Mathematical Induction

Part Two
The **principle of mathematical induction** states that if for some property $P(n)$, we have that

- $P(0)$ is true
- and

Then

For any $n \in \mathbb{N}$, we have $P(n) \rightarrow P(n + 1)$

... then it's always true.

For any $n \in \mathbb{N}$, $P(n)$ is true.
Theorem: For any natural number n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Proof: By induction. Let $P(n)$ be

$$P(n) \equiv \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

For our base case, we need to show $P(0)$ is true, meaning that

$$\sum_{i=1}^{0} i = \frac{0(0+1)}{2}$$

Since the empty sum is defined to be 0, this claim is true.

For the inductive step, assume that for some $n \in \mathbb{N}$ that $P(n)$ holds, so

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

We need to show that $P(n+1)$ holds, meaning that

$$\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

To see this, note that

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + n+1 = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Thus $P(n+1)$ is true, completing the induction. ■
Induction in Practice

• Typically, a proof by induction will not explicitly state $P(n)$.

• Rather, the proof will describe $P(n)$ implicitly and leave it to the reader to fill in the details.

• Provided that there is sufficient detail to determine

 • what $P(n)$ is,

 • that $P(0)$ is true, and that

 • whenever $P(n)$ is true, $P(n + 1)$ is true,

 the proof is usually valid.
Theorem: For any natural number \(n \), \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)

Proof: By induction on \(n \). For our base case, if \(n = 0 \), note that

\[
\sum_{i=1}^{0} i = \frac{0(0+1)}{2} = 0
\]

and the theorem is true for \(n = 0 \).

For the inductive step, assume that for some \(n \) the theorem is true. Then we have that

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) = \frac{n(n+1)}{2} + n + 1 = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}
\]

so the theorem is true for \(n + 1 \), completing the induction. ■
A Variant of Induction
n^2 versus 2^n

<table>
<thead>
<tr>
<th>n^2</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 = 0</td>
<td>20 = 1</td>
</tr>
<tr>
<td>12 = 1</td>
<td>21 = 2</td>
</tr>
<tr>
<td>22 = 4</td>
<td>22 = 4</td>
</tr>
<tr>
<td>32 = 9</td>
<td>23 = 8</td>
</tr>
<tr>
<td>42 = 16</td>
<td>24 = 16</td>
</tr>
<tr>
<td>52 = 25</td>
<td>25 = 32</td>
</tr>
<tr>
<td>62 = 36</td>
<td>26 = 64</td>
</tr>
<tr>
<td>72 = 49</td>
<td>27 = 128</td>
</tr>
<tr>
<td>82 = 64</td>
<td>28 = 256</td>
</tr>
<tr>
<td>92 = 81</td>
<td>29 = 512</td>
</tr>
<tr>
<td>102 = 100</td>
<td>210 = 1024</td>
</tr>
</tbody>
</table>
n^2 versus 2^n

\[
\begin{align*}
0^2 &= 0 &<& 2^0 = 1 \\
1^2 &= 1 &<& 2^1 = 2 \\
2^2 &= 4 &= 2^2 = 4 \\
3^2 &= 9 &>& 2^3 = 8 \\
4^2 &= 16 &= 2^4 = 16 \\
5^2 &= 25 &<& 2^5 = 32 \\
6^2 &= 36 &<& 2^6 = 64 \\
7^2 &= 49 &<& 2^7 = 128 \\
8^2 &= 64 &<& 2^8 = 256 \\
9^2 &= 81 &<& 2^9 = 512 \\
10^2 &= 100 &<& 2^{10} = 1024
\end{align*}
\]
\(n^2 \) versus \(2^n \)

\[
\begin{align*}
0^2 &= 0 < 2^0 = 1 \\
1^2 &= 1 < 2^1 = 2 \\
2^2 &= 4 = 2^2 = 4 \\
3^2 &= 9 > 2^3 = 8 \\
4^2 &= 16 = 2^4 = 16 \\
5^2 &= 25 < 2^5 = 32 \\
6^2 &= 36 < 2^6 = 64 \\
7^2 &= 49 < 2^7 = 128 \\
8^2 &= 64 < 2^8 = 256 \\
9^2 &= 81 < 2^9 = 512 \\
10^2 &= 100 < 2^{10} = 1024
\end{align*}
\]

\(2^n \) is much bigger here. Does the trend continue?
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n.
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$.
Theorem: For any natural number \(n \geq 5 \), \(n^2 < 2^n \).

Proof: By induction on \(n \). As a base case, if \(n = 5 \), then we have that \(5^2 = 25 < 32 = 2^5 \), so the claim holds.

For the inductive step, assume that for some \(n \geq 5 \), that \(n^2 < 2^n \). Then we have that

\[
(n + 1)^2 = n^2 + 2n + 1
\]
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$ (n + 1)^2 = n^2 + 2n + 1 $$

Since $n \geq 5$, we have

$$ (n + 1)^2 = n^2 + 2n + 1 $$
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$(n + 1)^2 = n^2 + 2n + 1$$

Since $n \geq 5$, we have

$$(n + 1)^2 = n^2 + 2n + 1 < n^2 + 2n + n \quad (\text{since } 1 < 5 \leq n)$$
Theorem: For any natural number \(n \geq 5 \), \(n^2 < 2^n \).

Proof: By induction on \(n \). As a base case, if \(n = 5 \), then we have that \(5^2 = 25 < 32 = 2^5 \), so the claim holds.

For the inductive step, assume that for some \(n \geq 5 \), that \(n^2 < 2^n \). Then we have that

\[
(n + 1)^2 = n^2 + 2n + 1
\]

Since \(n \geq 5 \), we have

\[
(n + 1)^2 = n^2 + 2n + 1 < n^2 + 2n + n \quad (since \ 1 < 5 \leq n)
= n^2 + 3n
\]
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$(n + 1)^2 = n^2 + 2n + 1$$

Since $n \geq 5$, we have

$$(n + 1)^2 = n^2 + 2n + 1 < n^2 + 2n + n \quad (\text{since } 1 < 5 \leq n)$$

$$= n^2 + 3n$$

$$< n^2 + n^2 \quad (\text{since } 3n < 5n \leq n^2)$$

Completing the induction. □
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$(n + 1)^2 = n^2 + 2n + 1$$

Since $n \geq 5$, we have

$$(n + 1)^2 = n^2 + 2n + 1 < n^2 + 2n + n \quad (since \ 1 < 5 \leq n)$$

$$= n^2 + 3n$$

$$< n^2 + n^2 \quad (since \ 3n < 5n \leq n^2)$$

$$= 2n^2$$

Completing the induction. ■
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$(n + 1)^2 = n^2 + 2n + 1$$

Since $n \geq 5$, we have

$$(n + 1)^2 = n^2 + 2n + 1 < n^2 + 2n + n \quad (since \ 1 < 5 \leq n)$$
$$= n^2 + 3n$$
$$< n^2 + n^2 \quad (since \ 3n < 5n \leq n^2)$$
$$= 2n^2$$

So $(n + 1)^2 < 2n^2$.

Theorem: For any natural number \(n \geq 5 \), \(n^2 < 2^n \).

Proof: By induction on \(n \). As a base case, if \(n = 5 \), then we have that \(5^2 = 25 < 32 = 2^5 \), so the claim holds.

For the inductive step, assume that for some \(n \geq 5 \), that \(n^2 < 2^n \). Then we have that

\[(n + 1)^2 = n^2 + 2n + 1\]

Since \(n \geq 5 \), we have

\[(n + 1)^2 = n^2 + 2n + 1 < n^2 + 2n + n \quad (\text{since } 1 < 5 \leq n)\]
\[= n^2 + 3n\]
\[< n^2 + n^2 \quad (\text{since } 3n < 5n \leq n^2)\]
\[= 2n^2\]

So \((n + 1)^2 < 2n^2\). Now, by our inductive hypothesis, we know that \(n^2 < 2^n \).
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$(n + 1)^2 = n^2 + 2n + 1$$

Since $n \geq 5$, we have

$$(n + 1)^2 = n^2 + 2n + 1$$
$$< n^2 + 2n + n \quad (since \ 1 < 5 \leq n)$$
$$= n^2 + 3n$$
$$< n^2 + n^2 \quad (since \ 3n < 5n \leq n^2)$$
$$= 2n^2$$

So $(n + 1)^2 < 2n^2$. Now, by our inductive hypothesis, we know that $n^2 < 2^n$. This means that

$$(n + 1)^2 < 2n^2 \quad (from \ above)$$
Theorem: For any natural number \(n \geq 5 \), \(n^2 < 2^n \).

Proof: By induction on \(n \). As a base case, if \(n = 5 \), then we have that \(5^2 = 25 < 32 = 2^5 \), so the claim holds.

For the inductive step, assume that for some \(n \geq 5 \), that \(n^2 < 2^n \). Then we have that

\[
(n + 1)^2 = n^2 + 2n + 1
\]

Since \(n \geq 5 \), we have

\[
(n + 1)^2 = n^2 + 2n + 1 < n^2 + 2n + n \quad (since \ 1 < 5 \leq n) \\
= n^2 + 3n < n^2 + n^2 \quad (since \ 3n < 5n \leq n^2) \\
= 2n^2
\]

So \((n + 1)^2 < 2n^2 \). Now, by our inductive hypothesis, we know that \(n^2 < 2^n \). This means that

\[
(n + 1)^2 < 2n^2 \quad (from \ above) \\
< 2(2^n) \quad (by \ the \ inductive \ hypothesis)
\]
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$(n + 1)^2 = n^2 + 2n + 1$$

Since $n \geq 5$, we have

$$(n + 1)^2 = n^2 + 2n + 1$$
$$< n^2 + 2n + n \quad (since \ 1 < 5 \leq n)$$
$$= n^2 + 3n$$
$$< n^2 + n^2 \quad (since \ 3n < 5n \leq n^2)$$
$$= 2n^2$$

So $(n + 1)^2 < 2n^2$. Now, by our inductive hypothesis, we know that $n^2 < 2^n$. This means that

$$(n + 1)^2 < 2n^2 \quad (from \ above)$$
$$< 2(2^n) \quad (by \ the \ inductive \ hypothesis)$$
$$= 2^{n+1}$$
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$(n + 1)^2 = n^2 + 2n + 1$$

Since $n \geq 5$, we have

$$(n + 1)^2 = n^2 + 2n + 1$$
$$< n^2 + 2n + n \quad (since \ 1 < 5 \leq n)$$
$$= n^2 + 3n$$
$$< n^2 + n^2 \quad (since \ 3n < 5n \leq n^2)$$
$$= 2n^2$$

So $(n + 1)^2 < 2n^2$. Now, by our inductive hypothesis, we know that $n^2 < 2^n$. This means that

$$(n + 1)^2 < 2n^2 \quad (from \ above)$$
$$< 2(2^n) \quad (by \ the \ inductive \ hypothesis)$$
$$= 2^{n+1}$$

Completing the induction.
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$(n + 1)^2 = n^2 + 2n + 1$$

Since $n \geq 5$, we have

$$(n + 1)^2 = n^2 + 2n + 1$$
$$< n^2 + 2n + n \quad (since \ 1 < 5 \leq n)$$
$$= n^2 + 3n$$
$$< n^2 + n^2 \quad (since \ 3n < 5n \leq n^2)$$
$$= 2n^2$$

So $(n + 1)^2 < 2n^2$. Now, by our inductive hypothesis, we know that $n^2 < 2^n$. This means that

$$(n + 1)^2 < 2n^2 \quad (from \ above)$$
$$< 2(2^n) \quad (by \ the \ inductive \ hypothesis)$$
$$= 2^{n+1}$$

Completing the induction. ■
Theorem: For any natural number \(n \geq 5 \), \(n^2 < 2^n \).

Proof: By induction on \(n \). As a base case, if \(n = 5 \), then we have that \(5^2 = 25 < 32 = 2^5 \), so the claim holds.

For the inductive step, assume that for some \(n \geq 5 \), that \(n^2 < 2^n \). Then we have that

\[
(n + 1)^2 = n^2 + 2n + 1
\]

Since \(n \geq 5 \), we have

\[
(n + 1)^2 = n^2 + 2n + 1 < n^2 + 2n + n \quad \text{(since } 1 < 5 \leq n) = n^2 + 3n < n^2 + n^2 \quad \text{(since } 3n < 5n \leq n^2) = 2n^2
\]

So \((n + 1)^2 < 2n^2 \). Now, by our inductive hypothesis, we know that \(n^2 < 2^n \). This means that

\[
(n + 1)^2 < 2n^2 \quad \text{(from above)} < 2(2^n) \quad \text{(by the inductive hypothesis)} = 2^{n+1}
\]

Completing the induction. ■
Theorem: For any natural number $n \geq 5$, $n^2 < 2^n$.

Proof: By induction on n. As a base case, if $n = 5$, then we have that $5^2 = 25 < 32 = 2^5$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^2 < 2^n$. Then we have that

$$(n + 1)^2 = n^2 + 2n + 1$$

Since $n \geq 5$, we have

$$(n + 1)^2 = n^2 + 2n + 1 < n^2 + n^2 = 2n^2$$

So $(n + 1)^2 < 2n^2$. Now, by our inductive hypothesis, we know that $n^2 < 2^n$. This means that

$$(n + 1)^2 < 2n^2 \quad (from \ above)$$

$$< 2(2^n) \quad (by \ the \ inductive \ hypothesis)$$

$$= 2^{n+1}$$

Completing the induction. ■
Why is this Legal?

- Let $P(n)$ be "Either $n < 5$ or $n^2 < 2n$.
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
- We explicitly proved $P(5)$, so $P(4) \rightarrow P(5)$
- For any $n \geq 5$, we explicitly proved that $P(n) \rightarrow P(n + 1)$.
- Thus $P(0)$ and for any n, $P(n) \rightarrow P(n + 1)$, so by induction $P(n)$ is true for all natural numbers n.
Why is this Legal?

- Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n$.”
Why is this Legal?

- Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n$.”
- $P(0)$ is trivially true.
Why is this Legal?

• Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n$.”
• $P(0)$ is trivially true.
• $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
Why is this Legal?

- Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n$.”
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
- We explicitly proved $P(5)$, so $P(4) \rightarrow P(5)$
- For any $n \geq 5$, we explicitly proved that $P(n) \rightarrow P(n+1)$.

Thus $P(0)$ and for any $n \in \mathbb{N}$, $P(n) \rightarrow P(n+1)$, so by induction $P(n)$ is true for all natural numbers n.

Remember: $A \rightarrow B$ means “whenever A is true, B is true.” If B is always true, $A \rightarrow B$ is true for any A.
Why is this Legal?

- Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n$.”
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
Why is this Legal?

- Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n$.”
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
Why is this Legal?

- Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n$.”
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
Why is this Legal?

- Let \(P(n) \) be “Either \(n < 5 \) or \(n^2 < 2^n \).”
- \(P(0) \) is trivially true.
- \(P(1) \) is trivially true, so \(P(0) \rightarrow P(1) \)
- \(P(2) \) is trivially true, so \(P(1) \rightarrow P(2) \)
- \(P(3) \) is trivially true, so \(P(2) \rightarrow P(3) \)
- \(P(4) \) is trivially true, so \(P(3) \rightarrow P(4) \)
- We explicitly proved \(P(5) \), so \(P(4) \rightarrow P(5) \)
Why is this Legal?

- Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n$.”
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
- We explicitly proved $P(5)$, so $P(4) \rightarrow P(5)$

Again, $A \rightarrow B$ is automatically true if B is always true.
Why is this Legal?

- Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n$.”
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
- We explicitly proved $P(5)$, so $P(4) \rightarrow P(5)$
- For any $n \geq 5$, we explicitly proved that $P(n) \rightarrow P(n + 1)$.
Why is this Legal?

- Let $P(n)$ be “Either $n < 5$ or $n^2 < 2^n.$”
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
- We explicitly proved $P(5)$, so $P(4) \rightarrow P(5)$
- For any $n \geq 5$, we explicitly proved that $P(n) \rightarrow P(n + 1)$.
- Thus $P(0)$ and for any $n \in \mathbb{N}$, $P(n) \rightarrow P(n + 1)$, so by induction $P(n)$ is true for all natural numbers n.
Induction Starting at k

- To prove that $P(n)$ is true for all natural numbers greater than or equal to k:
 - Show that $P(k)$ is true.
 - Show that for any $n \geq k$, that $P(n) \rightarrow P(n + 1)$.
 - Conclude $P(k)$ holds for all natural numbers greater than or equal to k.
- You don't need to justify why it's okay to start from k.
An Important Observation
One Major Catch
One Major Catch
One Major Catch

0 1 2 3 4 5 6 7 8
One Major Catch
One Major Catch
One Major Catch
In an inductive proof, to prove $P(5)$, we can only assume $P(4)$. We cannot rely on any of our earlier results!
Strong Induction
The **principle of strong induction** states that if for some property $P(n)$, we have that

$P(0)$ is true

and

For any $n \in \mathbb{N}$ with $n \neq 0$, if $P(n')$ is true for all $n' < n$, then $P(n)$ is true

then

For any $n \in \mathbb{N}$, $P(n)$ is true.
The principle of strong induction states that if for some property $P(n)$, we have that

1. $P(0)$ is true,

and

2. For any $n \in \mathbb{N}$ with $n \neq 0$, if $P(n')$ is true for all $n' < n$, then $P(n)$ is true,

then

For any $n \in \mathbb{N}$, $P(n)$ is true.
Using Strong Induction

0 1 2 3 4 5 6 7 8
Using Strong Induction

0 1 2 3 4 5 6 7 8
Induction and Dominoes
Strong Induction and Dominoes
Weak and Strong Induction

- **Weak induction** (regular induction) is good for showing that some property holds by incrementally adding in one new piece.

- **Strong induction** is good for showing that some property holds by breaking a large structure down into multiple small pieces.
Proof by Strong Induction

• State that you are attempting to prove something by strong induction.
• State what your choice of $P(n)$ is.
• Prove the base case:
 • State what $P(0)$ is, then prove it.
• Prove the inductive step:
 • State that you assume for all $0 \leq n' < n$, that $P(n')$ is true.
 • State what $P(n)$ is. *(this is what you're trying to prove)*
 • Go prove $P(n)$.
Application: **Binary Numbers**
The binary number system is base 2.

Every number is represented as 1s and 0s encoding various powers of two.

Examples:

- $100_2 = 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 4$
- $11011_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 27$

Enormously useful in computing; almost all computers do computation on binary numbers.

Question: How do we know that every natural number can be written in binary?
Justifying Binary Numbers

- To justify the binary representation, we will prove the following result:

 Every natural number n can be expressed as the sum of distinct powers of two.

- This says that there's at least one way to write a number in binary; we'd need a separate proof to show that there's exactly one way to do it.

- So how do we prove this?
One Proof Idea

27
One Proof Idea

11

16
One Proof Idea

3

16 8
One Proof Idea

1

16 8 2
One Proof Idea
General Idea

- Repeatedly subtract out the largest power of two less than the number.
- Can't subtract 2^n twice for any n; otherwise, you could have subtracted 2^{n+1}.
- Eventually, we reach 0; the number is then the sum of the powers of two that we subtracted.
- How do we formalize this as a proof?
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be "\(n \) is the sum of distinct powers of two." We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n) \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \).

Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two. If \(S \) be the set of these powers of two, then \(n \) is the sum of these powers of two and \(2^k \).

If we can show that \(2^k \not\in S \), we will have that \(n \) is the sum of distinct powers of two (namely, the elements of \(S \) and \(2^k \)). Then \(P(n) \) will hold, completing the induction.

We show \(2^k \not\in S \) by contradiction; assume that \(2^k \in S \). Since \(2^k \in S \) and the sum of the powers of two in \(S \) is \(n - 2^k \), this means that \(2^k \leq n - 2^k \). Thus \(2^k + 2^k \leq n \), so \(2^{k+1} \leq n \). This contradicts that \(2^k \) is the largest power of two no greater than \(n \). We have reached a contradiction, so our assumption was wrong and \(2^k \not\in S \), as required.

\[\square \]
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction.
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.”

As our base case, we prove \(P(0) \), that \(0 \) is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of 2 such that \(2^k \leq n \). Consider \(n - 2^k \).

Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two. If \(S \) be the set of these powers of two, then \(n \) is the sum of these powers of two and \(2^k \).

If we can show that \(2^k \notin S \), we will have that \(n \) is the sum of distinct powers of two (namely, the elements of \(S \) and \(2^k \)). Then \(P(n) \) will hold, completing the induction.

We show \(2^k \notin S \) by contradiction; assume that \(2^k \in S \). Since \(2^k \in S \) and the sum of the powers of two in \(S \) is \(n - 2^k \), this means that \(2^k \leq n - 2^k \).

Thus \(2^k + 2^k \leq n \), so \(2^k + 1 \leq n \). This contradicts that \(2^k \) is the largest power of two no greater than \(n \). We have reached a contradiction, so our assumption was wrong and \(2^k \notin S \), as required.

\(\square \)
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of two. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^k be the greatest power of two such that $2^k \leq n$. Consider $n - 2^k$. Since $2^k \geq 1$ for any natural number k, we know that $n - 2^k < n$. Since $2^k \leq n$, we know $0 \leq n - 2^k$. Thus, by our inductive hypothesis, $n - 2^k$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of these powers of two and 2^k.

If we can show that $2^k \not\in S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^k). Then $P(n)$ will hold, completing the induction.

We show $2^k \not\in S$ by contradiction; assume that $2^k \in S$. Since $2^k \in S$ and the sum of the powers of two in S is $n - 2^k$, this means that $2^k \leq n - 2^k$. Thus $2^k + 2^k \leq n$, so $2^k + 1 \leq n$. This contradicts that 2^k is the largest power of two no greater than n. We have reached a contradiction, so our assumption was wrong and $2^k \not\in S$, as required. ■
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2.

Let 2^k be the greatest power of two such that $2^k \leq n$. Consider $n - 2^k$. Since $2^k \geq 1$ for any natural number k, we know that $n - 2^k < n$. Since $2^k \leq n$, we know $0 \leq n - 2^k$. Thus, by our inductive hypothesis, $n - 2^k$ is the sum of distinct powers of two.

If S be the set of these powers of two, then n is the sum of these powers of two and 2^k.

If we can show that $2^k \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^k). Then $P(n)$ will hold, completing the induction.

We show $2^k \notin S$ by contradiction; assume that $2^k \in S$. Since $2^k \in S$ and the sum of the powers of two in S is $n - 2^k$, this means that $2^k \leq n - 2^k$. Thus $2^k + 2^k \leq n$, so $2^k + 1 \leq n$. This contradicts that 2^k is the largest power of two no greater than n. We have reached a contradiction, so our assumption was wrong and $2^k \notin S$, as required. ■
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.” We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two.
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two.

Notice the stronger version of the induction hypothesis. We’re now showing that $P(n')$ is true for all natural numbers in the range $0 \leq n' < n$. We’ll use this fact later on.
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^k be the greatest power of two such that $2^k \leq n$.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^k be the greatest power of two such that $2^k \leq n$. Consider $n - 2^k$.

Here's the key step of the proof. If we can show that

$$0 \leq n - 2^k < n$$

then we can use the inductive hypothesis to claim that $n - 2^k$ is a sum of distinct powers of two.
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be \(\text{“} \)n is the sum of distinct powers of two.\text{”} We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \). Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \).
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^k be the greatest power of two such that $2^k \leq n$. Consider $n - 2^k$. Since $2^k \geq 1$ for any natural number k, we know that $n - 2^k < n$. Since $2^k \leq n$, we know $0 \leq n - 2^k$.
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.” We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \). Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two.
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^k be the greatest power of two such that $2^k \leq n$. Consider $n - 2^k$. Since $2^k \geq 1$ for any natural number k, we know that $n - 2^k < n$. Since $2^k \leq n$, we know $0 \leq n - 2^k$. Thus, by our inductive hypothesis, $n - 2^k$ is the sum of distinct powers of two.

Here is where strong induction kicks in. We use the fact that any smaller number can be written as the sum of distinct powers of two to show that $n - 2^k$ can be written as the sum of distinct powers of two.
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.” We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \). Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two. If \(S \) be the set of these powers of two, then \(n \) is the sum of the elements of \(S \) and \(2^k \).
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^k be the greatest power of two such that $2^k \leq n$. Consider $n - 2^k$. Since $2^k \geq 1$ for any natural number k, we know that $n - 2^k < n$. Since $2^k \leq n$, we know $0 \leq n - 2^k$. Thus, by our inductive hypothesis, $n - 2^k$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^k.

If we can show that $2^k \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^k).
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.” We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \). Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two. If \(S \) be the set of these powers of two, then \(n \) is the sum of the elements of \(S \) and \(2^k \).

If we can show that \(2^k \notin S \), we will have that \(n \) is the sum of distinct powers of two (namely, the elements of \(S \) and \(2^k \)). Then \(P(n) \) will hold, completing the induction.
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.” We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \). Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two. If \(S \) be the set of these powers of two, then \(n \) is the sum of the elements of \(S \) and \(2^k \).

If we can show that \(2^k \notin S \), we will have that \(n \) is the sum of distinct powers of two (namely, the elements of \(S \) and \(2^k \)). Then \(P(n) \) will hold, completing the induction.

We show \(2^k \notin S \) by contradiction; assume that \(2^k \in S \).
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n' \in \mathbb{N}$, that for any $n'' \in \mathbb{N}$ where $0 \leq n'' < n'$, that $P(n'')$ holds and n'' is the sum of distinct powers of two.

Let 2^k be the greatest power of two such that $2^k \leq n$. Consider $n - 2^k$. Since $2^k \geq 1$ for any natural number k, we know that $n - 2^k < n$. Since $2^k \leq n$, we have that $n - 2^k$ is the sum of the elements of S and 2^k. Thus, by our inductive hypothesis, $n - 2^k$ is the sum of distinct powers of two, therefore n is the sum of the elements of S and 2^k. If we can show that $2^k \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^k). Then $P(n)$ will hold, completing the induction.

We show $2^k \notin S$ by contradiction; assume that $2^k \in S$.

YO DAWG, I HEARD YOU LIKE PROOFS

SO I PUT A PROOF IN YOUR PROOF SO YOU CAN PROVE WHILE YOU PROVE

quickmeme.com
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.” We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \). Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two. If \(S \) be the set of these powers of two, then \(n \) is the sum of the elements of \(S \) and \(2^k \).

If we can show that \(2^k \notin S \), we will have that \(n \) is the sum of distinct powers of two (namely, the elements of \(S \) and \(2^k \)). Then \(P(n) \) will hold, completing the induction.

We show \(2^k \notin S \) by contradiction; assume that \(2^k \in S \). Since \(2^k \in S \) and the sum of the powers of two in \(S \) is \(n - 2^k \), this means that \(2^k \leq n - 2^k \).
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^k be the greatest power of two such that $2^k \leq n$. Consider $n - 2^k$. Since $2^k \geq 1$ for any natural number k, we know that $n - 2^k < n$. Since $2^k \leq n$, we know $0 \leq n - 2^k$. Thus, by our inductive hypothesis, $n - 2^k$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^k.

If we can show that $2^k \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^k). Then $P(n)$ will hold, completing the induction.

We show $2^k \notin S$ by contradiction; assume that $2^k \in S$. Since $2^k \in S$ and the sum of the powers of two in S is $n - 2^k$, this means that $2^k \leq n - 2^k$. Thus $2^k + 2^k \leq n$
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.” We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \). Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two. If \(S \) be the set of these powers of two, then \(n \) is the sum of the elements of \(S \) and \(2^k \).

If we can show that \(2^k \not\in S \), we will have that \(n \) is the sum of distinct powers of two (namely, the elements of \(S \) and \(2^k \)). Then \(P(n) \) will hold, completing the induction.

We show \(2^k \not\in S \) by contradiction; assume that \(2^k \in S \). Since \(2^k \in S \) and the sum of the powers of two in \(S \) is \(n - 2^k \), this means that \(2^k \leq n - 2^k \). Thus \(2^k + 2^k \leq n \), so \(2^{k+1} \leq n \).
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.” We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \). Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two. If \(S \) be the set of these powers of two, then \(n \) is the sum of the elements of \(S \) and \(2^k \).

If we can show that \(2^k \notin S \), we will have that \(n \) is the sum of distinct powers of two (namely, the elements of \(S \) and \(2^k \)). Then \(P(n) \) will hold, completing the induction.

We show \(2^k \notin S \) by contradiction; assume that \(2^k \in S \). Since \(2^k \in S \) and the sum of the powers of two in \(S \) is \(n - 2^k \), this means that \(2^k \leq n - 2^k \). Thus \(2^k + 2^k \leq n \), so \(2^k + 1 \leq n \). This contradicts that \(2^k \) is the largest power of two no greater than \(n \).
Theorem: Every \(n \in \mathbb{N} \) is the sum of distinct powers of two.

Proof: By strong induction. Let \(P(n) \) be “\(n \) is the sum of distinct powers of two.” We prove that \(P(n) \) is true for all \(n \in \mathbb{N} \).

As our base case, we prove \(P(0) \), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, \(P(0) \) holds.

For the inductive step, assume that for some nonzero \(n \in \mathbb{N} \), that for any \(n' \in \mathbb{N} \) where \(0 \leq n' < n \), that \(P(n') \) holds and \(n' \) is the sum of distinct powers of two. We prove \(P(n) \), that \(n \) is the sum of distinct powers of two.

Let \(2^k \) be the greatest power of two such that \(2^k \leq n \). Consider \(n - 2^k \). Since \(2^k \geq 1 \) for any natural number \(k \), we know that \(n - 2^k < n \). Since \(2^k \leq n \), we know \(0 \leq n - 2^k \). Thus, by our inductive hypothesis, \(n - 2^k \) is the sum of distinct powers of two. If \(S \) be the set of these powers of two, then \(n \) is the sum of the elements of \(S \) and \(2^k \).

If we can show that \(2^k \notin S \), we will have that \(n \) is the sum of distinct powers of two (namely, the elements of \(S \) and \(2^k \)). Then \(P(n) \) will hold, completing the induction.

We show \(2^k \notin S \) by contradiction; assume that \(2^k \in S \). Since \(2^k \in S \) and the sum of the powers of two in \(S \) is \(n - 2^k \), this means that \(2^k \leq n - 2^k \). Thus \(2^k + 2^k \leq n \), so \(2^{k+1} \leq n \). This contradicts that \(2^k \) is the largest power of two no greater than \(n \). We have reached a contradiction, so our assumption was wrong and \(2^k \notin S \), as required.
Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Proof: By strong induction. Let $P(n)$ be “n is the sum of distinct powers of two.” We prove that $P(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, $P(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n' \in \mathbb{N}$ where $0 \leq n' < n$, that $P(n')$ holds and n' is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^k be the greatest power of two such that $2^k \leq n$. Consider $n - 2^k$. Since $2^k \geq 1$ for any natural number k, we know that $n - 2^k < n$. Since $2^k \leq n$, we know $0 \leq n - 2^k$. Thus, by our inductive hypothesis, $n - 2^k$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^k.

If we can show that $2^k \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^k). Then $P(n)$ will hold, completing the induction.

We show $2^k \notin S$ by contradiction; assume that $2^k \in S$. Since $2^k \in S$ and the sum of the powers of two in S is $n - 2^k$, this means that $2^k \leq n - 2^k$. Thus $2^k + 2^k \leq n$, so $2^{k+1} \leq n$. This contradicts that 2^k is the largest power of two no greater than n. We have reached a contradiction, so our assumption was wrong and $2^k \notin S$, as required. ■
Application: Continued Fractions
Continued Fractions

\[
\frac{1}{\frac{4}{1 + \frac{1}{\frac{1}{2}}}}
\]
Continued Fractions

\[
\begin{array}{c}
1 \\
\hline
4 + \frac{1}{1 + \frac{1}{2}}
\end{array}
\]
Continued Fractions

\[
\frac{1}{4 + \frac{1}{3 + \frac{1}{2}}}
\]
Continued Fractions

\[
\begin{array}{c}
4 + \frac{1}{\frac{3}{2}}
\end{array}
\]
Continued Fractions

\[
\frac{1}{4 + \frac{2}{3}}
\]
Continued Fractions

\[
\begin{array}{cccc}
1 & 4 & + & \frac{2}{3} \\
\end{array}
\]
Continued Fractions

\[
\frac{1}{\frac{14}{3}}
\]
Continued Fractions

\[
\frac{1}{\frac{14}{3}}
\]
Continued Fractions

\[
\begin{array}{c}
 3 \\
 \hline \\
 14
\end{array}
\]
Continued Fractions

\[3 + \frac{1}{3 + \frac{1}{1 + \frac{1}{4 + \frac{1}{2}}} } \]
Continued Fractions

\[
3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}}
\]
Continued Fractions

\[
3 + \frac{1}{3 + \frac{1}{1 + \frac{1}{9}}}
\]
Continued Fractions

\[3 \ + \ \frac{1}{3 \ + \ \frac{1}{9 \ + \ \frac{1}{2}}} \]
Continued Fractions

\[
3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{1 + \frac{2}{9}}}}
\]
Continued Fractions

\[3 + \frac{1}{3 + \frac{1}{1 + \frac{2}{9}}} \]
Continued Fractions

\[3 + \cfrac{1}{3 + \cfrac{1}{11 + \cfrac{9}{1}}} \]
Continued Fractions

\[
3 + \frac{1}{3 + \frac{1}{11 + \frac{1}{9}}}
\]
Continued Fractions

\[3 + \frac{1}{3 + \frac{9}{11}} \]
Continued Fractions

\[\frac{1}{3 + \frac{9}{3 + \frac{11}{1}}} \]
Continued Fractions

\[3 + \frac{1}{\frac{42}{11}} \]
Continued Fractions

\[3 + \frac{1}{42 + \frac{1}{11}} \]
Continued Fractions

\[3 + \frac{11}{42}\]
Continued Fractions

$3 + \frac{11}{42}$
Continued Fractions

\[
\frac{137}{42}
\]
Continued Fractions

• A *continued fraction* is an expression of the form

\[
a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\ddots + \frac{1}{a_n}}}}
\]

• Formally, a continued fraction is either
 • An integer \(n \), or
 • \(n + 1 / F \), where \(n \) is an integer and \(F \) is a continued fraction.

• Continued fractions have numerous applications in number theory and computer science.
• (They're also really fun to write!)
Fun with Continued Fractions

- Every rational number, including negative rational numbers, has a continued fraction representation.
- Harder result: every irrational number has an (infinite) continued fraction representation.
- Even harder result: If we truncate an infinite continued fraction for an irrational number, we can get progressively better approximations of that number.
π as a Continued Fraction

\[\pi = 3 + \cfrac{1}{7 + \cfrac{1}{15 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{292 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{...}}}}}}}}} \]
Approximating π
Approximating π

$\pi = 3 \quad \quad \quad \quad 3 = 3.0000...$
Approximating π

$\pi = 3$

$3 = 3.0000\ldots$

And he made the Sea of cast bronze, ten cubits from one brim to the other; it was completely round. [... A] line of thirty cubits measured its circumference.

1 Kings 7:23, New King James Translation
Approximating π

$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292}}}}$

$3 = 3.0000...$

$22/7 = 3.142857...$
Approximating π

\[\pi = 3 + \cfrac{1}{7 + \cfrac{1}{15 + \cfrac{1}{1 + \cfrac{1}{292}}} \quad 3 = 3.0000... \]

\[22/7 = 3.142857... \]

Greek mathematician Archimedes knew of this approximation, circa 250 BCE
Approximating π

\[
\pi = 3 + \cfrac{1}{7 + \cfrac{1}{15}}
\]

$3 = 3.0000...$
$22/7 = 3.142857...$
$336/106 = 3.1415094...$
Approximating π

\[\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1}}} \quad 3 = 3.0000...\]

\[22/7 = 3.142857...\]

\[336/106 = 3.1415094...\]

\[355/113 = 3.141592922...\]
Approximating π

\[\pi = 3 + \cfrac{1}{7 + \cfrac{1}{15 + \cfrac{1}{1}}}\]

\[3 = 3.0000...\]

\[22/7 = 3.142857...\]

\[336/106 = 3.1415094...\]

\[355/113 = 3.14159292...\]

Chinese mathematician 祖沖之 (Zu Chongzhi) discovered this approximation in the early fifth century; this was the best approximation of pi for over a thousand years.
Approximating π

$$\pi = 3 + \cfrac{1}{7 + \cfrac{1}{15 + \cfrac{1}{1 + \cfrac{1}{292}}}}$$

$3 = 3.0000...$

$22/7 = 3.142857...$

$336/106 = 3.1415094...$

$355/113 = 3.14159292...$

$103993/33102 = 3.1415926530...$
More Continued Fractions

\[
\frac{3}{14}
\]
More Continued Fractions

\[
\frac{3}{14}
\]
More Continued Fractions
More Continued Fractions

\[\frac{1}{2 + \frac{1}{3 + \frac{1}{2}}} \]
More Continued Fractions
More Continued Fractions
More Continued Fractions

\[
\begin{array}{cccc}
3 & & & 14 \\
\end{array}
\]
More Continued Fractions

\[
\frac{3}{14} = 4 + \frac{1}{1 + \frac{1}{2}}
\]
More Continued Fractions

\[
\frac{3}{14} = 4 + \frac{1}{\frac{1}{1} + \frac{1}{2}}
\]
The Ancient Greeks knew about this connection. They called this procedure anthyphairesis.

\[
\frac{3}{14} = 4 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1}}}
\]
An Interesting Continued Fraction

\[x = 1 + \frac{1}{1 + \cdots}}}}}}}}} \]
An Interesting Continued Fraction

\[x = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}} \]
An Interesting Continued Fraction

\[x = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{2}}} \ldots} \]
An Interesting Continued Fraction

\[x = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1}}}} = \frac{3}{2} \]
An Interesting Continued Fraction

\[x = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1}}}} \]
An Interesting Continued Fraction

\[x = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1}}}}}}} \]

\[= 1/1, 2/1, 3/2, 5/3, 8/5 \]
An Interesting Continued Fraction

\[x = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1}}}}}}} \]

\[1 / 1 \]
\[2 / 1 \]
\[3 / 2 \]
\[5 / 3 \]
\[8 / 5 \]
\[13 / 8 \]
An Interesting Continued Fraction

\[x = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \frac{1}{1}}}}}} \]

1/1
2/1
3/2
5/3
8/5
13/8
21/13
An Interesting Continued Fraction

\[x = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1}}}} \]

\[\frac{1}{1} \quad \frac{2}{1} \quad \frac{3}{2} \quad \frac{5}{3} \quad \frac{8}{5} \quad \frac{13}{8} \quad \frac{21}{13} \quad \frac{34}{21} \]
An Interesting Continued Fraction

\[x = 1 + \cfrac{1}{1 + \cfrac{1}{1}}}}}}}} } \]

Each fraction is the ratio of consecutive Fibonacci numbers!
The Golden Ratio

\[\varphi = \frac{1 + \sqrt{5}}{2} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\ldots}}}} \]

\[\varphi \approx 1.61803399 \]
The Golden Ratio

21

34
The Golden Ratio

\[
\frac{21}{34}
\]
The Golden Ratio
The Golden Ratio

\[
\frac{21}{13}
\]
The Golden Ratio

\[
\frac{13}{8}
\]
The Golden Ratio
The Golden Ratio
The Golden Ratio

Diagram showing the golden ratio with dimensions 5 and 8.
The Golden Ratio
The Golden Spiral
How do we prove all rational numbers have continued fractions?
Constructing a Continued Fraction

\[\frac{7}{9} \]
Constructing a Continued Fraction

\[\frac{7}{9} = 0 + \frac{7}{9} \]
Constructing a Continued Fraction

\[\frac{7}{9} = 0 + \frac{1}{\frac{9}{7}} \]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{\frac{9}{7}}
\]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{\frac{9}{7}}
\]

\[
\frac{9}{7} = 1 + \frac{2}{7}
\]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{\frac{9}{7}}
\]

\[
\frac{9}{7} = 1 + \frac{1}{\frac{7}{2}}
\]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{\frac{9}{7}}
\]

\[
\frac{9}{7} = 1 + \frac{1}{\frac{7}{2}}
\]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{\frac{9}{7}}
\]

\[
\frac{9}{7} = 1 + \frac{1}{\frac{7}{2}}
\]

\[
\frac{7}{2} = 3 + \frac{1}{2}
\]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{\frac{9}{7}}
\]

\[
\frac{9}{7} = 1 + \frac{1}{\frac{7}{2}}
\]

\[
\frac{7}{2} = 3 + \frac{1}{2}
\]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{\frac{9}{7}}
\]

\[
\frac{9}{7} = 1 + \frac{1}{3 + \frac{1}{2}}
\]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{\frac{9}{7}}
\]

\[
\frac{9}{7} = 1 + \frac{1}{3 + \frac{1}{2}}
\]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{1 + \frac{1}{3 + \frac{1}{2}}}
\]
Constructing a Continued Fraction

\[\frac{7}{9} = 0 + \frac{1}{1 + \frac{1}{3 + \frac{1}{2}}} \]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{\frac{1}{\frac{3}{2} + \frac{1}{1}}}
\]
Constructing a Continued Fraction

\[
\frac{7}{9} = 0 + \frac{1}{1 + \frac{1}{3 + \frac{1}{2}}}
\]

\[
9 > 7 > 2 > 1
\]
The Golden Ratio
The Golden Ratio

21

34
The Golden Ratio
The Golden Ratio

21

13
The Golden Ratio
The Golden Ratio

8

13
The Golden Ratio
The Golden Ratio
The Golden Ratio

5

3
The Golden Ratio
The Golden Ratio

![Diagram of the Golden Ratio]
The Golden Ratio
The Golden Ratio
The Golden Ratio

[Diagram showing the golden ratio with segments labeled 1 and 2]
The Golden Ratio
The Division Algorithm

- For any integers a and b, with $b > 0$, there exists **unique** integers q and r such that
 \[a = qb + r \]
 and
 \[0 \leq r < b \]
- q is the **quotient** and r is the **remainder**.
- Given $a = 11$ and $b = 4$: \[11 = 2 \cdot 4 + 3 \]
- Given $a = -137$ and $b = 42$: \[-137 = -4 \cdot 42 + 31 \]
Theorem: Every rational has a continued fraction.

Proof: By strong induction.

Let \(P(d) \) be "any rational with denominator \(d \) has a continued fraction." We prove that \(P(d) \) is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove \(P(1) \), that any rational with denominator \(1 \) has a continued fraction. Consider any rational with denominator 1; let it be \(\frac{n}{1} \). Since \(n \) is a continued fraction and \(n = \frac{n}{1} \), \(P(1) \) holds.

For our inductive step, assume that for some \(d \in \mathbb{N} \) with \(d > 1 \), that for any \(d' \in \mathbb{N} \) where \(1 \leq d' < d \), that \(P(d') \) is true, so any rational with denominator \(d' \) has a continued fraction. We prove \(P(d) \) by showing that any rational with denominator \(d \) has a continued fraction.

Take any rational with denominator \(d \); let it be \(\frac{n}{d} \). Using the division algorithm, write \(n = qd + r \), where \(0 \leq r < d \).

We consider two cases:

Case 1: \(r = 0 \). Then \(n = qd \), so \(\frac{n}{d} = q \). Then \(q \) is a continued fraction for \(\frac{n}{d} \).

Case 2: \(r \neq 0 \). Given that \(n = qd + r \), we have \(q + \frac{1}{\frac{r}{d}} \). Since \(1 \leq r < d \), by our inductive hypothesis there is some continued fraction for \(\frac{d}{r} \); call it \(F \). Then \(q + \frac{1}{F} \) is a continued fraction for \(\frac{n}{d} \).

In either case, we find a continued fraction for \(\frac{n}{d} \), so \(P(d) \) holds, completing the induction. ■
Theorem: Every rational has a continued fraction.

Proof: By strong induction.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let \(P(d) \) be “any rational with denominator \(d \)
has a continued fraction.”
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$.

For our inductive step, assume that for some $d' \in \mathbb{N}$ with $d' > 1$, that for any $d' \in \mathbb{N}$ where $1 \leq d' < d$, that $P(d')$ is true, so any rational with denominator d' has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction. Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n = qd + r$, where $0 \leq r < d$. We consider two cases:

Case 1: $r = 0$. Then $n = qd$, so $n / d = q$. Then q is a continued fraction for n / d.

Case 2: $r \neq 0$. Given that $n = qd + r$, we have $n / d = q + r / d$. Since $1 \leq r < d$, by our inductive hypothesis there is some continued fraction for d / r; call it F. Then $q + 1 / F$ is a continued fraction for n / d. In either case, we find a continued fraction for n / d, so $P(d)$ holds, completing the induction. ■
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n/1$. Since n is a continued fraction and $n = n/1$, $P(1)$ holds.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let \(P(d) \) be “any rational with denominator \(d \) has a continued fraction.” We prove that \(P(d) \) is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove \(P(1) \), that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be \(\frac{n}{1} \). Since \(n \) is a continued fraction and \(n = \frac{n}{1} \), \(P(1) \) holds.

For our inductive step, assume that for some \(d \in \mathbb{N} \) with \(d > 1 \), that for any \(d' \in \mathbb{N} \) where \(1 \leq d' < d \), that \(P(d') \) is true, so any rational with denominator \(d' \) has a continued fraction.

Take any rational with denominator \(d \); let it be \(\frac{n}{d} \). Using the division algorithm, write \(n = qd + r \), where \(0 \leq r < d \). We consider two cases:

Case 1: \(r = 0 \). Then \(n = qd \), so \(\frac{n}{d} = q \). Then \(q \) is a continued fraction for \(\frac{n}{d} \).

Case 2: \(r \neq 0 \). Given that \(n = qd + r \), we have

Since \(1 \leq r < d \), by our inductive hypothesis there is some continued fraction for \(\frac{d}{r} \); call it \(F \). Then \(q + \frac{1}{F} \) is a continued fraction for \(\frac{n}{d} \).

In either case, we find a continued fraction for \(\frac{n}{d} \), so \(P(d) \) holds, completing the induction. ■
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n = n / 1$, $P(1)$ holds.

For our inductive step, assume that for some $d \in \mathbb{N}$ with $d > 1$, that for any $d' \in \mathbb{N}$ where $1 \leq d' < d$, that $P(d')$ is true, so any rational with denominator d' has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n/1$. Since n is a continued fraction and $n = n/1$, $P(1)$ holds.

For our inductive step, assume that for some $d \in \mathbb{N}$ with $d > 1$, that for any $d' \in \mathbb{N}$ where $1 \leq d' < d$, that $P(d')$ is true, so any rational with denominator d' has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.

Take any rational with denominator d; let it be n/d.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n/1$. Since n is a continued fraction and $n = n/1$, $P(1)$ holds.

For our inductive step, assume that for some $d \in \mathbb{N}$ with $d > 1$, that for any $d' \in \mathbb{N}$ where $1 \leq d' < d$, that $P(d')$ is true, so any rational with denominator d' has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.

Take any rational with denominator d; let it be n/d. Using the division algorithm, write $n = qd + r$, where $0 \leq r < d$.

Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let \(P(d) \) be “any rational with denominator \(d \) has a continued fraction.” We prove that \(P(d) \) is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove \(P(1) \), that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be \(n / 1 \). Since \(n \) is a continued fraction and \(n = n / 1 \), \(P(1) \) holds.

For our inductive step, assume that for some \(d \in \mathbb{N} \) with \(d > 1 \), that for any \(d' \in \mathbb{N} \) where \(1 \leq d' < d \), that \(P(d') \) is true, so any rational with denominator \(d' \) has a continued fraction. We prove \(P(d) \) by showing that any rational with denominator \(d \) has a continued fraction.

Take any rational with denominator \(d \); let it be \(n / d \). Using the division algorithm, write \(n = qd + r \), where \(0 \leq r < d \).

The division algorithm is the mathematically rigorous way to justify getting a quotient and a remainder.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let \(P(d) \) be “any rational with denominator \(d \) has a continued fraction.” We prove that \(P(d) \) is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove \(P(1) \), that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be \(n/1 \). Since \(n \) is a continued fraction and \(n = n/1 \), \(P(1) \) holds.

For our inductive step, assume that for some \(d \in \mathbb{N} \) with \(d > 1 \), that for any \(d' \in \mathbb{N} \) where \(1 \leq d' < d \), that \(P(d') \) is true, so any rational with denominator \(d' \) has a continued fraction. We prove \(P(d) \) by showing that any rational with denominator \(d \) has a continued fraction.

Take any rational with denominator \(d \); let it be \(n/d \). Using the division algorithm, write \(n = qd + r \), where \(0 \leq r < d \). We consider two cases:

Case 1: \(r = 0 \).

Case 2: \(r \neq 0 \).
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let \(P(d) \) be “any rational with denominator \(d \) has a continued fraction.” We prove that \(P(d) \) is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove \(P(1) \), that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be \(n / 1 \). Since \(n \) is a continued fraction and \(n = n / 1 \), \(P(1) \) holds.

For our inductive step, assume that for some \(d \in \mathbb{N} \) with \(d > 1 \), that for any \(d' \in \mathbb{N} \) where \(1 \leq d' < d \), that \(P(d') \) is true, so any rational with denominator \(d' \) has a continued fraction. We prove \(P(d) \) by showing that any rational with denominator \(d \) has a continued fraction.

Take any rational with denominator \(d \); let it be \(n / d \). Using the division algorithm, write \(n = qd + r \), where \(0 \leq r < d \). We consider two cases:

Case 1: \(r = 0 \). Then \(n = qd \), so \(n / d = q \).

Case 2: \(r \neq 0 \).
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let \(P(d) \) be “any rational with denominator \(d \) has a continued fraction.” We prove that \(P(d) \) is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove \(P(1) \), that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be \(\frac{n}{1} \). Since \(n \) is a continued fraction and \(n = \frac{n}{1} \), \(P(1) \) holds.

For our inductive step, assume that for some \(d \in \mathbb{N} \) with \(d > 1 \), that for any \(d' \in \mathbb{N} \) where \(1 \leq d' < d \), that \(P(d') \) is true, so any rational with denominator \(d' \) has a continued fraction. We prove \(P(d) \) by showing that any rational with denominator \(d \) has a continued fraction.

Take any rational with denominator \(d \); let it be \(\frac{n}{d} \). Using the division algorithm, write \(n = qd + r \), where \(0 \leq r < d \). We consider two cases:

Case 1: \(r = 0 \). Then \(n = qd \), so \(\frac{n}{d} = q \). Then \(q \) is a continued fraction for \(\frac{n}{d} \).

Case 2: \(r \neq 0 \).
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n = n / 1$, $P(1)$ holds.

For our inductive step, assume that for some $d \in \mathbb{N}$ with $d > 1$, that for any $d' \in \mathbb{N}$ where $1 \leq d' < d$, that $P(d')$ is true, so any rational with denominator d' has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.

Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n = qd + r$, where $0 \leq r < d$. We consider two cases:

Case 1: $r = 0$. Then $n = qd$, so $n / d = q$. Then q is a continued fraction for n / d.

Case 2: $r \neq 0$. Given that $n = qd + r$, we have $\frac{n}{d} = q + \frac{r}{d}$.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let \(P(d) \) be “any rational with denominator \(d \) has a continued fraction.” We prove that \(P(d) \) is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove \(P(1) \), that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be \(n/1 \). Since \(n \) is a continued fraction and \(n = n/1 \), \(P(1) \) holds.

For our inductive step, assume that for some \(d \in \mathbb{N} \) with \(d > 1 \), that for any \(d' \in \mathbb{N} \) where \(1 \leq d' < d \), that \(P(d') \) is true, so any rational with denominator \(d' \) has a continued fraction. We prove \(P(d) \) by showing that any rational with denominator \(d \) has a continued fraction.

Take any rational with denominator \(d \); let it be \(n/d \). Using the division algorithm, write \(n = qd + r \), where \(0 \leq r < d \). We consider two cases:

1. **Case 1:** \(r = 0 \). Then \(n = qd \), so \(n/d = q \). Then \(q \) is a continued fraction for \(n/d \).

2. **Case 2:** \(r \neq 0 \). Given that \(n = qd + r \), we have \(\frac{n}{d} = q + \frac{r}{d} = q + \frac{1}{d/r} \).
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n = n / 1$, $P(1)$ holds.

For our inductive step, assume that for some $d \in \mathbb{N}$ with $d > 1$, that for any $d' \in \mathbb{N}$ where $1 \leq d' < d$, that $P(d')$ is true, so any rational with denominator d' has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.

Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n = qd + r$, where $0 \leq r < d$. We consider two cases:

Case 1: $r = 0$. Then $n = qd$, so $n / d = q$. Then q is a continued fraction for n / d.

Case 2: $r \neq 0$. Given that $n = qd + r$, we have $\frac{n}{d} = q + \frac{r}{d} = q + \frac{1}{d/r}$. Since $1 \leq r < d$, by our inductive hypothesis there is some continued fraction for d / r; call it F.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n/1$. Since n is a continued fraction and $n = n/1$, $P(1)$ holds.

For our inductive step, assume that for some $d \in \mathbb{N}$ with $d > 1$, that for any $d' \in \mathbb{N}$ where $1 \leq d' < d$, that $P(d')$ is true, so any rational with denominator d' has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.

Take any rational with denominator d; let it be n/d. Using the division algorithm, write $n = qd + r$, where $0 \leq r < d$. We consider two cases:

Case 1: $r = 0$. Then $n = qd$, so $n/d = q$. Then q is a continued fraction for n/d.

Case 2: $r \neq 0$. Given that $n = qd + r$, we have $n/d = q + 1/r$. Since $1 \leq r < d$, by our inductive hypothesis there is some continued fraction for d/r; call it F. Then $q + 1/F$ is a continued fraction for n/d.

In either case, we find a continued fraction for n/d, so $P(d)$ holds, completing the induction. ■
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n/1$. Since n is a continued fraction and $n = n/1$, $P(1)$ holds.

For our inductive step, assume that for some $d \in \mathbb{N}$ with $d > 1$, that for any $d' \in \mathbb{N}$ where $1 \leq d' < d$, that $P(d')$ is true, so any rational with denominator d' has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.

Take any rational with denominator d; let it be n/d. Using the division algorithm, write $n = qd + r$, where $0 \leq r < d$. We consider two cases:

Case 1: $r = 0$. Then $n = qd$, so $n/d = q$. Then q is a continued fraction for n/d.

Case 2: $r \neq 0$. Given that $n = qd + r$, we have $\frac{n}{d} = q + \frac{r}{d} = q + \frac{1}{\frac{d}{r}}$. Since $1 \leq r < d$, by our inductive hypothesis there is some continued fraction for d/r; call it F. Then $q + 1/F$ is a continued fraction for n/d. ■
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be “any rational with denominator d has a continued fraction.” We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n/1$. Since n is a continued fraction and $n = n/1$, $P(1)$ holds.

For our inductive step, assume that for some $d \in \mathbb{N}$ with $d > 1$, that for any $d' \in \mathbb{N}$ where $1 \leq d' < d$, that $P(d')$ is true, so any rational with denominator d' has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.

Take any rational with denominator d; let it be n/d. Using the division algorithm, write $n = qd + r$, where $0 \leq r < d$. We consider two cases:

Case 1: $r = 0$. Then $n = qd$, so $n/d = q$. Then q is a continued fraction for n/d.

Case 2: $r \neq 0$. Given that $n = qd + r$, we have $\frac{n}{d} = q + \frac{r}{d} = q + \frac{1}{\frac{d}{r}}$. Since $1 \leq r < d$, by our inductive hypothesis there is some continued fraction for d/r; call it F. Then $q + 1/F$ is a continued fraction for n/d.

In either case, we find a continued fraction for n/d, so $P(d)$ holds, completing the induction.
Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let \(P(d) \) be \(\text{“any rational with denominator } d \text{ has a continued fraction.”} \) We prove that \(P(d) \) is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

For our base case, we prove \(P(1) \), that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be \(n / 1. \) Since \(n \) is a continued fraction and \(n = n / 1, \) \(P(1) \) holds.

For our inductive step, assume that for some \(d \in \mathbb{N} \) with \(d > 1, \) that for any \(d' \in \mathbb{N} \) where \(1 \leq d' < d, \) that \(P(d') \) is true, so any rational with denominator \(d' \) has a continued fraction. We prove \(P(d) \) by showing that any rational with denominator \(d \) has a continued fraction.

Take any rational with denominator \(d; \) let it be \(n / d. \) Using the division algorithm, write \(n = qd + r, \) where \(0 \leq r < d. \) We consider two cases:

Case 1: \(r = 0. \) Then \(n = qd, \) so \(n / d = q. \) Then \(q \) is a continued fraction for \(n / d. \)

Case 2: \(r \neq 0. \) Given that \(n = qd + r, \) we have \(\frac{n}{d} = q + \frac{r}{d} = q + \frac{1}{\frac{d}{r}}. \)

Since \(1 \leq r < d, \) by our inductive hypothesis there is some continued fraction for \(d / r; \) call it \(F. \) Then \(q + 1 / F \) is a continued fraction for \(n / d. \)

In either case, we find a continued fraction for \(n / d, \) so \(P(d) \) holds, completing the induction. ■
For more on continued fractions:

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/cfINTRO.html
Next Time

• **Graphs and Relations**
 • Representing structured data.
 • Categorizing how objects are connected.