀k > n}. Then ε2N(ε) converges in distribution to a 1-DoF chi-
square distribution.
Remark: It is related to the Brownian hitting time sup{t ≥ 0 : Bt = t}.

4.2 Stein-Chen Method

7. Wasserstein metric: the distance dH(X,Y ) between two random vari-
ables with respect to a set of test functions H is defined by

dH(X,Y ) = sup
h∈H
|E[h(X)]− E[h(Y )]|

When H = {h : |h(x)− h(y)| ≤ |x− y|, ∀x, y}, this distance is defined
to be the Wasserstein distance.

4.2.1 Gaussian Approximation

8. Stein’s Lemma: Define a differential operator D by

D(f)(x) = f ′(x)− xf(x)

If E[D(f)(Z)] = 0 for all absolutely continuous function f with ||f ′||∞ <
∞, then Z is a standard Gaussian random variable.
Conversely, if Z is a standard Gaussian random variable, then E[D(f)(Z)] =
0 for all absolutely continuous function f with E[|f ′(Z)|] <∞.

9. If W is a random variable and Z is a standard Gaussian random
variable, define the set of functions F = {f : ||f ||∞ ≤ 2, ||f ′′||∞ ≤
2, ||f ′||∞ ≤

√
2/π}. Then

dW (W,Z) ≤ sup
f∈F
|E[f ′(W )−Wf(W )]|

12



10. Approximation of dependency neighborhoods: Suppose X1, X2, .. are
random variables such that E[Xi] = 0, σ2

n = V ar(
∑n

i=1Xi), (E[|Xi|4] <
∞. Let D = max1≤i≤n |Ni|, Sn =

∑
Xi/σn. Then

dW (Sn, Z) ≤ D2

σ3
n

n∑
i=1

E[|Xi|3] +

√
28D3/2

√
πσ2

n

√√√√ n∑
i=1

E[|Xi|4]

4.2.2 Poisson Approximation

11. Poisson characteristic operator: For λ > 0, define operator D by

D(f)(k) = λf(k + 1)− kf(k)

If for some nonnegative integer valued random variableW , E[D(f)(W )] =
0 for all bounded functions f , then W ∼ Po(λ).
Conversely, if W ∼ Po(λ), then E[D(f)(W )] = 0 for all bounded f .

12. Let F = {f : ||f ||∞ ≤ min{1, λ−1/2}, and ||∆f ||∞ ≤ 1−e−λ
λ ≤

min{1, λ−1}}, and W is an integer valued nonnegative random variable
with mean λ. If Z ∼ Po(λ), then

dTV (W,Z) ≤ sup
f∈F
|E[λf(W + 1)−Wf(W )]|

13. Approximation of dependency neighborhoods: Suppose X1, X2, .. are
binary random variables with P(Xi = 1) = pi. Let Sn =

∑n
i=1Xi and

λn =
∑
pi. Define pij = E[XiXj ], and Z ∼ Po(λ). Then

dTV (Sn, Z) ≤ min{1, λ−1}(
n∑
i=1

∑
j∈Ni

pipj +
n∑
i=1

∑
j∈Ni−{i}

pij)

4.3 Method of Types

Suppose X1, ..., Xn are iid random variables taking values from a dis-
crete set X . The type Pxn of sequence xn is the empirical distribution
of xn. The type class T (Pxn) of a type Pxn is defined to be {yn : yn

has empirical distribution Pxn}. Pn is the set of all types with respect
to n and alphabet X .
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14. If X1, ..., Xn are drawn iid according to a distribution Q(x), then the
probability of xn depends only on its type and equals:

Qn(xn) = 2−n(H(Pxn )+D(Pxn ||Q))

15. Size of a type class T(P): For any P ∈ Pn,

1

(n+ 1)|X |
2nH(P ) ≤ |T (P )| ≤ 2nH(P )

Remark: Here no underlying distribution is assumed.

16. Probability of a type class: for any P ∈ Pn and any distribution Q,
the probability of the type class T (P ) under Qn is 2−nD(P ||Q) to first
order in the exponent. More precisely,

1

(n+ 1)|X |
2−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q)

17. LLN for empirical distribution (c.f. [5] p.356): Suppose X1, ..., Xn are
iid according to P(x), x ∈ X . Then,

D(Pxn ||P )
a.c.→ 0

4.4 Large Deviation

18. Berry-Esseen: Suppose X1, X2, .. are independent random variables
with E[Xi] = 0, E[X2

i ] = σ2
i > 0 and E[|Xi|3] = ρi < ∞. Let s2

n =∑n
i=1 σ

2
i , Sn =

∑n
i=1Xi/sn. Then for Z a standard Gaussian random

variable,
dK(Sn, Z) ≤ C0ψn

Where

ψn = (

n∑
i=1

σ2
i )
−3/2 ·

n∑
i=1

ρi

and dK(X,Y ) = supx{|FX(x)− FY (x)|} is the Kolmogorov distance.

19. Sanov: Suppose X1, ..., Xn are iid according to Q(x), x ∈ X . Let E be
a set of probability of distributions. Then

Qn(E) = Qn(E ∩ Pn) ≤ (n+ 1)|X |2−nD(P ∗||Q)

14



Where P ∗ = argmin
P∈E

D(P ||Q), and

Qn(E ∩ Pn) =
∑

xn:Pxn∈E
Qn(xn)

20. Hoeffding: Suppose X1, ..., Xn are independent variables, each is a.c.
bounded. Suppose for each Xi,P(Xi ∈ [ai, bi]) = 1. Let Sn =∑
Xi, µ = E[Sn]/n. Then

P(|Sn
n
− µ| > ε) ≤ 2e

− 2n2ε2∑
(bi−ai)2

21. Chernoff: Suppose X1, X2, .. are iid random variables with E[X1] <
0, P(X1 > 0) > 0. Let M(t) = E[etX1 ], and ρ = inftM(t). Then

lim
n→∞

1

n
logP(

n∑
i=1

Xi ≥ 0) = log ρ

22. Covering Lemma (c.f. [9] p.62): Let (U,X, X̂) ∼ p(u, x, x̂) and ε′ <
ε. Let (Un, Xn) ∼ p(un, xn) be a pair of random sequences with
limn→∞ P((Un, Xn) ∈ Tε′(U,X)) = 1. Suppose there are xn ≥ 2nR

many random sequences X̂n(1), .., X̂n(xn), each distributed accoding
to
∏n
i=1 pX̂|U (x̂i|ui) which are conditionally independent of each other

and Xn given Un. Then ∃ δ(ε) tends to 0 as ε→ 0, such that

lim
n→∞

P((Un, Xn, X̂n(m)) 6∈ Tε(U,X, X̂),∀m = 1, .., xn) = 0

if R > I(X, X̂|U) + δ(ε).

23. Packing Lemma (c.f. [9] p.46): Let (U,X, Y ) ∼ p(u, x, y). Let (Ũn, Ỹ n) ∼
p(ũn, ỹn) be a pair of arbitrarily distributed random sequence. Sup-
pose there are xn ≤ 2nR random sequences Xn(1), .., Xn(xn), each
distributed accoding to

∏n
i=1 pX|U (xi|ui), which are independent of

Ỹ n given Un. Then ∃ δ(ε) tends to 0 as ε→ 0, such that

lim
n→∞

P(∃ m ∈ {1, .., xn}, (Ũn, Xn(m), Ỹ n) ∈ Tε(U,X, Y )) = 0

if R < I(X,Y |U)− δ(ε).
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4.5 KL Divergence

24. Pythagorean (c.f. [5] p.367): For a closed convex set of probability
distributions E and distribution Q 6∈ E, let P∗ = argmin

P∈E
D(P||Q).

Then
D(P||Q) ≥ D(P||P∗) +D(P∗||Q)

25. Pinsker: Suppose P and Q are two probability distributions in the
same space, ||P−Q||TV = 2 supA∈F |P(A)−Q(A)|. Then

||P−Q||TV ≤ 2
√

2 ln(2)D(P||Q)
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5 Conditional Expectation

1. Independence (c.f. [3] p.159): If X ∈ L1(Ω,F , P ), and H is indepen-
dent of σ(σ(X),G), then

E[X|σ(H,G)] = E[X|G]

2. Tower Property (c.f. [3] p.160): If X ∈ L1(Ω,F , P ), and H ⊂ G ⊂ F ,
then E[X|H] = E[E[X|G]|H].

3. Taking out what’s known (c.f. [3] p.160): Suppose Y ∈ mG and
X ∈ L1(Ω,F , P ) are such that XY ∈ L1(Ω,F , P ). Then E[XY |G] =
Y E[X|G].

4. Law of total variation: For any σ-algebra G and random variable X,

V ar(X) = E[V ar(X|G)] + V ar(E[X|G])

Where V ar(X|G) = E[(X − E[X|G])2|G].

5. Conditional Jensen (c.f. [3] p.162): Suppose g(·) is a convex function
on an open interval G of R. If X is an integrable R.V. with P(X ∈
G) = 1 and g(X) is also integrable, then almost surely E[g(X)|H] ≥
g(E[X|H]) for any σ-algebra H.

6. Conditioning decreases p-norm (c.f. [3] p.163):

||X||p ≥ ||E[X|G]||p, ∀p > 1

7. MCT, DCT, Fatou’s Lemma, conditional version (c.f. [3] p.165).

8. U.I. of collection of conditional expectation (c.f. [3] p.165): For any
X ∈ L1(Ω,F , P ), the collection {E[X|H] : H ⊂ F is a σ-algebra} is
U.I.

9. C.E. minimizes L2 norm (c.f. [3] p.170): Suppose X ∈ L2(Ω,F , P ),
G ⊂ F is a σ-algebra. If Y = E[X|G], among all Z ∈ mG, E[(X −
Y )2] ≤ E[(X − Z)2].

10. Definition of R.C.P.D (c.f. [3] p.172): Let Y : Ω → S be an (S,S)-
valued R.V. in the probability space (Ω,F ,P), and G ⊂ F a σ-algebra.
The collection P̂Y |G(·, ·) : S × Ω → [0, 1] is called the regular condi-
tional probability distribution (R.C.P.D.) of Y given G if:
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(a) P(A, ·) is a version of the C.E. E[1Y ∈A|G] for each fixed A ∈ S.
(b) For any fixed ω ∈ Ω, the set function P̂Y |G(·, ω) is a probability
measure on (S,S).

In case S = Ω,S = F and Y (ω) = ω, we call this collection the
regular conditional probability on F given G, denoted by P̂(A|G)(ω).

11. C.E. and R.C.P.D. (c.f [3] p.174): E[X|G](ω) =
∫
R xdP̂X|G(x, ω).
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6 Martingale

1. (c.f. [3] p.182): Suppose φ : R → R is convex and E[φ(Xn)] < ∞,∀n.
If {Xn} is a martingale then {φ(Xn)} is a sub-martingale. Moreover,
if φ is non-decreasing, then {Xn} a sub-martingale ⇒ {φ(Xn)} a sub-
martingale.

2. Martingale transform (c.f. [3] p.183): Suppose {Yn} is the martin-
gale transform of Fn-predictable {Vn} with respect to a sub or super
martingale (Xn,Fn), i.e.

Yn =

n∑
k=1

Vk(Xk −Xk−1)

Then

(a) If Yn is integrable and (Xn,Fn) is a martingale, then (Yn,Fn) is
also a martingale.

(b) If Yn is integrable, Vn ≥ 0 and (Xn,Fn) is a sub-(sup)martingale,
then (Yn,Fn) is also a sub-(sup)martingale.

(c) For the integrability of Yn it suffices in both cases to have |Vn| ≤
cn for some non-random finite constants cn, or alternatively to
have Vn ∈ Lq, and Xn ∈ Lp for all n and some p, q > 1 such that
1/p+ 1/q = 1.

3. Stopping time decomposition (c.f. [3] p.185): Suppose {Xn} is a sub-
(sup)martingale, and θ ≤ τ are two stopping times, then

Xn∧τ −Xn∧θ =
n∑
k=1

1{θ<k≤τ}(Xk −Xk−1)

is a sub-(sup)martingale.

4. Doob’s Decomposition (c.f. [3] p.186): Given an integrable stochastic
process {Xn} adapted to a filtration {Fn}, n ≥ 0, there exists Xn =
Yn +An such that:

(a) (Yn,Fn) is a martingale and

(b) {An} is an Fn-predictable sequence. This decomposition is unique
up to Y0 ∈ mF0.
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6.1 Inequalities

5. Doob’s Inequality (c.f. [3] p.188): Suppose {Xn} is a sub-martingale
and x > 0. Define τx = min{k : Xk ≥ x}. Then for any n ≥ 0,

P( max
0≤k≤n

Xk ≥ x) ≤ x−1E[Xn1{τx≤n}] ≤ x
−1E[(Xn)+] ≤ x−1E[|Xn|]

6. Lp maximal (c.f. [3] p.191): If {Xn} is a sub-martingale then for any
n and p > 1, Then

E[(max
k≤n

Xk)
p
+] ≤ qpE[(Xn)p+]

where q = p/(p− 1). If {Yn} is a martingale then for any n and p > 1,

E[(max
k≤n
|Yk|)p] ≤ qpE[|Yn|p]

7. (c.f. [3] p.189): Suppose Zn is a non-negative sub-martingale with
Z0 = 0. Let An be the predictable sequence in Doob’s Decomposition,
and Vn = max1≤k≤n Zk. Then for any stopping time τ and any x, y >
0,

P(Vτ ≥ x,Aτ ≤ y) ≤ 1

x
E[Aτ ∧ y]

Further E[V p
τ ] ≤ cpE[Apτ ], cp = 1 + 1/(1− p), ∀p ∈ (0, 1).

8. Azuma: Suppose {Xn} a sub-martingale with bounded increament,
i.e. |Xk−Xk−1| < ck a.c. Then for any positive integer n and positive
t,

P(Xn −X0 ≥ t) ≤ e
( −t2

2
∑n
k=1

c2
k

)
,P(Xn −X0 ≤ −t) ≤ e

( −t2

2
∑n
k=1

c2
k

)

6.2 Convergence

9. Doob’s Up Crossing (c.f. [3] p.192): Suppose {Xn} is a sup-martingale.
Then for any a < b,

(b− a)E[Un[a, b]] ≤ E[(Xn − a)−]− E[(X0 − a)−]

10. Doob’s Convergence (c.f. [3] p.194): Suppose (Xn,Fn) is a sup-(sub)martingale
with supn{E[(Xn)−]} < ∞ (or supn{E[(Xn)+]} < ∞). Then Xn

a.c.→
X∞ and E[|X∞|] ≤ lim inf E[|Xn|] which is finite.
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11. Bounded difference (c.f. [3] p.195): Suppose {Xn} is a martingale of
uniformly bounded difference. Consider the two events:

A = {ω : lim
n→∞

Xn(ω) = X(ω) ∈ (−∞,∞)}

B = {ω : lim inf
n→∞

Xn(ω) = −∞, lim sup
n→∞

Xn(ω) =∞}

Then P(A ∪B) = 1.

12. Martingale CLT: Suppose (Xn,Fn) is a martingale with bounded dif-
ference, |X1| < k and |Xi −Xi−1| < k for all i and some constant k.
Define σ2

k = E[(Xk+1 −Xk)
2|Fk], and let τν = min{k :

∑k
i=1 σ

2
i ≥ ν}.

Then Xτν√
ν

converges in distribution to a standard Gaussian distribu-
tion.

6.3 Uniform Integrable Martingale

13. If Xn is a sub-martingale then {Xn} is U.I. if and only if Xn
L1

→ X∞.
In this case, we also have Xn

a.c.→ X∞ and Xn ≤ E[X∞|Fn].

Remark: (Xn,Fn) is a U.I. martingale if and only if Xn = E[X|Fn]
for some X, and Xn

a.c.→ X in this case.

14. Lévy’s Upward Theorem (c.f. [3] p.198): Suppose sup |Xn| is inte-
grable, Xn

a.c.→ X∞ and Fn ↑ F∞. Then E[Xn|Fn]→ E[X∞|F∞] both
a.c. and in L1.

15. Lévy’s 0-1 Law (c.f. [3] p.199):If Fn ↑ F∞, and A ∈ F∞, then
E[1A|Fn]→ 1A.

16. Lp martingale convergence (c.f. [3] p.201): Suppose Xn is a martingale
and supE[|Xn|p] < ∞ for some p > 1, then Xn

a.c.→ X∞ and also

Xn
Lp→ X∞ for some random variable X∞.

6.4 Square Integrable Martingale

17. Predictable compensator (c.f. [3] p.202): Let (Xn,Fn) be a square
integrable martingale. Suppose X2

n = An +Mn in Doob’s decomposi-
tion, where An = X2

0 +
∑n

k=1 E[(Xk −Xk−1)2|Fk−1] is the predictable
compensator, denoted by An = 〈X〉n, and Mn is a martingale.
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18. There exist finite constants cq, q ∈ (0, 1], such that if (Xn,Fn) is an
L2 martingale with X0 = 0, then

E[sup |Xk|2q] ≤ cqE[〈X〉q∞]

where 〈X〉∞ is the pointwise limit of 〈X〉n.

19. Suppose (Xn,Fn) is a L2 martingale with X0 = 0. Then

(a) Xn converges to a finite limit a.c. for ω where 〈X〉∞(ω) is finite.

(b) Xn(ω)/〈X〉n(ω)→ 0 a.c. for {ω : 〈X〉∞(ω) <∞}.
(c) If |Xn − Xn−1| is uniformly bounded then the converse of (a)

holds, i.e. 〈X〉∞ < ∞ a.c. for {ω : Xn(ω) converging to a finite
limit}.

20. Borel Cantelli III (c.f. [3] p.204): Consider events An ∈ Fn for some
filtration {Fn}. Let Sn =

∑n
k=1 1Ak count the number of events oc-

curring among the first n, with S∞ =
∑∞

k=1 1Ak the corresponding
total number of occurrences. Similarly, let Zn =

∑n
k=1 ξk denote

the sum of the first n conditional probabilities ξk = P(Ak|Fk−1), and
Z∞ =

∑∞
k=1 ξk. Then a.c.

(a) If Z∞(ω) is finite, so is S∞(ω).

(b) If Z∞(ω) is infinite, then S∞(ω)/Z∞(ω)→ 1.

6.5 Optional Stopping

21. U.I. of stopped process (c.f. [3] p.208): Suppose {Yn} is integrable
and τ is a stopping time. Then {Yn∧τ} is U.I. if any of the following
conditions hold:

(a) E[τ ] <∞ and E[|Yn − Yn−1|Fn−1] < c a.c. for some constant c;

(b) {Yn1{τ>n}} is U.I. and Yτ1{τ<∞} is integrable;

(c) {Yn} is a U.I. sub(sup)-martingale.

22. Optional stopping I: Suppose θ < τ are stopping times and Xn non-
positive sub-martingales for the filtration Fn. Then Xθ and Xτ are
integrable and E[X0] ≤ E[Xθ] ≤ E[Xτ ].

23. Optional stopping II: Suppose θ < τ are stopping times and Xn sub-
martingales for the filtration Fn such that Xn∧τ is U.I. Then Xθ and
Xτ are integrable and E[X0] ≤ E[Xθ] ≤ E[Xτ ].
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24. Optional stopping III (c.f. [3] p.207): Suppose θ, τ are two stopping
times such that τ ≥ θ a.c., Xθ is integrable and E[Xτ ] ≥ E[Xθ]. Then
E[Xτ |Fθ] ≥ Xθ a.c.

25. Suppose {Xn} is a sub-martingale and {τk} a sequence of non-decreasing
stopping times. Then (Xτk ,Fτk) is a sub-martingale if either sup τk <
∞ or Xn ≤ E[X|Fn] for some integrable X and all n.

6.6 Branching Process

26. Suppose Zn is a branching process, i.e. Z0 = 1 and Zn =
∑Zn−1

i=1 N
(n)
i

for some random variables N
(n)
i ,E[N

(n)
i ] < ∞. If N

(n)
i

d
= N,P(N =

0) > 0, then almost certainly either Zn 6= 0 for finitely many n, or
Zn →∞.

27. Generating function: L(s) = E[sN ] is called the generating function of
a branching process Zn.

28. Associated martingales (c.f. [3] p.214): Suppose Zn a branching pro-
cess with 0 < P(N = 0) < 1. Then (m−nN Zn,Fn) is a martingale where
mN = E[N ] <∞.
If Zn is super-critical, i.e. mN > 1, (ρZn ,Fn) is a martingale where
0 < ρ < 1 is the unique solution for L(x) = x. In the sub-critical case,
(ρZn ,Fn) is a martingale where ρ > 1 is a solution for L(x) = x if
exists.

29. Extinction probability: Suppose 0 < P(N = 0) < 1. if mN ≤ 1 then
pex = 1. If mN > 1, pex = ρ is the solution of L(x) = x. In this case,
m−nN Zn

a.c.→ X∞ and Zn
a.c.→ Z∞ ∈ {0,∞}.

30. Moment generating function (c.f. [3] p.216): Consider the moment
generating function for Zn: Mn(s) = E[sZn ] for s ∈ [0, 1]. Then
recursively M0(s) = s and Mn(s) = L(Mn−1(s)).
The moment generating function M̂∞(s) for (m−nN Zn)∞ is a solution

of M̂∞(s) = L(M̂∞(s1/mN )).

6.7 Reversed Martingale

31. Kakutani: (c.f. [3] p.218): Suppose Mn =
∏n
k=1 Yk, with M0 = 1 and

independent Yk > 0 such that E[Yk] = 1. Further let ak = E[
√
Yk].

The following statements are equivalent:
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(a) {Mn} is U.I.;

(b) Mn
L1

→M∞;

(c) E[M∞] = 1;

(d)
∏∞
k=1 ak > 0;

(e)
∑∞

k=1(1− ak) <∞.

If any of these conditions fail, M∞ = 0 a.c.

32. Let P,Q be two probability measures on (Ω,F∞). Let Pn,Qn denoting
P,Q restricted on a filtration {Fn} ↑ F∞ .Suppose Qn is absolutely
continuous with respect to Pn, and Mn = dQn/dPn. Then (Mn,Fn)
is a martingale on (Ω,F∞,P) and Mn

a.c.→ M∞ where M∞ is finite a.c.
If {Mn} is U.I. then Q is absolutely continuous with respect to P, and
M∞ = dQ/dP.
Moreover, generally the Lebesgue decomposition of Q with respect to
P is

Q = Qac + Qs = M∞P + 1{M∞=∞}Q

i.e. Qac(A) =
∫
AM∞(ω)dP, Qs(A) =

∫
A 1{M∞=∞}dQ.

33. Likelihood ratios (c.f. [3] p.220): Suppose P,Q are two measures on
(R∞,B∞), and under both the P and Q, the coodinate maps Xn(ω) =
ωn are independent. Further suppose Q ·X−1

k is absolutely continuous
with respect to P ·X−1

k .

Let Yk(ω) =
d(Q·X−1

k )

d(P·X−1
k )

(Xk(ω)). Then M∞ =
∏
k Yk exists under both

P and Q. Moreover if α =
∏∞
k=1 P(

√
Yk) > 0 then Q is absolutely

continuous with respect to P and dQ/dP = M∞. If α = 0 then Q is

singular with respect to P and M∞
Q−a.c.

= ∞ and M∞
P−a.c.

= 0.

34. Reversed martingale convergence: SupposeX0 is integrable, (Xn,Fn), n ≤
0 is a reversed margtingale if and only if Xn = E[X0|Fn] for all n ≤ 0.
Further

Xn
a.c.→
L1

E[X0|F−∞] as n→ −∞

35. Lévy’s downward theorem: Suppose Fn ↓ F−∞ and Xn
a.c.→ X−∞. If

supn |Xn| is integrable, then E[Xn|Fn]
a.c.→ E[X−∞|F−∞].

36. Lp convergence of reversed martingale: Suppose (Xn,Fn), n ≤ 0 is
a reversed martingale. If for some positive p, E[|X0|p] < ∞, then

Xn
Lp→ X−∞.
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37. Hewitt-Savage 0-1 law: (c.f. [3] p.224): The exchangable σ-algebra
E = ∩n>0En, where

En = σ({A : ∀ω = (ω1, ω2, ..) ∈ A, (ωπ(1), .., ωπ(n), ωn+1..) ∈ A})

of a sequence of iid random variables ξk(ω) = ωk is P-trivial.

38. De-Finetti: If ξk(ω) = ωk is an exchangable sequence, then conditioned
on E , the random variables ξk are iid.
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7 Markov Chains

7.1 Canonical Construction

1. Transition kernel (c.f. [3] p.228): Suppose {Xn} is an Fn Markov
chain, and pn is its n-th state transition kernel. For any bounded
measurable function h,

E[h(Xn+1)|Fn] =

∫
S
h(y)p(Xn, dy)

2. Chain rule: Suppose {Xn} is a Markov chain on (S,S), n-th state
transition kernel pn(·, ·) and initial distribution ν(A) = P(X0 ∈ A).
Then for all bounded measurable functions hl on S and all k ∈ N,

E[
k∏
l=0

hl(Xl)] =

∫
h0(x0)

∫
h1(x1)..

∫
hk(xk)pk−1(xk−1, dxk)..p0(x0, dx1)ν(dx0)

3. Canonical construction (c.f. [3] p.230): If (S,S) is Borel-isomorphic,
{pn} a set of transition kernels, and ν a σ-finite measure on S. Then
there corresponds a Markov chain Xn with initial distribution ν and
transition kernel pn, such that

Pν((X0, .., Xk) ∈ A) = ν ⊗ p0..⊗ pk−1(A), ∀A ∈ Sk+1

The space (S∞,S∞, Pν) is the canonical measurable space of the Markov
chain Xn where ∀ω = (ω0, ω1, ..) ∈ S∞, ωn = Xn(ω0).

7.2 Strong Markov Property

4. strong Markov property: Suppose (S∞,S∞, Pν) is the canonical mea-
surable space, and Xn its corresponding Markov chain. If Xn is homo-
geneous, for any class of bounded measurable functions {hn} on S∞
with supn,ω |hn(ω)| <∞,

Eν [hτ (θτω)|FXτ ]1τ<∞ = EXτ [hτ ]1τ<∞

where θ is the left-shift operator and τ is a FXn stopping time.
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5. shift invariance (c.f. [3] p.234): Suppose ν is a σ-finite measure on
(S,S), and pn(·, ·) are transition kernels. If ν ⊗ p0(S × A) = ν(A) for
all A ∈ S, then for all A ∈ Sk+1,

ν ⊗ p0 ⊗ ..⊗ pk(S×A) = ν ⊗ p1 ⊗ ..⊗ pk(A)

6. A positive σ-finite measure µ on a Borel-isomorphic space (S,S) is
invariant for homogeneous kernels p(·, ·) if and only if µ⊗ p(S×A) =
µ(A) for all A ∈ S.

7.3 Countable State Space Markov Chain

7. Definitions:

(a) x is accessible from y ∈ S if ρyx = Py(Tx <∞) > 0.

(b) If x 6= y and x, y are accessible from each other, x, y are inter-
communicate.

(c) A non empty set C ⊂ S is closed if ∀y ∈ S−C, y is not accessible
from any x ∈ C.

(d) A non empty set C ⊂ S is irreducible if ∀x, y ∈ C, x, y are
intercommunicate.

(e) A state y ∈ S is recurrent if ρyy = 1, otherwise y is transient.

(f) The k-th return T ky to state y ∈ S is recursively defined as T ky =

inf{n > T k−1
y : Xn = y} for k > 0 and T 0

y = 0.

8. Harmonic functions on Markov chains: f : S → R is (super,sub)
harmonic for a transition probability p(·, ·) if f(x) =

∑
p(x, y)f(y).

When f(X0) is integrable, {f(Xn)} is a (sub, sup) martingale if f is
(sub, super) harmonic when f is bounded above or below.

9. Chapman-Kolmogorov (c.f. [3] p.235): Suppose Xn is a homogeneous
Markov chain with countable state space S, then for any x, y ∈ S,

Px(Xn = y) =
∑
s∈S

Px(Xk = s)Ps(Xn−k = y)

10. Expected visit time: For any x, y ∈ S and k > 0,

Px(T ky <∞) = ρxyρ
k−1
yy
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Define N∞(y) be the expected number of visits to y at finite time,
then

E[N∞(y)] =
ρxy

1− ρyy

11. Decomposition of Markov chain (c.f. [3] p.239): A countable state
space S of a homogeneous Markov chain can be partitioned uniquely
as S = T ∪ R1 ∪ R2 ∪ .., where T is the set of all transient states
and Ri are disjoint, irreducible closed sets of recurrent states with
ρxy = 1, ∀x, y ∈ Ri.

12. If F is a finite set of transient states then Pν(Xn ∈ F i.o.) = 0 for any
initial distribution ν. Hence if a finite closed set C contains at least
one recurrent state, and if C is also irreducible then C is recurrent.

7.4 Ways to Show Recurrence

13. Suppose S is irreducible for a Markov chain {Xn} and there exists
h : S → R+ such that ∃r > 0, Gr = {x : h(x) < r} is finite and
non-empty, and h is super-harmonic on S−Gr. Then Xn is recurrent.

14. Suppose S is irreducible for a homogeneous Markov chain Xn. Then
Xn is recurrent if and only if the only non-negative super-harmonic
functions on S are constant functions.

7.5 Invariant Measure

15. Suppose Xn is a homogeneous Markov chain, and Tz = inf{k ≥ 1 :
Xk = z}. Then

µz(y) = Ez[
Tz−1∑
k=0

1Xk=y]

is an excessive measure, i.e. µ(y) ≥
∑
µ(x)p(x, y), ∀y ∈ S. Moreover

if z is recurrent then µz(·) is an invariant measure.

16. The invariant measure on a recurrent and irreducible Markov chain is
unique up to a multiplicative constant.

17. If µ(·) = c > 0 is an invariant measure for a homogeneous Markov
chain with transition probability p(·, ·), then it is doubly stochastic,
i.e.

∑
x p(x, y) = 1,∀y.
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18. If µ(·) is an invariant measure for transition probability p(·, ·), then

for µ(x) 6= 0, q(x, y)
∆
= µ(y)p(y, x)/µ(x) is a transition probability and

corresponds to the reversed chain of the original Markov chain.

19. Kolmogorov cycle condition (c.f. [3] p.247): An irreducible Markov
chain with transition probability p(·, ·) is reversible if and only if
p(x, y) > 0 whenever p(y, x) > 0 and

k∏
i=1

p(xi−1, xi) =

k∏
i=1

p(xi, xi−1)

for all k > 2 and x0 = xk, in which case ∃µ a positive measure on S,
such that µ(x)p(x, y) = µ(y)p(y, x), ∀x, y ∈ S.

20. Invariant probability: If π(·) is an invariant probability measure then
z ∈ S is positive recurrent for all z, π(z) > 0. Conversely, if π is
supported on an irreducible and positive recurrent set R ⊂ S, uniquely
π(z) = 1/Ez[Tz], ∀z ∈ R.

21. Second law of thermodynamics (c.f. [5] p.81):

(a) Suppose µ, ν are two initial distributions of a homogeneous Markov
chain Xn with transition probability P. Let µn, νn be the mea-
sure of n-th coodinate of µ ⊗ pn, ν ⊗ pn. Then D(µn||νn) ≥
D(µn+1||νn+1).

(b) SupposeXn admits an invariant measure π. Then for any starting
distribution µ, D(µn||π) ≥ D(µn+1||π).

7.6 Aperiodic Markov Chains

22. Asymptotic occupation time: For any initial distribution ν and all y ∈
S,

lim
n→∞

1

n
Nn(y)

Pν−a.c.=
1

Ey[Ty]
1{Ty<∞}

where Nn(y) =
∑n

k=1 1{Xk=y}. Moreover, for all x, y ∈ S,

lim
n→∞

1

n

n∑
k=1

Px(Xk = y) =
ρxy

Ey[Ty]
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23. Ix = {n ≥ 1 : Px(Xn = x) > 0} contains all large enough integer
multiples of dx = gcd(Ix) and if x, y intercommunicates, dx = dy.

24. Coupling of independent chains (c.f. [3] p.253): If Xn, Yn are two
copies of an aperiodic irreducible Markov chain, and further suppose
Zn = (Xn, Yn) is recurrent. Then τ = min{l ≥ 0 : Xl = Yl} is finite
a.c. regardless of the initial distributions (µ, ν), and

||µn − νn||TV ≤ 2P(τ > n)

Remark: This conclusion is stronger than the 2nd law of thermody-
namics. If one can show the convergence of KL divergence then the
coupling theorem is concluded via Pinsker’s inequality.

25. If Xn is irreducible, positive recurrent and aperiodic, then for any
x ∈ S,

lim
n→∞

||Px(Xn ∈ ·)− π(·)||TV = 0
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8 Stochastic Processes

1. Cylindrical sets and Borel sets: Let R[0,∞) be the set of all functions
from [0,∞) → R. B(R[0,∞)) is the Borel sets generated by the basic
open sets

{f ∈ R[0,∞) : f(x1) ∈ U1, .., f(xn) ∈ Un,∀x1, .., xn,∀U1, .., Un open}

2. Kolmogorov consistency theorem: A family of measures {Qt} is con-
sistent if:

(a) t = (t1, .., tn), and s = π(t) a permutation of t, Then ∀A1, .., An ∈
B(R),

Qt(A1 × ..×An) = Qs(Aπ(1) × ..×Aπ(n))

(b) t = (t1, .., tn), s = (t1, .., tn−1), then

Qs(A) = Qt(A× R), ∀A ∈ B(Rn−1)

Then there exists a measure on R[0,∞), such that

P({ω ∈ R[0,∞) : (ω(t1), .., ω(tn)) ∈ A}) = Qt(A),∀n, t, A ∈ B(Rn)

3. Kolmogorov-Chentsov: Suppose that Xt : Ω → R[0,∞) is a stochastic
process. If there exists positive α, β, C, such that

E[|Xt −Xs|α] < C|t− s|1+β, ∀0 ≤ s < t ≤ T <∞

Then there exists a continuous stochastic process X̃t : Ω → C[0, T ],
such that X̃t is measurable, and for any t ∈ [0, T ],P(X̃t = Xt) = 1.

4. Lévy process: For any infinitely divisible distribution µ, there exists a
random process Yt, which is almost certainly Càdlàg , i.e. has left limit
and is right continuous, with independent and stationary increment
Yt − Ys distributed according to µ.

5. Wiener-Khinchin: Suppose Xt is a wide sense stationary process.
Then its power spectrum density

S(ω) = lim
T→∞

E[|x̂T (ω)|2], x̂T (ω) =
1√
T

∫ T

0
Xte

−iωtdt

equals S(ω) =
∫∞
−∞ γ(τ)e−iωτdτ , where γ(τ) = 〈Xt, Xt+τ 〉 = E[XtX

∗
t+τ ].
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9 Brownian Motion

Bt, without further clarification, denotes a standard 1-dimensional Brownian
motion starting at 0.

9.1 General Properties

1. f.d.d. of BM: Suppose Bt is a standard Brownian motion. For any
0 ≤ t1 ≤ t2 ≤ ... ≤ tn, (Bt1 , ..., Btn) is multivariate Gaussian, with
E[Bti ] = 0, Cov(Bti , Btj ) = min(ti, tj).

2. Brownian filtration: Let F0
t = σ({Bs : s ≤ t}). Define F+

t = ∩s>tF0
s .

Then F+
t is a right continuous filtration, i.e. F+

t = ∩s>tF+
s , and Bt

is measurable on F+
t .

3. Scaling and time inversion of Bt:

(a) W ′t(ω) = c−1Bc2t(ω)

(b)

W ′′t (ω) =

{
tB 1

t
(ω), t > 0

0, t < 0
(3)

Both W ′t and W ′′t are Brownian motions.

4. Blumenthal’s 0-1 law: If A ∈ F+
0 , then P(A) is either 0 or 1.

5. Donsker’s Invariance Principle (c.f. [4] p.134): Let X1, X2, ... be iid
random variables with E[X1] = 0, Var(X1)=1. Let Sn =

∑n
i=1Xi.

Define a random function W (n) : [0, 1]→ R by

W (n)(
k

n
) =

Sk√
n
, k = 0, 1, .., n

and linear interpolation in between. Then W (n) ⇒ B where B is
a standard Brownian motion on [0, 1], i.e. µn(A) = P(W (n) ∈ A),
µn ⇒ µ where µ is the Wiener measure on C[0, 1].

9.2 Path Regularity

6. Almost certaily Bt has no interval of increase of decrease.
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7. Nowhere differentiability (c.f. [6] p.306): Bt is nowhere differentiable
a.c.

8. Local maxima (c.f. [4] p.46): The set of local maxima is almost cer-
tainly dense and countable.

9. Zero set (c.f. [4] p.52): Let Z = {t ≥ 0 : Bt = 0}. Then almost
certainly, Z is a perfect set, i.e. Z is closed with no isolated points.

10. Hölder continuity (c.f. [4] p.30): For any α < 1/2, Bt is almost cer-
tainly locally α-Hölder continuous, which means for any t ≥ 0, there
exists ε > 0, c > 0 such that

|Bs −Bt| < c|s− t|α, y ∈ R+ ∩ (x− ε, x+ ε)

11. Lower bound of growth (c.f. [4] p.32): Almost certainly,

lim sup
n→∞

Bn√
n

= +∞, lim inf
n→∞

Bn√
n

= −∞

12. Quadratic Variation (c.f. [4] p.35): Suppose there is a nested sequence

of partition 0 = t
(n)
0 ≤ ... ≤ t

(n)
kn

= t with mesh size sup{t(n)
j − t

(n)
j−1}

going to 0. Then almost certainly,

lim
n→∞

kn∑
j=1

(Btj −Btj−1)2 = t

Remark: This implies almost certainly Bt has unbounded variation.

9.2.1 Dimension

Definitions:

(a) Hausdorff content: Given a metric space E and a covering E1, E2, .., Ek.
The α-Hausdorff content of E is defined as:

Hα∞(E) = inf{
∑
|Ei|α : E1, E2, .. a covering of E}

Remark: If α ≤ β, then Hα∞ = 0⇒ Hβ∞ = 0.
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(b) α-Hausdorff measure: for any fixed δ > 0,

Hαδ (E) = inf{
∑
|Ei|α : E1, E2, .. cover E and |Ei| ≤ δ, ∀i}

The α-Hausdorff measure of E is

Hα(E) = lim
δ→0
Hαδ (E) = sup

δ>0
Hαδ (E)

Remark: Hα(E) is either 0 or ∞.

(c) Hausdorff Dimension: The Hausdorff dimension of E is

dim(E) = inf{α ≥ 0 : Hα∞(E) = 0} = sup{α ≥ 0 : Hα∞ > 0}

Remark: dim(E) = inf{α ≥ 0 : Hα(E) = 0} = sup{α ≥ 0 :
Hα(E) =∞}.

13. Dimension of BM: Almost certainly H2(B[0,∞)) = 0. In particular,
dim(B[0,∞)) = 2 for d-dimensional Brownian motion, d ≥ 2.

9.3 Maximum Process

14. 1-D distribution: Suppose Mt = max0≤s≤tBs, for any t, Mt
d
= |Nt|,

where Nt follows Gaussian N(0, t).

15. Joint distribution of BM and Maximum process (c.f. [8] p.10): Suppose
Bt is a Brownian motion and Mt is its maximum process. Then

P(Xt ≤ x,Mt ≤ y) = Φ(
x√
t
)− Φ(

x− 2y√
t

)

where Φ(·) is the CDF of a standard Gaussian.

16. (c.f. [7] p.73): Supose Bt is a Brownian with drift µ < 0, and Mt

corresponds to its maximum process. Then M = limt→∞Mt is finite
a.c., and has exponential distribution with parameter 2µ.

9.4 Martingale Property

17. Both Bt and B2
t − t are continuous martingales with respect to F+

t .
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18. Optional stopping: Suppose Xt is a right-continuous martingale, and
T a stopping time such that there exists c, T ≤ c almost certainly.
Moreover, if E[sup0≤t≤c+1 |Xt|] <∞, then E[XT ] = E[X0].

19. Wald’s Lemma: Let Bt be a standard Brownian motion, and T is a
stopping time. If E[T ] <∞, then E[BT ] = 0,E[T ] = E[B2

T ].

9.4.1 Exponential Martingale and Girsanov Theorem

20. Exponential martingale: Suppose Bt is a Brownian motion with drift
µ and variance σ. Then V θ

t = eθBt−(µθ+ 1
2
σ2θ2)t is a martingale for any

θ ∈ R.

21. Change of measure: Suppose Bt is a Brownian motion with drift µ and
variance σ. Bt is a Brownian motion with drift µ + θ and variance σ

under new measure P ∗ : dP∗ = V
(θ/σ2)
t dP.

9.5 Stopping Times

22. T is a stopping time if {T < t} ∈ F+
t , ∀t ∈ [0,+∞). Equivalently, by

right continuity, T is a stopping time if {T ≤ t} ∈ F+
t , ∀t ∈ [0,+∞)

23. Strong Markov Property: Suppose T is a stopping time. Let Wt =
BT+t − BT ,∀t ≥ 0. Then Wt is a Brownian motion and independent
of F+

T the stopped σ-algebra.

24. Skorohod embedding: IfX is a random variable, with E[X] = 0,E[X2] <
∞. Then there exists two random variables (U, V ), U < 0, V > 0,
which are independent of Bt such that if T = inf{t : Bt 6∈ (U, V )},
then X

d
= BT ,E[T ] = E[X2].

25. KMT embedding: If X1, X2, .. are iid random variables with mean 0
and variance 1. Moreover, E[eθ|X1|] < ∞ for some positive θ. Let
Sn =

∑n
i=1Xi, then there exists constants C, k, λ depending only on

the distributions of X1 such that the following is true:
For any n, there is a Brownian motion constructed on the same space
(expand if necessary) such that for any x > 0,P(max |Sk − Bk| >
C log n+ x) < ke−λx.
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9.6 Distributions

26. Hitting 0 in an interval: The probability that a standard Brownian
motion hits zero in the interval [s, t] is 2

π arccos(
√

s
t ).

27. Arcsin law of last zero: Let Lt be the time of the last zero of a standard
Brownian motion. Then Lt is arcsin distributed, i.e. P(Lt < s) =
1− 2

π arccos(
√

s
t ) = 2

π arcsin(
√

s
t ).

28. Arcsin law: SupposeX(ω) = λ({t ∈ [0, 1] : Bt > 0}) =
∫ 1

0 1{Bs>0}(ω)ds
is the Lebesgue measure of time a Brownian motion Bt(ω) spends
above 0. Then X is arcsin distributed, i.e. P(X ≤ x) = 2

π arcsin(x).

9.6.1 Hitting Times

29. Hitting time I: Suppose Bt a standard Brownian motion, and Ta =
inf{t ≥ 0 : Bt = a}. Then Ta is finite a.c. and follows inverse Gaussian
distribution with density

f(x) =
|a|e−a2/(2t)√

2πt3

30. Hitting time II: Let T = sup{t ≥ 0 : Bt = t}, where Bt is a standard
Brownian motion. Then T is chi-square distributed with one degree
of freedom, i.e. it has density f(x) = 1√

2π
x−1/2e−x/2.

31. With drift: Suppose Bt is a Brownian motion with drift µ and variance
σ, and Ty be the first hitting time of y. Then

P(Ty > t) = Φ(
y − µt
σt

1
2

)− e−
2µy

σ2 Φ(
−y − µt
σt

1
2

)

32. Planar BM (c.f. [7] p.108): Suppose Bt = (B
(1)
t , B

(2)
t ) is a 2-D Brow-

nian motion starting at the origin. For any a > 0, let τ = inf{t ≥
0 : B

(1)
t = a}. Then B

(2)
τ follows Cauchy distribution with density

f(x) = a
π(a2+x2)
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9.7 Characterizations

33. Lévy’s characterization: Suppose Xt is a continuous stochastic process
such that Xt and X2

t − t are both martingales adapted to F+
t . Then

Xt is a Brownian motion with no drift.

34. Quadratic variation (c.f. [8] p.7): Suppose Xt adapted to F+
t is con-

tinuous such that Xt is a martingale and Xt has quadratic variation t
on [0, t]. Then Xt is a standard Brownian motion.

35. Exponential martingale (c.f. [8] p.7): Suppose Xt adapted to F+
t is

continuous. If
Vβ(t) = eβXt−(βµt+ 1

2
β2σ2t)

is a martingale for any β ∈ R, then Xt is a Brownian motion with drift
µ and variance σ2t.

36. Characterization function: If Xt is a process adapted to F+
s , then Xt

is a Brownian motion if and only if for any 0 < s < t, the conditional
expectation

E[eiu(Wt−Ws)|F+
s ] = e−

u2(t−s)
2

37. martingale representation theorem: Suppose Xt is a continuous L2

martingale adapted to F+
t . Then there exists an adapted process ft

such that for any t,Xt =
∫ t

0 fsdBs.

38. Ito representation: For any t > 0, if X is measurable on F+
t , and

E[X2] <∞. Then there exists an adapted process fs, 0 ≤ s ≤ t, such
that X = E[X] +

∫ t
0 fsdBs.

9.8 PDE

39. heat equation (c.f. [4] p.207): Suppose u = u(x, t) such that ∂u
∂t = 1

2
∂2u
∂x2

and with initial condition u(x, 0) = f(x). Then u(x, t) = Ex[f(Bt)]
solves this PDE.

40. Feynman-Kac (c.f. [4] p.207): If V : R→ R is a bounded measurable
function, f : R→ R is bounded and coutinuous. Define

u(x, t) = Ex[f(Bt)e
∫ t
0 V (Bs)ds]
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Then we have
∂u

∂t
=

1

2

∂2u

∂x2
+ V (x)u(x, t)

and
lim

t→0,x→x0
u(x, t) = f(x0)

Conversly, if u satisfies the above two equations and u is twice differ-
entiable on R × (0,+∞), such that its first order partial derivatives
are bounded on R× (0,+∞), ∀t > 0. Then u must have the form

u(x, t) = Ex[f(Bt)e
∫ t
0 V (Bs)ds]

41. Ornstein-Uhlenbeck process: If Xt is the Ornstein-Uhlenbeck process
starting at x, i.e. Xt = e−tx + e−tBe2t−1, and f : R → R is in C∞

with bounded derivatives. Define u(x, t) = Ex[f(Xt)], then we have

∂u

∂t
=
∂2u

∂x2
− x∂u

∂t

and
u(x, 0) = f(x)

9.9 Harmonic Functions

42. Harmonic function: A Domain in Rd is an open connected set. f :

U → R is harmonic if f is twice differentiable and ∆f =
∑d

i=1
∂2f
∂x2i

= 0

on U .

43. Mean value property: If U is a domain and u is a measurable and
locally bounded function on U . Then the following statements are
equivalent:

(a) u is harmonic;

(b) For any balls contained in U , u(x) = 1
V ol(Br(x))

∫
Br(x) u(y)dy;

(c) For any balls contained in U , u(x) = 1
σ(∂Br(x))

∫
∂Br(x) u(y)dσ(y).

44. Maximum principle: U is a domain and u on U is harmonic. If u
attains maximum in U then u must be a constant. Moreover, if u
extends continuously to Ū and U is bounded, then u attains maximum
on ∂U .
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9.9.1 Dirichlet Problem

45. Poincare Cone condition: A domain U satisfies the Poincare Cone
condition if for any z ∈ ∂U , there exists a cone Cz at z of nonzero
volumn, such that for some r > 0, Br(z) ∩ Cz ⊂ U c.

46. Dirichlet problem (c.f. [4] p.73): Let U be a domain, ϕ : ∂U → R is
measurable. Let

u(x) = Ex[ϕ(Bτ )1τ<∞], where τ = inf{t : Bt ∈ ∂U}

Then u is harmonic. Moreover if ϕ is continuous and U is bounded
satisfying the Poincare Cone condition, then u→ ϕ on the boundary.

9.9.2 Recurrence of Brownian Motions

47. Fix 0 < r < R, define U = {x ∈ Rd : r < |x| < R} be an annulus.
Consider

u(x) =


|x|, d = 1
log |x|, d = 2
|x|2−d, d ≥ 3

(4)

Then u is harmonic in U .

48. First hitting time: (c.f. [4] p.76): Suppose Bt is a d-dimensional Brow-
nian motion started at x ∈ U = {x ∈ Rd : r < |x| < R}, and Tr, TR
the first hitting times of the inner and outer boundary. Then

P(Tr < TR) =


R−|x|
R−r , d = 1

logR−log |x|
logR−log r , d = 2
R2−d−|x|2−d
R2−d−r2−d , d ≥ 3

(5)

49. The d-dimensional Brownian motion Bt is

(a) point recurrent if d = 1;

(b) neighborhood recurrent if d = 2;

(c) transient if d ≥ 3.
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9.10 Local Time

50. Dimension of zero set: Almost certainly the zero set Z = {s ∈ [0, t) :
Bs = 0} is of Hausdorff dimension 1/2. And the 1/2-Hausdorff mea-

sure H
1
2 (Z) = 0.

51. The Brownian local time at 0 is L0
t = limε→0

∫ t
0 1{−ε≤Bs≤ε}ds. This

limit exists and has the same law as Mt = max0≤s≤tBs. Moreover,

(|Bt|, L0
t )

d
= (Mt −Bt,Mt).

52. Tanaka (c.f. [7] p.222): If Wt =
∫ t

0 sgn(Bs)dBs, then Wt is a stan-

dard Brownian motion. Moreover, |Bt| = Wt + L0
t and L0

t = M̃t =
max0≤s≤t(−Ws).
Remark:

(a) The first conclusion is by Lévy’s construction of BM,

(b) The first equation is by Ito’s formula on fε(Bt) where f ′ε(·) is a
continuous estimation of the Heavyside step function, and

(c) The second equation is by the first equation and increasing prop-
erties of L0

t and M̃t.

53. Ray-Knight I (c.f. [4] p.164): Suppose Bt is a standard Brownian

motion and Ta = inf{t ≥ 0 : Bt = a}. Then the process La−tT
d
=

|Wt|2, t ∈ [0, a] where Wt is a 2-D standard Brownian motion.

54. Ray-Knight II (c.f. [7] p.456): Let Ta = inf{t ≥ 0 : L0
t > a}. Then the

processes LtTa +W 2
t

d
= (Wt+

√
a)2, ∀t ≥ 0, where Wt is a 1-D standard

Brownian motion.

40



10 Stochastic Integration

1. Existence of Solution: For a SDE of the form

dYt = f(t, Yt)dt+ g(t, Yt)dBt

i.e. find Yt such that Yt = Y0 +
∫ t

0 f(s, Ys)ds+
∫ t

0 g(s, Ys)dBs. A unique
continuous solution in C[0, T ] exists if there exists L > 0, such that

∀t, x, y, |f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ L|x− y|

And the solution is given by the L2 limit of

Y
(n)
t = x+

∫ t

0
f(s, Y (n−1)

s )ds+

∫ t

0
g(s, Y (n−1)

s )dBs

starting at Y
(0)
t = x.

2. Geometric Brownian motion: The solution to the SDE

dYt = µYtdt+ σYtdBt

is Yt = Y0e
(µ− 1

2
σ2)teσBt .

3. Bessel Process: The solution to the SDE

dYt = dBt +
n− 1

2Yt
dt

is Yt = ||Wt|| where Wt is a n-dimensional Brownian motion.

10.1 Formulae

4. (c.f. [4] p.189): Suppose f : R → R is continuous, t > 0 and sn is a
mesh going to zero. Then

n−1∑
i=0

f(Bsi)(Bsi+1 −Bsi)2 →
n−1∑
i=0

f(Bsi)(si+1 − si)→
∫ t

0
f(Bs)ds

5. Ito’s lemma: Suppose Xt is a drift-diffusion process, i.e.

dXt = µtdt+ σtdBt

Then for any twice differentiable function f(t, x),

df(t,Xt) = (
∂f

∂t
+ µt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2
)dt+ σt

∂f

∂x
dBt
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6. Ito’s formula (c.f. [4] p.189): Suppose f ∈ C∞ and all derivatives
bounded. Then

f(Bt) = f(B0) +

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds

Also if f = f(t, x),

f(t, Bt) = f(0, B0)+

∫ t

0

∂f

∂s
(s,Bs)ds+

∫ t

0

∂f

∂x
(s,Bs)dBs+

1

2

∫ t

0

∂2f

∂x2
(s,Bs)ds

7. General Ito lemma:

df(t, Bt) =
∂f

∂t
(t, Bt)dt+

∂f

∂x
(t, Bt)dBt +

1

2

∂2f

∂x2
(t, Bt)dt

And for square integrable martingale Xt,

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)d〈Xt〉

where 〈Xt〉 is the quadratic variation of Xt.

8. Isometry: Suppose fs is a L2 stochastic process, then

E[(

∫ t

0
fsdBs)

2] =

∫ t

0
E[f2

s ]ds

9. Generalized Ito’s Formula: If Vt = f(Ut), then

dVt = f ′(Ut)dUt +
1

2
f ′′(Ut)(dUt)

2
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