Cardinality and The Nature of Infinity
Recap from Last Time
Functions

- A **function** f is a mapping such that every value in A is associated with a single value in B.
 - For every $a \in A$, there exists some $b \in B$ with $f(a) = b$.
 - If $f(a) = b_0$ and $f(a) = b_1$, then $b_0 = b_1$.
- If f is a function from A to B, we call A the **domain** of f and B the **codomain** of f.
- We denote that f is a function from A to B by writing $f : A \rightarrow B$
Injective Functions

- A function $f : A \rightarrow B$ is called **injective** (or **one-to-one**; formal: *if* $f(x_0) = f(x_1)$, then $x_0 = x_1$) iff each element of the codomain has at most one element of the domain associated with it.
 - A function with this property is called an **injection**.
 - Formally:

 \[
 \text{If } f(x_0) = f(x_1), \text{ then } x_0 = x_1
 \]
 - An intuition: injective functions label the objects from A using names from B.

Surjective Functions

• A function $f : A \to B$ is called **surjective** (or **onto**) iff each element of the codomain has at least one element of the domain associated with it.

 • A function with this property is called a **surjection**.

• Formally:

 For any $b \in B$, there exists at least one $a \in A$ such that $f(a) = b$.

• An intuition: surjective functions cover every element of B with at least one element of A.
Bijections

- A function that associates each element of the codomain with a unique element of the domain is called **bijective**.
 - Such a function is a **bijection**.
- Formally, a bijection is a function that is both **injective** and **surjective**.
- A bijection is a one-to-one correspondence between two sets.
Comparing Cardinalities

- The relationships between set cardinalities are defined in terms of functions between those sets.

- \(|S| = |T|\) is defined using bijections.

\(|S| = |T| \text{ iff there is a bijection } f : S \to T\)
The Nature of Infinity
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \quad \ldots \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \ldots \]
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \]

\[\ldots \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \ldots \]
Infinite Cardinalities

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>(\mathbb{Z})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

... -3 -2 -1
Infinite Cardinalities

\begin{align*}
\mathbb{N} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\mathbb{Z} & \quad 0 & 1 & 2 & 3 & 4 & \ldots
\end{align*}

... -3 -2 -1
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \quad 0 \quad -1 \quad 1 \quad -2 \quad 2 \quad -3 \quad 3 \quad -4 \quad 4 \quad \ldots \]
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \quad 0 \quad -1 \quad 1 \quad -2 \quad 2 \quad -3 \quad 3 \quad -4 \quad 4 \quad \ldots \]
Infinite Cardinalities

\[
\begin{array}{cccccccccc}
\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\mathbb{Z} & 0 & -1 & 1 & -2 & 2 & -3 & 3 & -4 & 4 & \ldots \\
\end{array}
\]

\[f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}\]
Infinite Cardinalities

\[f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases} \]
Infinite Cardinalities

\[f(x) = \begin{cases}
2x & \text{if } x \geq 0
\end{cases} \]
Infinite Cardinalities

\[f(x) = \begin{cases}
 2x & \text{if } x \geq 0
\end{cases} \]
Infinite Cardinalities

\[f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases} \]
Theorem: \(|\mathbb{Z}| = |\mathbb{N}|\).

Proof: We exhibit a bijection from \(\mathbb{Z}\) to \(\mathbb{N}\). Let \(f: \mathbb{Z} \to \mathbb{N}\) be defined as follows:

First, we prove this is a legal function from \(\mathbb{Z}\) to \(\mathbb{N}\). Consider any \(x \in \mathbb{Z}\). Note that if \(x \geq 0\), then \(f(x) = 2x\) is a natural number. Otherwise, if \(x < 0\), then \(f(x) = -2x + 1 = 2(-x) + 1\). Since \(x\) is a negative integer, \(-x\) is a positive integer. Thus \(2(-x) + 1\) is a positive integer, which is a natural number. Thus in all cases \(f(x)\) is a natural number.

Next, we prove \(f\) is injective. Suppose that \(f(x) = f(y)\). We will prove that \(x = y\). Note that, by construction, \(f(z)\) is even iff \(z\) is even. Since \(f(x) = f(y)\), we know that \(x\) and \(y\) must have the same parity. We consider two cases:

Case 1: \(x\) and \(y\) are even. Then \(f(x) = 2x\) and \(f(y) = 2y\). Since \(f(x) = f(y)\), we have \(2x = 2y\). Thus \(x = y\).

Case 2: \(x\) and \(y\) are odd. Then \(f(x) = -2x - 1\) and \(f(y) = -2y - 1\). Since \(f(x) = f(y)\), we have \(-2x - 1 = -2y - 1\), so \(x = y\).

Finally, we prove \(f\) is surjective. Consider any \(n \in \mathbb{N}\). We will prove that there is some \(x \in \mathbb{Z}\) such that \(f(x) = n\). We consider two cases:

Case 1: \(n\) is even. Then \(n/2\) is a nonnegative integer. Moreover, \(f(n/2) = 2(n/2) = n\).

Case 2: \(n\) is odd. Then \(-((n+1)/2)\) is a negative integer. Moreover, \(f(-((n+1)/2)) = -2(-((n+1)/2)) - 1 = n + 1 - 1 = n\).

Since \(f\) is injective and surjective, it is a bijection. Thus \(|\mathbb{Z}| = |\mathbb{N}|\). ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}.

Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}.

Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is a positive integer, $2x$ is a natural number. Otherwise, if $x < 0$, then $f(x) = -2x + 1 = 2(-x) + 1$. Since x is a negative integer, $-x$ is a positive integer. Thus $2(-x) + 1$ is a positive integer, which is a natural number. Thus in all cases $f(x)$ is a natural number.

Next, we prove f is injective.

Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is even. Since $f(x) = f(y)$, we know that x and y must have the same parity. We consider two cases:

Case 1: x and y are even. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are odd. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$.

We consider two cases:

Case 1: n is even. Then $n/2$ is a nonnegative integer. Moreover, $f(n/2) = 2(n/2) = n$.

Case 2: n is odd. Then $-(n+1)/2$ is a negative integer. Moreover, $f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: |\mathbb{Z}| = |\mathbb{N}|.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let \(f : \mathbb{Z} \to \mathbb{N} \) be defined as follows:

\[
 f(x) = \begin{cases}
 2x & \text{if } x \geq 0 \\
 -2x - 1 & \text{otherwise}
 \end{cases}
\]

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}.
Consider any \(x \in \mathbb{Z} \). Note that if \(x \geq 0 \), then \(f(x) = 2x \) is a natural number. Otherwise, if \(x < 0 \), then \(f(x) = -2x - 1 \) is also a natural number.

Next, we prove \(f \) is injective. Suppose that \(f(x) = f(y) \). We will prove that \(x = y \). Note that, by construction, \(f(z) \) is even iff \(z \) is even. Since \(f(x) = f(y) \), we know that \(x \) and \(y \) must have the same parity.

We consider two cases:

Case 1: \(x \) and \(y \) are even.
Then \(f(x) = 2x \) and \(f(y) = 2y \). Since \(f(x) = f(y) \), we have \(2x = 2y \). Thus \(x = y \).

Case 2: \(x \) and \(y \) are odd.
Then \(f(x) = -2x - 1 \) and \(f(y) = -2y - 1 \). Since \(f(x) = f(y) \), we have \(-2x - 1 = -2y - 1 \), so \(x = y \).

Finally, we prove \(f \) is surjective. Consider any \(n \in \mathbb{N} \). We will prove that there is some \(x \in \mathbb{Z} \) such that \(f(x) = n \). We consider two cases:

Case 1: \(n \) is even. Then \(n/2 \) is a nonnegative integer. Moreover, \(f(n/2) = 2(n/2) = n \).

Case 2: \(n \) is odd. Then \(-(n+1)/2 \) is a negative integer. Moreover, \(f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n + 1 - 1 = n \).

Since \(f \) is injective and surjective, it is a bijection. Thus \(|\mathbb{Z}| = |\mathbb{N}| \). ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is a positive integer, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is even. Since $f(x) = f(y)$, we know that x and y must have the same parity. We consider two cases:

Case 1: x and y are even. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are odd. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n/2$ is a nonnegative integer. Moreover, $f(n/2) = 2(n/2) = n$.

Case 2: n is odd. Then $-(n+1)/2$ is a negative integer. Moreover, $f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$.

Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$.

Theorem: \(|\mathbb{Z}| = |\mathbb{N}|\).
Proof: We exhibit a bijection from \(\mathbb{Z}\) to \(\mathbb{N}\). Let \(f : \mathbb{Z} \to \mathbb{N}\) be defined as follows:

\[
f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}
\]

First, we prove this is a legal function from \(\mathbb{Z}\) to \(\mathbb{N}\). Consider any \(x \in \mathbb{Z}\). Note that if \(x \geq 0\), then \(f(x) = 2x\). Since in this case \(x\) is nonnegative, \(2x\) is a natural number.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is even. Since $f(x) = f(y)$, we know that x and y must have the same parity. We consider two cases:

Case 1: x and y are even. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are odd. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n/2$ is a nonnegative integer. Moreover, $f(n/2) = 2(n/2) = n$.

Case 2: n is odd. Then $-(n+1)/2$ is a negative integer. Moreover, $f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n/2$ is a nonnegative integer. Moreover, $f(n/2) = 2(n/2) = n$.

Case 2: n is odd. Then $-(n+1)/2$ is a negative integer. Moreover, $f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n+1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n/2$ is a nonnegative integer. Moreover, $f(n/2) = 2(n/2) = n$.

Case 2: n is odd. Then $-(n+1)/2$ is a negative integer. Moreover, $f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1$.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1$. Therefore, $f(x) \in \mathbb{N}$. Thus $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is even. Since $f(x) = f(y)$, we know that x and y must have the same parity. We consider two cases:

Case 1: x and y are even. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are odd. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n/2$ is a nonnegative integer. Moreover, $f(n/2) = 2(n/2) = n$.

Case 2: n is odd. Then $-(n+1)/2$ is a negative integer. Moreover, $f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n/2$ is a nonnegative integer. Moreover, $f(n/2) = 2(n/2) = n$.

Case 2: n is odd. Then $-(n+1)/2$ is a negative integer. Moreover, $f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n + 1 - 1 = n$. Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \to \mathbb{N}$.

Finally, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is even. Since $f(x) = f(y)$, we know that x and y must have the same parity. We consider two cases:

Case 1: x and y are even. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are odd. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n/2$ is a nonnegative integer. Moreover, $f(n/2) = 2(n/2) = n$.

Case 2: n is odd. Then $-(n+1)/2$ is a negative integer. Moreover, $f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$.

...
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even if and only if z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$
 f(x) = \begin{cases}
 2x & \text{if } x \geq 0 \\
 -2x - 1 & \text{otherwise}
 \end{cases}
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative.

Case 2: x and y are negative.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$.

Case 2: x and y are negative.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$.

Case 2: x and y are negative.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $x = y$, we have $-2x - 1 = -2y - 1$, which implies $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n/2$ is a nonnegative integer. Moreover, $f(n/2) = 2(n/2) = n$.

Case 2: n is odd. Then $-(n+1)/2$ is a negative integer. Moreover, $f(-(n+1)/2) = -2(-(n+1)/2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. \blacksquare
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$.

Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x)=\begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$.

Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

- **Case 1:** x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

- **Case 2:** x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

- **Case 1:** n is even.

- **Case 2:** n is odd.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x)=\begin{cases} 2x & \text{if} \ x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer.

Case 2: n is odd.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2) = 2(n / 2)$

Case 2: n is odd.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2) = 2(n / 2) = n$.

Case 2: n is odd.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2) = 2(n / 2) = n$.

Case 2: n is odd. Then $-(n + 1) / 2$ is a negative integer.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2) = 2(n / 2) = n$.

Case 2: n is odd. Then $-(n + 1) / 2$ is a negative integer. Moreover, $f(-(n + 1) / 2) = -2(-(n + 1) / 2) - 1$
Theorem: \(|\mathbb{Z}| = |\mathbb{N}|\).

Proof: We exhibit a bijection from \(\mathbb{Z}\) to \(\mathbb{N}\). Let \(f : \mathbb{Z} \to \mathbb{N}\) be defined as follows:

\[
f(x) = \begin{cases}
2x & \text{ if } x \geq 0 \\
-2x - 1 & \text{ otherwise}
\end{cases}
\]

First, we prove this is a legal function from \(\mathbb{Z}\) to \(\mathbb{N}\). Consider any \(x \in \mathbb{Z}\). Note that if \(x \geq 0\), then \(f(x) = 2x\). Since in this case \(x\) is nonnegative, \(2x\) is a natural number. Thus \(f(x) \in \mathbb{N}\). Otherwise, \(x < 0\), so \(f(x) = -2x - 1 = 2(-x) - 1\). Since \(x < 0\), we have \(-x > 0\), so \(-x \geq 1\). Then \(f(x) = 2(-x) - 1 \geq 2 - 1 = 1\). Thus \(f(x)\) is a positive integer, so \(f(x) \in \mathbb{N}\). In either case \(f(x) \in \mathbb{N}\), so \(f : \mathbb{Z} \to \mathbb{N}\).

Next, we prove \(f\) is injective. Suppose that \(f(x) = f(y)\). We will prove that \(x = y\). Note that, by construction, \(f(z)\) is even iff \(z\) is nonnegative. Since \(f(x) = f(y)\), we know \(x\) and \(y\) must have the same sign. We consider two cases:

\textit{Case 1}: \(x\) and \(y\) are nonnegative. Then \(f(x) = 2x\) and \(f(y) = 2y\). Since \(f(x) = f(y)\), we have \(2x = 2y\). Thus \(x = y\).

\textit{Case 2}: \(x\) and \(y\) are negative. Then \(f(x) = -2x - 1\) and \(f(y) = -2y - 1\). Since \(f(x) = f(y)\), we have \(-2x - 1 = -2y - 1\), so \(x = y\).

Finally, we prove \(f\) is surjective. Consider any \(n \in \mathbb{N}\). We will prove that there is some \(x \in \mathbb{Z}\) such that \(f(x) = n\). We consider two cases:

\textit{Case 1}: \(n\) is even. Then \(n / 2\) is a nonnegative integer. Moreover, \(f(n / 2) = 2(n / 2) = n\).

\textit{Case 2}: \(n\) is odd. Then \(-(n + 1) / 2\) is a negative integer. Moreover, \(f(-(n + 1) / 2) = -2(-(n + 1) / 2) - 1 = n + 1 - 1\).
Theorem: \(|\mathbb{Z}| = |\mathbb{N}|\).

Proof: We exhibit a bijection from \(\mathbb{Z}\) to \(\mathbb{N}\). Let \(f: \mathbb{Z} \rightarrow \mathbb{N}\) be defined as follows:

\[
 f(x) = \begin{cases}
 2x & \text{if } x \geq 0 \\
 -2x - 1 & \text{otherwise}
\end{cases}
\]

First, we prove this is a legal function from \(\mathbb{Z}\) to \(\mathbb{N}\). Consider any \(x \in \mathbb{Z}\). Note that if \(x \geq 0\), then \(f(x) = 2x\). Since in this case \(x\) is nonnegative, \(2x\) is a natural number. Thus \(f(x) \in \mathbb{N}\). Otherwise, \(x < 0\), so \(f(x) = -2x - 1 = 2(-x) - 1\). Since \(x < 0\), we have \(-x > 0\), so \(-x \geq 1\). Then \(f(x) = 2(-x) - 1 \geq 2 - 1 = 1\). Thus \(f(x)\) is a positive integer, so \(f(x) \in \mathbb{N}\). In either case \(f(x) \in \mathbb{N}\), so \(f: \mathbb{Z} \rightarrow \mathbb{N}\).

Next, we prove \(f\) is injective. Suppose that \(f(x) = f(y)\). We will prove that \(x = y\). Note that, by construction, \(f(z)\) is even iff \(z\) is nonnegative. Since \(f(x) = f(y)\), we know \(x\) and \(y\) must have the same sign. We consider two cases:

Case 1: \(x\) and \(y\) are nonnegative. Then \(f(x) = 2x\) and \(f(y) = 2y\). Since \(f(x) = f(y)\), we have \(2x = 2y\). Thus \(x = y\).

Case 2: \(x\) and \(y\) are negative. Then \(f(x) = -2x - 1\) and \(f(y) = -2y - 1\). Since \(f(x) = f(y)\), we have \(-2x - 1 = -2y - 1\), so \(x = y\).

Finally, we prove \(f\) is surjective. Consider any \(n \in \mathbb{N}\). We will prove that there is some \(x \in \mathbb{Z}\) such that \(f(x) = n\). We consider two cases:

Case 1: \(n\) is even. Then \(n / 2\) is a nonnegative integer. Moreover, \(f(n / 2) = 2(n / 2) = n\).

Case 2: \(n\) is odd. Then \(-(n + 1) / 2\) is a negative integer. Moreover, \(f(-(n + 1) / 2) = -2(-(n + 1) / 2) - 1 = n + 1 - 1 = n\).
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2) = 2(n / 2) = n$.

Case 2: n is odd. Then $-(n + 1) / 2$ is a negative integer. Moreover, $f(-(n + 1) / 2) = -2(-(n + 1) / 2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection.
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ -2x - 1 & \text{otherwise} \end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2) = 2(n / 2) = n$.

Case 2: n is odd. Then $-(n + 1) / 2$ is a negative integer. Moreover, $f(-(n + 1) / 2) = -2(-(n + 1) / 2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f : \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2) = 2(n / 2) = n$.

Case 2: n is odd. Then $-(n + 1) / 2$ is a negative integer. Moreover, $f(-(n + 1) / 2) = -2(-(n + 1) / 2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Why This Matters

• Note the thought process from this proof:
 • Start by drawing a picture to get an intuition.
 • Convert the picture into a mathematical object (here, a function).
 • Prove the object has the desired properties.

• This technique is at the heart of mathematics.

• We will use it extensively throughout the rest of this lecture.
Cantor's Theorem Revisited
Comparing Cardinalities

- We define $|S| \leq |T|$ as follows:

 $|S| \leq |T|$ iff there is an injection $f : S \rightarrow T$
Comparing Cardinalities

• Formally, we define $<$ on cardinalities as
\[|S| < |T| \text{ iff } |S| \leq |T| \text{ and } |S| \neq |T| \]

• In other words:
 • There is an injection from S to T.
 • There is no bijection between S and T.

\[
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\rightarrow
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\]
Cantor's Theorem

- **Cantor's Theorem** states that
 \[|S| < |\mathcal{P}(S)| \]

- This is how we concluded that there are more problems to solve than programs to solve them.

- We informally sketched a proof of this in the first lecture.

- Let's now formally prove Cantor's Theorem.
Lemma: For any set S, $|S| \leq |\wp(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to (\wp(S))$. Define $f(x) = \{x\}$. To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in (\wp(S))$. This means that $f(x) \in (\wp(S))$, so f is a valid function from S to $\wp(S)$. To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$. To see this, note that if $f(x_0) = f(x_1)$, then $\{x_0\} = \{x_1\}$. Since two sets are equal iff their elements are equal, this means that $x_0 = x_1$ as required. Thus f is an injection from S to $\wp(S)$, so $|S| \leq |\wp(S)|$. ■
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S.

Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \mathcal{P}(S)$.

To see that $f(x)$ is a legal function from S to $\mathcal{P}(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \mathcal{P}(S)$. This means that $f(x) \in \mathcal{P}(S)$, so f is a valid function from S to $\mathcal{P}(S)$.

To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$. To see this, note that if $f(x_0) = f(x_1)$, then $\{x_0\} = \{x_1\}$. Since two sets are equal iff their elements are equal, this means that $x_0 = x_1$ as required. Thus f is an injection from S to $\mathcal{P}(S)$, so $|S| \leq |\mathcal{P}(S)|$. ■
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \rightarrow \mathcal{P}(S)$.

![Diagram of geometric shapes]
Lemma: For any set S, $|S| \leq |\wp(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \wp(S)$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$. To see this, note that if $f(x_0) = f(x_1)$, then $\{x_0\} = \{x_1\}$. Since two sets are equal iff their elements are equal, this means that $x_0 = x_1$ as required. Thus f is an injection from S to $\wp(S)$, so $|S| \leq |\wp(S)|$. ■
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \mathcal{P}(S)$.
Lemma: For any set S, $|S| \leq |\wp(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \wp(S)$. Define $f(x) = \{x\}$. To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$. To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$. To see this, note that if $f(x_0) = f(x_1)$, then $\{x_0\} = \{x_1\}$. Since two sets are equal iff their elements are equal, this means that $x_0 = x_1$ as required. Thus f is an injection from S to $\wp(S)$, so $|S| \leq |\wp(S)|$. ■
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \mathcal{P}(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\mathcal{P}(S)$, consider any $x \in S$.
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \rightarrow \mathcal{P}(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\mathcal{P}(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \mathcal{P}(S)$.
Lemma: For any set S, $|S| \leq |\wp(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \rightarrow \wp(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$. ■
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \rightarrow \mathcal{P}(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\mathcal{P}(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \mathcal{P}(S)$. This means that $f(x) \in \mathcal{P}(S)$, so f is a valid function from S to $\mathcal{P}(S)$.

To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$.
Lemma: For any set S, $|S| \leq |\wp(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \wp(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$.
Lemma: For any set S, $|S| \leq |\wp(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \wp(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$. To see this, note that if $f(x_0) = f(x_1)$, then $\{x_0\} = \{x_1\}$.
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \rightarrow \mathcal{P}(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\mathcal{P}(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \mathcal{P}(S)$. This means that $f(x) \in \mathcal{P}(S)$, so f is a valid function from S to $\mathcal{P}(S)$.

To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$. To see this, note that if $f(x_0) = f(x_1)$, then $\{x_0\} = \{x_1\}$. Since two sets are equal iff their elements are equal, this means that $x_0 = x_1$ as required.
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \mathcal{P}(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\mathcal{P}(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \mathcal{P}(S)$. This means that $f(x) \in \mathcal{P}(S)$, so f is a valid function from S to $\mathcal{P}(S)$.

To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$. To see this, note that if $f(x_0) = f(x_1)$, then $\{x_0\} = \{x_1\}$. Since two sets are equal iff their elements are equal, this means that $x_0 = x_1$ as required. Thus f is an injection from S to $\mathcal{P}(S)$, so $|S| \leq |\mathcal{P}(S)|$. ■
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \mathcal{P}(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\mathcal{P}(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \mathcal{P}(S)$. This means that $f(x) \in \mathcal{P}(S)$, so f is a valid function from S to $\mathcal{P}(S)$.

To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$. To see this, note that if $f(x_0) = f(x_1)$, then $\{x_0\} = \{x_1\}$. Since two sets are equal iff their elements are equal, this means that $x_0 = x_1$ as required. Thus f is an injection from S to $\mathcal{P}(S)$, so $|S| \leq |\mathcal{P}(S)|$. ■
The Key Step

- We now need to show that
 \[\text{For any set } S, \ |S| \neq |\wp(S)| \]
- By definition, \(|S| = |\wp(S)| \) iff there exists a bijection \(f : S \to \wp(S) \).
- This means that
 \[|S| \neq |\wp(S)| \text{ iff there is no bijection } f : S \to \wp(S) \]
- Prove this by contradiction:
 - Assume that there is a bijection \(f : S \to \wp(S) \).
 - Derive a contradiction by showing that \(f \) is not a bijection.
X_0

X_1

X_2

X_3

X_4

X_5

...
\[x_0 \rightarrow \{ x_0, x_2, x_4, \ldots \} \]
\[x_1 \rightarrow \{ x_0, x_3, x_4, \ldots \} \]
\[x_2 \rightarrow \{ x_4, \ldots \} \]
\[x_3 \rightarrow \{ x_1, x_4, \ldots \} \]
\[x_4 \rightarrow \{ x_0, x_5, \ldots \} \]
\[x_5 \rightarrow \{ x_0, x_1, x_2, x_3, x_4, x_5, \ldots \} \]
\[\ldots \]
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>\ldots</th>
</tr>
</thead>
</table>

$x_0 \xrightarrow{} \{ x_0, x_2, x_4, \ldots \}$

$x_1 \xrightarrow{} \{ x_0, x_3, x_4, \ldots \}$

$x_2 \xrightarrow{} \{ x_4, \ldots \}$

$x_3 \xrightarrow{} \{ x_1, x_4, \ldots \}$

$x_4 \xrightarrow{} \{ x_0, x_5, \ldots \}$

$x_5 \xrightarrow{} \{ x_0, x_1, x_2, x_3, x_4, x_5, \ldots \}$

\ldots
<table>
<thead>
<tr>
<th>X_0</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>...</th>
</tr>
</thead>
</table>

- X_0 \mapsto $\{x_0, x_2, x_4, \ldots\}$
- X_1 \mapsto $\{x_0, x_3, x_4, \ldots\}$
- X_2 \mapsto $\{x_4, \ldots\}$
- X_3 \mapsto $\{x_1, x_4, \ldots\}$
- X_4 \mapsto $\{x_0, x_5, \ldots\}$
- X_5 \mapsto $\{x_0, x_1, x_2, x_3, x_4, x_5, \ldots\}$

...
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
</tbody>
</table>

x_0 \leftrightarrow \{ x_0, x_3, x_4, \ldots \}

x_1 \leftrightarrow \{ x_4, \ldots \}

x_2 \leftrightarrow \{ x_4, \ldots \}

x_3 \leftrightarrow \{ x_1, x_4, \ldots \}

x_4 \leftrightarrow \{ x_0, x_5, \ldots \}

x_5 \leftrightarrow \{ $x_0, x_1, x_2, x_3, x_4, x_5, \ldots$ \}

...
<table>
<thead>
<tr>
<th></th>
<th>X_0</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>X_1</td>
<td>${X_0, X_3, X_4, \ldots}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>${X_4, \ldots}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td>${X_1, X_4, \ldots}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td>${X_0, X_5, \ldots}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_5</td>
<td>${X_0, X_1, X_2, X_3, X_4, X_5, \ldots}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>{ x_4, ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>{ x_1, x_4, ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>{ x_0, x_5, ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>{ x_0, x_1, x_2, x_3, x_4, x_5, ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_0)</td>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
<td>(x_4)</td>
<td>(x_5)</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(x_0)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>(x_1)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>(x_2)</td>
<td>{} & {(x_1), (x_4), ... } & {} & {} & {} & {} & ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>{} & {} & {(x_1), (x_4), ... } & {} & {} & {} & ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_4)</td>
<td>{} & {} & {} & {(x_0), (x_5), ... } & {} & {} & ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_5)</td>
<td>{} & {} & {} & {} & {} & {(x_0), (x_1), (x_2), (x_3), (x_4), (x_5), ... } & ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_3</td>
<td>${x_1, x_4, \ldots}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>${x_0, x_5, \ldots}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>${x_0, x_1, x_2, x_3, x_4, x_5, \ldots}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>...</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
</tbody>
</table>
| x_3 | \{ | x_1,| | x_4,| | | ... |}
| x_4 | \{ | x_0,| x_5,| | | | ... |}
| x_5 | \{ | x_0,| x_1,| x_2,| x_3,| x_4,| x_5,| ... |}

...
| | \(x_0 \) | \(x_1 \) | \(x_2 \) | \(x_3 \) | \(x_4 \) | \(x_5 \) | \(
\ldots\) |
|---|---|---|---|---|---|---|---|
| \(x_0 \) | Y | N | Y | N | Y | N | \(
\ldots\) |
| \(x_1 \) | Y | N | N | Y | Y | N | \(
\ldots\) |
| \(x_2 \) | N | N | N | N | Y | N | \(
\ldots\) |
| \(x_3 \) | N | Y | N | N | Y | N | \(
\ldots\) |
| \(x_4 \) | \{ \(x_0, x_5 \), \ldots \} |
| \(x_5 \) | \{ \(x_0, x_1, x_2, x_3, x_4, x_5 \), \ldots \} |

\ldots
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>{ x_0, x_1, x_2, x_3, x_4, x_5, ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>\mathbf{x}_0</td>
<td>\mathbf{x}_1</td>
<td>\mathbf{x}_2</td>
<td>\mathbf{x}_3</td>
<td>\mathbf{x}_4</td>
<td>\mathbf{x}_5</td>
<td>...</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>\mathbf{x}_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>\mathbf{x}_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>\mathbf{x}_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>\mathbf{x}_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>\mathbf{x}_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>\mathbf{x}_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>...</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>...</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

...

<p>| | Y | N | N | N | N | N | Y | ... |</p>
<table>
<thead>
<tr>
<th></th>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_1)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_2)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_3)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_4)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(x_5)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

Flip all Y’s to N’s and vice-versa to get a new set.
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>…</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>…</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>…</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>…</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Flip all Y’s to N’s and vice-versa to get a new set.
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Flip all Y's to N's and vice-versa to get a new set.
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Flip all Y's to N's and vice-versa to get a new set.
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Which row in the table is paired with this set?

<table>
<thead>
<tr>
<th>X_0</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>X_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>X_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>X_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>X_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>X_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

...
Which row in the table is paired with this set?
Which row in the table is paired with this set?

<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

...
Which row in the table is paired with this set?

<table>
<thead>
<tr>
<th></th>
<th>x₀</th>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
<th>x₄</th>
<th>x₅</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₀</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x₁</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x₂</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x₃</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x₄</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x₅</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Which row in the table is paired with this set?
<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_1)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(x_2)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_3)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_4)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(x_5)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Which row in the table is paired with this set?
<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>(N)</td>
<td>(Y)</td>
<td>(N)</td>
<td>(Y)</td>
<td>(N)</td>
<td>...</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(Y)</td>
<td>(N)</td>
<td>(N)</td>
<td>(Y)</td>
<td>(Y)</td>
<td>(N)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(Y)</td>
<td>(N)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>(N)</td>
<td>(Y)</td>
<td>(N)</td>
<td>(N)</td>
<td>(Y)</td>
<td>(N)</td>
</tr>
<tr>
<td>(x_4)</td>
<td>(Y)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(Y)</td>
</tr>
<tr>
<td>(x_5)</td>
<td>(Y)</td>
<td>(Y)</td>
<td>(Y)</td>
<td>(Y)</td>
<td>(Y)</td>
<td>(Y)</td>
</tr>
</tbody>
</table>

Which row in the table is paired with this set?
Which row in the table is paired with this set?
Which row in the table is paired with this set?
Which row in the table is paired with this set?
Formalizing the Diagonal Argument

- Proof by contradiction; assume there is a bijection \(f : S \rightarrow \mathcal{P}(S) \).
- The diagonal argument shows that \(f \) cannot be a bijection:
 - Construct the table given the bijection \(f \).
 - Construct the complemented diagonal.
 - Show that the complemented diagonal cannot appear anywhere in the table.
 - Conclude, therefore, that \(f \) is not a bijection.

For finite sets this is fine, but what if the set is infinitely large?
Proof by contradiction; assume there is a bijection \(f : S \rightarrow \mathcal{P}(S) \).

The diagonal argument shows that \(f \) cannot be a bijection:

- Construct the table given the bijection \(f \).
- Construct the complemented diagonal.
- Show that the complemented diagonal cannot appear anywhere in the table.

Conclude, therefore, that \(f \) is not a bijection.
Formalizing the Diagonal Argument

Proof by contradiction; assume there is a bijection $f : S \rightarrow \mathcal{P}(S)$.

The diagonal argument shows that f cannot be a bijection:

- Construct the table given the bijection f.
- Construct the complemented diagonal.
- Show that the complemented diagonal cannot appear anywhere in the table.

Conclude, therefore, that f is not a bijection.

- For finite sets this is fine, but what if the set is infinitely large?
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

| **N** | **Y** | **Y** | **N** | **Y** | **N** | ... |
\[
f(x_0) = \{ x_0, x_2, x_4, \ldots \}
\]
\[
f(x_1) = \{ x_0, x_3, x_4, \ldots \}
\]
\[
f(x_2) = \{ x_4, \ldots \}
\]
\[
f(x_3) = \{ x_1, x_3, x_4, \ldots \}
\]
\[
f(x_4) = \{ x_1, x_5, \ldots \}
\]
\[
f(x_5) = \{ x_1, x_4, x_5, \ldots \}
\]
<table>
<thead>
<tr>
<th></th>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>(x_1)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>(x_2)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>(x_3)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>(x_4)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>(x_5)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 f(x_0) &= \{ x_0, x_2, x_4, \ldots \} \\
 f(x_1) &= \{ x_0, x_3, x_4, \ldots \} \\
 f(x_2) &= \{ x_4, \ldots \} \\
 f(x_3) &= \{ x_1, x_3, x_4, \ldots \} \\
 f(x_4) &= \{ x_1, x_5, \ldots \} \\
 f(x_5) &= \{ x_1, x_4, x_5, \ldots \}
\end{align*}
\]
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

\[f(x_0) = \{ x_0, x_2, x_4, \ldots \} \]
\[f(x_1) = \{ x_0, x_3, x_4, \ldots \} \]
\[f(x_2) = \{ x_4, \ldots \} \]
\[f(x_3) = \{ x_1, x_3, x_4, \ldots \} \]
\[f(x_4) = \{ x_1, x_5, \ldots \} \]
\[f(x_5) = \{ x_1, x_4, x_5, \ldots \} \]
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
f(x_0) = \{ x_0, x_2, x_4, \ldots \}
\]

\[
f(x_1) = \{ x_0, x_3, x_4, \ldots \}
\]

\[
f(x_2) = \{ x_4, \ldots \}
\]

\[
f(x_3) = \{ x_1, x_3, x_4, \ldots \}
\]

\[
f(x_4) = \{ x_1, x_5, \ldots \}
\]

\[
f(x_5) = \{ x_1, x_4, x_5, \ldots \}
\]
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
</tbody>
</table>

$f(x_0) = \{ x_0, x_2, x_4, \ldots \}$

$f(x_1) = \{ x_0, x_3, x_4, \ldots \}$

$f(x_2) = \{ x_4, \ldots \}$

$f(x_3) = \{ x_1, x_3, x_4, \ldots \}$

$f(x_4) = \{ x_1, x_5, \ldots \}$

$f(x_5) = \{ x_1, x_4, x_5, \ldots \}$
The **diagonal set** D is the set

$$D = \{ \ x \in S \mid x \notin f(x) \ \}$$

There is no longer a dependence on the existence of the two-dimensional table.
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D = \{ x \in S | x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$.
By our definition of D, this means that $y \notin D$.
However, since $y \in f(y)$ and $f(y) = D$, we have $y \in D$.
We have reached a contradiction.

Case 2: $y \notin f(y)$.
By our definition of D, this means that $y \in D$.
However, since $y \notin f(y)$ and $f(y) = D$, we have $y \notin D$.
We have reached a contradiction.

In either case we reach a contradiction, so our assumption must have been wrong.
Thus for every set S, we have that $|S| \neq |\wp(S)|$. ■
Lemma: For any set S, $|S| \neq |\varnothing(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\varnothing(S)|$.
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \to \wp(S)$.
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \rightarrow \wp(S)$. Consider the set $D = \{ x \in S \mid x \notin f(x) \}$.
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \to \wp(S)$. Consider the set $D = \{ x \in S \mid x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

In either case we reach a contradiction, so our assumption must have been wrong. Thus for every set S, we have that $|S| \neq |\wp(S)|$. ■
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \to \wp(S)$. Consider the set $D = \{ x \in S | x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$.

In either case we reach a contradiction, so our assumption must have been wrong. Thus for every set S, we have that $|S| \neq |\wp(S)|$. ■
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \to \wp(S)$. Consider the set $D = \{ x \in S | x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$.
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \to \wp(S)$. Consider the set $D = \{ x \in S | x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \to \wp(S)$. Consider the set $D = \{ x \in S \mid x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$.

Case 2: $y \notin f(y)$.
Lemma: For any set S, $|S| \neq |\mathcal{P}(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\mathcal{P}(S)|$. This means that there exists a bijection $f : S \to \mathcal{P}(S)$. Consider the set $D = \{ x \in S | x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$.

Case 2: $y \notin f(y)$.
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \to \wp(S)$. Consider the set $D = \{ x \in S | x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$.

However, since $y \in f(y)$ and $f(y) = D$, we have $y \in D$.

Case 2: $y \notin f(y)$.

Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \rightarrow \wp(S)$. Consider the set $D = \{ x \in S \mid x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y) = D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$.
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \rightarrow \wp(S)$. Consider the set $D = \{ x \in S | x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y) = D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. We have reached a contradiction.

In either case we reach a contradiction, so our assumption must have been wrong. Thus for every set S, we have that $|S| \neq |\wp(S)|$. ■
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \rightarrow \wp(S)$. Consider the set $D = \{ x \in S | x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y) = D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y) = D$, we have $y \notin D$. We have reached a contradiction.

In either case we reach a contradiction, so our assumption must have been wrong. Thus for every set S, we have that $|S| \neq |\wp(S)|$. ■
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \to \wp(S)$. Consider the set $D = \{ x \in S \mid x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y) = D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y) = D$, we have $y \notin D$. We have reached a contradiction.

Thus for every set S, we have that $|S| \neq |\wp(S)|$. ■
Lemma: For any set S, $|S| \neq |\mathcal{P}(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\mathcal{P}(S)|$. This means that there exists a bijection $f : S \to \mathcal{P}(S)$. Consider the set $D = \{ x \in S | x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y) = D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y) = D$, we have $y \notin D$. We have reached a contradiction.

In either case we reach a contradiction, so our assumption must have been wrong.
Lemma: For any set \(S \), \(|S| \neq |\wp(S)| \).

Proof: By contradiction; assume that there exists a set \(S \) such that \(|S| = |\wp(S)| \). This means that there exists a bijection \(f : S \to \wp(S) \). Consider the set \(D = \{ x \in S \mid x \notin f(x) \} \). Note that \(D \subseteq S \), since by construction every \(x \in D \) satisfies \(x \in S \).

Since \(f \) is a bijection, it is surjective, so there must be some \(y \in S \) such that \(f(y) = D \). Now, either \(y \in f(y) \), or \(y \notin f(y) \). We consider these cases separately:

Case 1: \(y \in f(y) \). By our definition of \(D \), this means that \(y \notin D \). However, since \(y \in f(y) \) and \(f(y) = D \), we have \(y \in D \). We have reached a contradiction.

Case 2: \(y \notin f(y) \). By our definition of \(D \), this means that \(y \in D \). However, since \(y \notin f(y) \) and \(f(y) = D \), we have \(y \notin D \). We have reached a contradiction.

In either case we reach a contradiction, so our assumption must have been wrong. Thus for every set \(S \), we have that \(|S| \neq |\wp(S)| \).
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D = \{ x \in S \mid x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y) = D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y) = D$, we have $y \notin D$. We have reached a contradiction.

In either case we reach a contradiction, so our assumption must have been wrong. Thus for every set S, we have that $|S| \neq |\wp(S)|$. ■
Theorem (Cantor's Theorem): For any set S, we have $|S| < |\mathcal{P}(S)|$.

Proof: Consider any set S. By our first lemma, we have that $|S| \leq |\mathcal{P}(S)|$. By our second lemma, we have that $|S| \neq |\mathcal{P}(S)|$. Thus $|S| < |\mathcal{P}(S)|$. ■
Why All This Matters

- The intuition behind a result is often more important than the result itself.
- Given the intuition, you can usually reconstruct the proof.
- Given just the proof, it is almost impossible to reconstruct the intuition.
- Think about compilation – you can more easily go from a high-level language to machine code than the other way around.
Cantor's *Other* Diagonal Argument
What is $|\mathbb{R}|$?
Theorem: $|\mathbb{N}| < |\mathbb{R}|$.
Sketch of the Proof

- To prove that $|\mathbb{N}| < |\mathbb{R}|$, we will use a modification of the proof of Cantor's theorem.
- First, we will directly prove that $|\mathbb{N}| \leq |\mathbb{R}|$.
- Second, we will use a proof by diagonalization to show that $|\mathbb{N}| \neq |\mathbb{R}|$.
Theorem: $|\mathbb{N}| \leq |\mathbb{R}|$.
Theorem: \(|\mathbb{N}| \leq |\mathbb{R}|.\)

Proof: We will exhibit an injection \(f : \mathbb{N} \to \mathbb{R}\). Thus by definition, \(|\mathbb{N}| \leq |\mathbb{R}|.\)
Theorem: $|\mathbb{N}| \leq |\mathbb{R}|$.
Proof: We will exhibit an injection $f : \mathbb{N} \to \mathbb{R}$. Thus by definition, $|\mathbb{N}| \leq |\mathbb{R}|$.

Consider the function $f(n) = n$. Since all natural numbers are real numbers, this is a valid function from \mathbb{N} to \mathbb{R}. Moreover, it is injective. To see this, consider any $n_0, n_1 \in \mathbb{N}$ such that $f(n_0) = f(n_1)$. We will prove that $n_0 = n_1$. To see this, note that $n_0 = f(n_0) = f(n_1) = n_1$. Thus $n_0 = n_1$, as required, so f is injective. ■
\[\mathbb{N} \neq \mathbb{R}\]

- Now, we need to show that \(|\mathbb{N}| \neq |\mathbb{R}|\).
- To do this, we will use a proof by diagonalization similar to the one for Cantor's Theorem.
 - Assume there is a bijection \(f : \mathbb{N} \to \mathbb{R}\).
 - Construct a two-dimensional table from \(f\).
 - Construct a "diagonal number" from the table.
 - Show the diagonal number is not in the table.
 - Conclude \(f\) is not a bijection.
0 \leftrightarrow 8. 6 7 5 3 0 ... \\
1 \leftrightarrow 3. 1 4 1 5 9 ... \\
2 \leftrightarrow 0. 1 2 3 5 8 ... \\
3 \leftrightarrow -1. 0 0 0 0 0 0 0 0 0 ... \\
4 \leftrightarrow 2. 7 1 8 2 8 ... \\
5 \leftrightarrow 1. 6 1 8 0 3 ... \\
... \leftrightarrow
| | d_0 | d_1 | d_2 | d_3 | d_4 | d_5 | ...
|---|-------|-------|-------|-------|-------|-------|.....
| 0 | 8. | 6. | 7. | 5. | 3. | 0. |...
| 1 | 3. | 1. | 4. | 1. | 5. | 9. |...
| 2 | 0. | 1. | 2. | 3. | 5. | 8. |...
| 3 | -1. | 0. | 0. | 0. | 0. | 0. |...
| 4 | 2. | 7. | 1. | 8. | 2. | 8. |...
| 5 | 1. | 6. | 1. | 8. | 0. | 3. |...
|...| ... | ... | ... | ... | ... | ... |...
|...| ... | ... | ... | ... | ... | ... |...
<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.</td>
<td>6.</td>
<td>7.</td>
<td>5.</td>
<td>3.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1.</td>
<td>4.</td>
<td>1.</td>
<td>5.</td>
<td>9.</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>5.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7.</td>
<td>1.</td>
<td>8.</td>
<td>2.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6.</td>
<td>1.</td>
<td>8.</td>
<td>0.</td>
<td>3.</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>d_0</td>
<td>d_1</td>
<td>d_2</td>
<td>d_3</td>
<td>d_4</td>
<td>d_5</td>
<td>...</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>8. 6</td>
<td>7. 5</td>
<td>3. 0</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>3. 1</td>
<td>4. 1</td>
<td>5. 9</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0. 1</td>
<td>2. 3</td>
<td>5. 8</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>1. 0</td>
<td>0. 0</td>
<td>0. 0</td>
<td>0. 0</td>
<td>0. 0</td>
<td>0. 0</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2. 7</td>
<td>1. 8</td>
<td>2. 8</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1. 6</td>
<td>1. 8</td>
<td>0. 3</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>d_0</td>
<td>d_1</td>
<td>d_2</td>
<td>d_3</td>
<td>d_4</td>
<td>d_5</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>8.</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>d_0</td>
<td>d_1</td>
<td>d_2</td>
<td>d_3</td>
<td>d_4</td>
<td>d_5</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>8.</td>
<td>6.</td>
<td>7.</td>
<td>5.</td>
<td>3.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1.</td>
<td>4.</td>
<td>1.</td>
<td>5.</td>
<td>9.</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>5.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7.</td>
<td>1.</td>
<td>8.</td>
<td>2.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6.</td>
<td>1.</td>
<td>8.</td>
<td>0.</td>
<td>3.</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

| 8. | 1. | 2. | 0. | 2. | 3. | ... |
Set all nonzero values to 0 and all 0s to 1.
Set all nonzero values to 0 and all 0s to 1.
<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.</td>
<td>6.</td>
<td>7.</td>
<td>5.</td>
<td>3.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1.</td>
<td>4.</td>
<td>1.</td>
<td>5.</td>
<td>9.</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>5.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7.</td>
<td>1.</td>
<td>8.</td>
<td>2.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6.</td>
<td>1.</td>
<td>8.</td>
<td>0.</td>
<td>3.</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

0. 0 0 0 1 0 0 ...
<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>…</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>…</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>…</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>…</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>…</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Which natural number is paired with this real number?
<table>
<thead>
<tr>
<th></th>
<th>(d_0)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
<th>(d_5)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.067530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>3.14159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0.12358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>-1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2.71828</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1.61803</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Which natural number is paired with this real number?
Which natural number is paired with this real number?

<table>
<thead>
<tr>
<th></th>
<th>(d_0)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
<th>(d_5)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.</td>
<td>6.</td>
<td>7.</td>
<td>5.</td>
<td>3.</td>
<td>0.</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>1</td>
<td>3.1</td>
<td>4.1</td>
<td>1.</td>
<td>5.</td>
<td>9.</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>1.2</td>
<td>3.</td>
<td>5.</td>
<td>8.</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.7</td>
<td>1.8</td>
<td>2.8</td>
<td>(\ldots)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
<td>1.8</td>
<td>0.3</td>
<td>(\ldots)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(d_0)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
<th>(d_5)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>(\ldots)</td>
<td></td>
</tr>
</tbody>
</table>
Which natural number is paired with this real number?
<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.0</td>
<td>6.0</td>
<td>7.0</td>
<td>5.0</td>
<td>3.0</td>
<td>0.0</td>
<td>…</td>
</tr>
<tr>
<td>1</td>
<td>3.0</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>5.0</td>
<td>9.0</td>
<td>…</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>5.0</td>
<td>8.0</td>
<td>…</td>
</tr>
<tr>
<td>3</td>
<td>-1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>…</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>7.0</td>
<td>1.0</td>
<td>8.0</td>
<td>2.0</td>
<td>8.0</td>
<td>…</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>6.0</td>
<td>1.0</td>
<td>8.0</td>
<td>0.0</td>
<td>3.0</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Which natural number is paired with this real number?

```
0.0001000...
```
Which natural number is paired with this real number?
<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>\ldots</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>\ldots</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>\ldots</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>\ldots</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>\ldots</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Which natural number is paired with this real number?

0. 0 0 1 0 0 0 \ldots
Which natural number is paired with this real number?
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$.

By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$. We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}$, $n > 0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n) = d$. So consider $f(n)$ and d. We consider two cases:

Case 1: $f(n) = 0$. Then by construction $d_n = 1$, meaning that $f(n) \neq d$.

Case 2: $f(n) \neq 0$. Then by construction $d_n = 0$, meaning that $f(n) \neq d$.

In either case, $f(n) \neq d$. This contradicts the fact that $f(n) = d$. We have reached a contradiction, so our assumption must have been wrong. Thus $|\mathbb{N}| \neq |\mathbb{R}|$. ■
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \to \mathbb{R}$.
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \to \mathbb{R}$.

We introduce some new notation.
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \to \mathbb{R}$.

We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}, n > 0$, be the nth digit in the decimal representation of r.

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n) = d$. So consider $f(n)$ and d_n. We consider two cases:

Case 1: $f(n) = 0$. Then by construction $d_n = 1$, meaning that $f(n) \neq d$.

Case 2: $f(n) \neq 0$. Then by construction $d_n = 0$, meaning that $f(n) \neq d$.

In either case, $f(n) \neq d$. This contradicts the fact that $f(n) = d$. We have reached a contradiction, so our assumption must have been wrong. Thus $|\mathbb{N}| \neq |\mathbb{R}|$. ■
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}, n > 0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$d_n = \begin{cases}
1 & \text{if } f(n)_n = 0 \\
0 & \text{otherwise}
\end{cases}$$
Theorem: \(|\mathbb{N}| \neq |\mathbb{R}|\).

Proof: By contradiction; suppose that \(|\mathbb{N}| = |\mathbb{R}|\). Then there exists a bijection \(f : \mathbb{N} \rightarrow \mathbb{R}\).

We introduce some new notation. For a real number \(r\), let \(r_0\) be the integer part of \(r\), and let \(r_n\) for \(n \in \mathbb{N}, n > 0\), be the \(n\)th digit in the decimal representation of \(r\). Now, define the real number \(d\) as follows:

\[
d_n = \begin{cases}
1 & \text{if } f(n)_n = 0 \\
0 & \text{otherwise}
\end{cases}
\]

Since \(d \in \mathbb{R}\), there must be some \(n \in \mathbb{N}\) such that \(f(n) = d\).
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \to \mathbb{R}$.

We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}$, $n > 0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$d_n = \begin{cases} 1 & \text{if } f(n)_n = 0 \\ 0 & \text{otherwise} \end{cases}$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n) = d$. So consider $f(n)_n$ and d_n.
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \to \mathbb{R}$.

We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}, n > 0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$d_n = \begin{cases} 1 & \text{if } f(n)_n = 0 \\ 0 & \text{otherwise} \end{cases}$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n) = d$. So consider $f(n)_n$ and d_n. We consider two cases:

Case 1: $f(n)_n = 0$.

Case 2: $f(n)_n \neq 0$.
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \to \mathbb{R}$.

We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}, n > 0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$d_n = \begin{cases}
1 & \text{if } f(n)_n = 0 \\
0 & \text{otherwise}
\end{cases}$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n) = d$. So consider $f(n)_n$ and d_n. We consider two cases:

Case 1: $f(n)_n = 0$. Then by construction $d_n = 1$, meaning that $f(n) \neq d$.

Case 2: $f(n)_n \neq 0$.
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}, n > 0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$d_n = \begin{cases} 1 & \text{if } f(n)_n = 0 \\ 0 & \text{otherwise} \end{cases}$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n) = d$. So consider $f(n)_n$ and d_n. We consider two cases:

Case 1: $f(n)_n = 0$. Then by construction $d_n = 1$, meaning that $f(n) \neq d$.

Case 2: $f(n)_n \neq 0$. Then by construction $d_n = 0$, meaning that $f(n) \neq d$.
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \to \mathbb{R}$.

We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}$, $n > 0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$d_n = \begin{cases}
1 & \text{if } f(n)_n = 0 \\
0 & \text{otherwise}
\end{cases}$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n) = d$. So consider $f(n)_n$ and d_n. We consider two cases:

Case 1: $f(n)_n = 0$. Then by construction $d_n = 1$, meaning that $f(n) \neq d$.

Case 2: $f(n)_n \neq 0$. Then by construction $d_n = 0$, meaning that $f(n) \neq d$.

In either case, $f(n) \neq d$. This contradicts the fact that $f(n) = d$.

We have reached a contradiction, so our assumption must have been wrong. Thus $|\mathbb{N}| \neq |\mathbb{R}|$. ■
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \to \mathbb{R}$.

We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}$, $n > 0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$d_n = \begin{cases}
1 & \text{if } f(n)_n = 0 \\
0 & \text{otherwise}
\end{cases}$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n) = d$. So consider $f(n)_n$ and d_n. We consider two cases:

Case 1: $f(n)_n = 0$. Then by construction $d_n = 1$, meaning that $f(n) \neq d$.

Case 2: $f(n)_n \neq 0$. Then by construction $d_n = 0$, meaning that $f(n) \neq d$.

In either case, $f(n) \neq d$. This contradicts the fact that $f(n) = d$. We have reached a contradiction, so our assumption must have been wrong.
Theorem: \(|\mathbb{N}| \neq |\mathbb{R}|\).

Proof: By contradiction; suppose that \(|\mathbb{N}| = |\mathbb{R}|\). Then there exists a bijection \(f : \mathbb{N} \rightarrow \mathbb{R}\).

We introduce some new notation. For a real number \(r\), let \(r_0\) be the integer part of \(r\), and let \(r_n\) for \(n \in \mathbb{N}, n > 0\), be the \(n\)th digit in the decimal representation of \(r\). Now, define the real number \(d\) as follows:

\[
d_n = \begin{cases}
1 & \text{if } f(n)_n = 0 \\
0 & \text{otherwise}
\end{cases}
\]

Since \(d \in \mathbb{R}\), there must be some \(n \in \mathbb{N}\) such that \(f(n) = d\). So consider \(f(n)_n\) and \(d_n\). We consider two cases:

Case 1: \(f(n)_n = 0\). Then by construction \(d_n = 1\), meaning that \(f(n) \neq d\).

Case 2: \(f(n)_n \neq 0\). Then by construction \(d_n = 0\), meaning that \(f(n) \neq d\).

In either case, \(f(n) \neq d\). This contradicts the fact that \(f(n) = d\). We have reached a contradiction, so our assumption must have been wrong. Thus \(|\mathbb{N}| \neq |\mathbb{R}|\).
Theorem: $|\mathbb{N}| \neq |\mathbb{R}|$.

Proof: By contradiction; suppose that $|\mathbb{N}| = |\mathbb{R}|$. Then there exists a bijection $f : \mathbb{N} \to \mathbb{R}$.

We introduce some new notation. For a real number r, let r_0 be the integer part of r, and let r_n for $n \in \mathbb{N}, n > 0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$d_n = \begin{cases}
1 & \text{if } f(n)_n = 0 \\
0 & \text{otherwise}
\end{cases}$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n) = d$. So consider $f(n)_n$ and d_n. We consider two cases:

Case 1: $f(n)_n = 0$. Then by construction $d_n = 1$, meaning that $f(n) \neq d$.

Case 2: $f(n)_n \neq 0$. Then by construction $d_n = 0$, meaning that $f(n) \neq d$.

In either case, $f(n) \neq d$. This contradicts the fact that $f(n) = d$. We have reached a contradiction, so our assumption must have been wrong. Thus $|\mathbb{N}| \neq |\mathbb{R}|$ ■
The Power of Diagonalization

• A large number of fundamental results in computability and complexity theory are based on diagonal arguments.

• We will see at least three of them in the remainder of the quarter.
An Interesting Historical Aside

- The diagonalization proof that $|\mathbb{N}| \neq |\mathbb{R}|$ was Cantor's original diagonal argument; he proved Cantor's theorem later on.

- However, this was *not* the first proof that $|\mathbb{N}| \neq |\mathbb{R}|$. Cantor had a different proof of this result based on infinite sequences.

- Come talk to me after class if you want to see the original proof; it's absolutely brilliant!
Cantor's *Other Other* Diagonal Argument

(This one is different!)
What is $|\mathbb{N}^2|$?
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0, 0)</td>
<td>(0, 1)</td>
<td>(0, 2)</td>
<td>(0, 3)</td>
<td>(0, 4)</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>(1, 0)</td>
<td>(1, 1)</td>
<td>(1, 2)</td>
<td>(1, 3)</td>
<td>(1, 4)</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>(2, 0)</td>
<td>(2, 1)</td>
<td>(2, 2)</td>
<td>(2, 3)</td>
<td>(2, 4)</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>(3, 0)</td>
<td>(3, 1)</td>
<td>(3, 2)</td>
<td>(3, 3)</td>
<td>(3, 4)</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>(4, 0)</td>
<td>(4, 1)</td>
<td>(4, 2)</td>
<td>(4, 3)</td>
<td>(4, 4)</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Diagonal 0
\(f(0, 0) = 0 \)

Diagonal 1
\(f(0, 1) = 1 \)
\(f(1, 0) = 2 \)

Diagonal 2
\(f(0, 2) = 3 \)
\(f(1, 1) = 4 \)
\(f(2, 0) = 5 \)

Diagonal 3
\(f(0, 3) = 6 \)
\(f(1, 2) = 7 \)
\(f(2, 1) = 8 \)
\(f(3, 0) = 9 \)

Diagonal 4
\(f(0, 4) = 10 \)
\(f(1, 3) = 11 \)
\(f(2, 2) = 12 \)
\(f(3, 1) = 13 \)
\(f(4, 0) = 14 \)

\[f(a, b) = \text{The number of elements on all previous diagonals} + \text{The index of the current pair on its diagonal} \]
\[
\begin{align*}
\text{Diagonal 0} \\
\quad f(0, 0) &= 0 \\
\text{Diagonal 1} \\
\quad f(0, 1) &= 1 \\
\quad f(1, 0) &= 2 \\
\text{Diagonal 2} \\
\quad f(0, 2) &= 3 \\
\quad f(1, 1) &= 4 \\
\quad f(2, 0) &= 5 \\
\text{Diagonal 3} \\
\quad f(0, 3) &= 6 \\
\quad f(1, 2) &= 7 \\
\quad f(2, 1) &= 8 \\
\quad f(3, 0) &= 9 \\
\text{Diagonal 4} \\
\quad f(0, 4) &= 10 \\
\quad f(1, 3) &= 11 \\
\quad f(2, 2) &= 12 \\
\quad f(3, 1) &= 13 \\
\quad f(4, 0) &= 14
\end{align*}
\]

\[
f(a, b) = \sum_{i=1}^{a+b} i + \text{The index of the current pair on its diagonal}
\]
\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} \]

The index of the current pair on its diagonal

Diagonal 0
\[f(0, 0) = 0 \]

Diagonal 1
\[f(0, 1) = 1 \]
\[f(1, 0) = 2 \]

Diagonal 2
\[f(0, 2) = 3 \]
\[f(1, 1) = 4 \]
\[f(2, 0) = 5 \]

Diagonal 3
\[f(0, 3) = 6 \]
\[f(1, 2) = 7 \]
\[f(2, 1) = 8 \]
\[f(3, 0) = 9 \]

Diagonal 4
\[f(0, 4) = 10 \]
\[f(1, 3) = 11 \]
\[f(2, 2) = 12 \]
\[f(3, 1) = 13 \]
\[f(4, 0) = 14 \]
\[
\begin{align*}
\text{Diagonal 0} \\
f(0, 0) &= 0 \\
\text{Diagonal 1} \\
f(0, 1) &= 1 \\
f(1, 0) &= 2 \\
\text{Diagonal 2} \\
f(0, 2) &= 3 \\
f(1, 1) &= 4 \\
f(2, 0) &= 5 \\
\text{Diagonal 3} \\
f(0, 3) &= 6 \\
f(1, 2) &= 7 \\
f(2, 1) &= 8 \\
f(3, 0) &= 9 \\
\text{Diagonal 4} \\
f(0, 4) &= 10 \\
f(1, 3) &= 11 \\
f(2, 2) &= 12 \\
f(2, 1) &= 13 \\
f(3, 0) &= 14
\end{align*}
\]

\[
f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a
\]
Diagonal 0
\(f(0, 0) = 0 \)

Diagonal 1
\(f(0, 1) = 1 \)
\(f(1, 0) = 2 \)

Diagonal 2
\(f(0, 2) = 3 \)
\(f(1, 1) = 4 \)
\(f(2, 0) = 5 \)

Diagonal 3
\(f(0, 3) = 6 \)
\(f(1, 2) = 7 \)
\(f(2, 1) = 8 \)
\(f(3, 0) = 9 \)

Diagonal 4
\(f(0, 4) = 10 \)
\(f(1, 3) = 11 \)
\(f(2, 2) = 12 \)
\(f(3, 1) = 13 \)
\(f(4, 0) = 14 \)

\(f(a, b) = (a + b)(a + b + 1) / 2 + a \)

This function is called Cantor's Pairing Function.
\[
f(a, b) = (a + b)(a + b + 1) / 2 + a
\]
Theorem: $|\mathbb{N}^2| = |\mathbb{N}|$.
Formalizing the Proof

- We need to show that this function f is injective and surjective.
- These proofs are nontrivial, but have beautiful intuitions.
- I've included the proofs at the end of these slides if you're curious.
Next Time

- **The Pigeonhole Principle**
 - Pleasing and poignant pigeon-powered proofs!
Appendix: Proof that $|\mathbb{N}^2| = |\mathbb{N}|$
Proving Surjectivity

- Given just the definition of our function:
 \[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]
 It is not at all clear that every natural number can be generated.

- However, given our intuition of how the function works (crawling along diagonals), we can start to formulate a proof of surjectivity.
Proving Surjectivity

\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.
Proving Surjectivity

\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.

\begin{array}{ccc}
 0 & 1 & 2 \\
 0 & (0, 0) & (0, 1) & (0, 2) \\
 1 & (1, 0) & (1, 1) & (1, 2) \\
 2 & (2, 0) & (2, 1) & (2, 2) \\
\end{array}
Proving Surjectivity

\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & (0,0) & (0,1) & (0,2) \\
1 & (1,0) & (1,1) & (1,2) \\
2 & (2,0) & (2,1) & (2,2) \\
\end{array}
\]
Proving Surjectivity

\[f(a, b) = (a + b)(a + b + 1) / 2 + a \]

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.

Total number of elements before

<table>
<thead>
<tr>
<th>Row</th>
<th>Elements before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>(m(m + 1) / 2)</td>
</tr>
</tbody>
</table>
Proving Surjectivity

\(f(a, b) = (a + b)(a + b + 1) / 2 + a \)

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.
 - Answer: Diagonal 16, since there are 136 pairs that come before it.
- Now that we know the diagonal, we can figure out the index into that diagonal.
 - 137 - 136 = 1.
- So we'd expect the first entry of diagonal 16 to map to 137.

\[f(1, 15) = 16 \times 17 / 2 + 1 = 136 + 1 = 137 \]
Generalizing Into a Proof

- We can generalize this logic as follows.
- To find a pair that maps to n:
 - Find which diagonal the number is in by finding the largest d such that
 $$d(d + 1) / 2 \leq n$$
 - Find which index it is in by subtracting the starting position of that diagonal:
 $$k = n - d(d + 1) / 2$$
 - The kth entry of diagonal d is the answer:
 $$f(k, d - k) = n$$
Lemma: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$ be a function from \mathbb{N}^2 to \mathbb{N}. Then f is surjective.
Lemma: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$ be a function from \mathbb{N}^2 to \mathbb{N}. Then f is surjective.

Proof: Consider any $n \in \mathbb{N}$.
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \).

Intuitively, \(d \) is the diagonal containing \(n \).

Now, consider the value of \(f(k, d - k) \).

\[
\begin{align*}
\text{Intuitively, } d & \text{ is the diagonal containing } n. \\
\text{Consider the largest } d & \in \mathbb{N} \text{ such that } d(d + 1) / 2 \leq n. \\
\text{Consider the value of } f(k, d - k). \\
\end{align*}
\]
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \).

Intuition: \(k \) is the position within this diagonal.

Now, we need to rigorously establish that we came up with a legal pair, and that the pair actually maps to \(n \).
Lemma: Let \(f(a, b) = (a + b)(a + b + 1)/2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1)/2 \leq n \). Then, let \(k = n - d(d + 1)/2 \). Since \(d(d + 1)/2 \leq n \), we have that \(k \in \mathbb{N} \).
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2\) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \).

We need to formalize our intuition by showing that \(d \) gives an index on this diagonal.
Lemma: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$ be a function from \mathbb{N}^2 to \mathbb{N}. Then f is surjective.

Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^2$ such that $f(a, b) = n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d + 1) / 2 \leq n$. Then, let $k = n - d(d + 1) / 2$. Since $d(d + 1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k > d$.

Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \).

If \(m \) and \(n \) are natural numbers or integers, then \(m < n \) iff \(m + 1 \leq n \). This fact is remarkably useful in proofs on \(\mathbb{N} \) or \(\mathbb{Z} \).
Lemma: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$ be a function from \mathbb{N}^2 to \mathbb{N}. Then f is surjective.

Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^2$ such that $f(a, b) = n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d + 1) / 2 \leq n$. Then, let $k = n - d(d + 1) / 2$. Since $d(d + 1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k > d$. Consequently, $k \geq d + 1$. This means that $d + 1 \leq k$.
Lemma: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$ be a function from \mathbb{N}^2 to \mathbb{N}. Then f is surjective.

Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^2$ such that $f(a, b) = n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d + 1) / 2 \leq n$. Then, let $k = n - d(d + 1) / 2$. Since $d(d + 1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k > d$. Consequently, $k \geq d + 1$. This means that

\[
\begin{align*}
 d + 1 &\leq k \\
 d + 1 &\leq n - d(d + 1) / 2
\end{align*}
\]
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2\) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1)/2 \leq n \). Then, let \(k = n - d(d + 1)/2 \). Since \(d(d + 1)/2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
d + 1 & \leq k \\
d + 1 & \leq n - d(d + 1)/2 \\
d + 1 + d(d + 1)/2 & \leq n
\end{align*}
\]
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[

d + 1 \leq k \\
-d + 1 \leq n - d(d + 1) / 2 \\
d + 1 + d(d + 1) / 2 \leq n \\
(2(d + 1) + d(d + 1)) / 2 \leq n
\]
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2\) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
 d + 1 &\leq k \\
 d + 1 &\leq n - d(d + 1) / 2 \\
 d + 1 + d(d + 1) / 2 &\leq n \\
 (2(d + 1) + d(d + 1)) / 2 &\leq n \\
 (d + 1)(d + 2) / 2 &\leq n
\end{align*}
\]
Lemma: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$ be a function from \mathbb{N}^2 to \mathbb{N}. Then f is surjective.

Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^2$ such that $f(a, b) = n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d + 1) / 2 \leq n$. Then, let $k = n - d(d + 1) / 2$. Since $d(d + 1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k > d$. Consequently, $k \geq d + 1$. This means that

\[
\begin{align*}
 d + 1 &\leq k \\
 d + 1 &\leq n - d(d + 1) / 2 \\
 d + 1 + d(d + 1) / 2 &\leq n \\
 (2(d + 1) + d(d + 1)) / 2 &\leq n \\
 (d + 1)(d + 2) / 2 &\leq n
\end{align*}
\]

But this means that d is not the largest natural number satisfying the inequality $d(d + 1) / 2 \leq n$, a contradiction.
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2\) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
 d + 1 & \leq k \\
 d + 1 & \leq n - d(d + 1) / 2 \\
 d + 1 + d(d + 1) / 2 & \leq n \\
 (2(d + 1) + d(d + 1)) / 2 & \leq n \\
 (d + 1)(d + 2) / 2 & \leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1) / 2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).
Lemma: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$ be a function from \mathbb{N}^2 to \mathbb{N}. Then f is surjective.

Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^2$ such that $f(a, b) = n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d + 1) / 2 \leq n$. Then, let $k = n - d(d + 1) / 2$. Since $d(d + 1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k > d$. Consequently, $k \geq d + 1$. This means that

\[
\begin{align*}
d + 1 & \leq k \\
d + 1 & \leq n - d(d + 1) / 2 \\
d + 1 + d(d + 1) / 2 & \leq n \\
(2(d + 1) + d(d + 1)) / 2 & \leq n \\
(d + 1)(d + 2) / 2 & \leq n
\end{align*}
\]

But this means that d is not the largest natural number satisfying the inequality $d(d + 1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.

Since $k \leq d$, we have that $0 \leq k - d$, so $k - d \in \mathbb{N}$.

We have a valid pair! All that's left to do now is to show that index k on diagonal d maps to n.
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
 d + 1 & \leq k \\
 d + 1 & \leq n - d(d + 1) / 2 \\
 d + 1 + d(d + 1) / 2 & \leq n \\
 (2(d + 1) + d(d + 1)) / 2 & \leq n \\
 (d + 1)(d + 2) / 2 & \leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1) / 2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).

Since \(k \leq d \), we have that \(0 \leq k - d \), so \(k - d \in \mathbb{N} \). Now, consider the value of \(f(k, d - k) \).
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
 d + 1 & \leq k \\
 d + 1 & \leq n - d(d + 1) / 2 \\
 d + 1 + d(d + 1) / 2 & \leq n \\
 (2(d + 1) + d(d + 1)) / 2 & \leq n \\
 (d + 1)(d + 2) / 2 & \leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1) / 2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).

Since \(k \leq d \), we have that \(0 \leq k - d \), so \(k - d \in \mathbb{N} \). Now, consider the value of \(f(k, d - k) \). This is

\[
f(k, d - k) = (k + d - k)(k + d - k + 1) / 2 + k
\]
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d+1)/2 \). Since \(d(d+1)/2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
d + 1 &\leq k \\
d + 1 &\leq n - d(d + 1)/2 \\
d + 1 + d(d + 1)/2 &\leq n \\
(2(d + 1) + d(d + 1))/2 &\leq n \\
(d + 1)(d + 2)/2 &\leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1)/2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).

Since \(k \leq d \), we have that \(0 \leq k - d \), so \(k - d \in \mathbb{N} \). Now, consider the value of \(f(k, d - k) \). This is

\[
f(k, d - k) = (k + d - k)(k + d - k + 1)/2 + k \\
= d(d + 1)/2 + k
\]
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2\) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
 d + 1 & \leq k \\
 d + 1 & \leq n - d(d + 1) / 2 \\
 d + 1 + d(d + 1) / 2 & \leq n \\
 (2(d + 1) + d(d + 1)) / 2 & \leq n \\
 (d + 1)(d + 2) / 2 & \leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1) / 2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).

Since \(k \leq d \), we have that \(0 \leq k - d \), so \(k - d \in \mathbb{N} \). Now, consider the value of \(f(k, d - k) \). This is

\[
\begin{align*}
 f(k, d - k) & = (k + d - k)(k + d - k + 1) / 2 + k \\
 & = d(d + 1) / 2 + k \\
 & = d(d + 1) / 2 + n - d(d + 1) / 2
\end{align*}
\]
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2\) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that
\[
\begin{align*}
d + 1 & \leq k \\
d + 1 & \leq n - d(d + 1) / 2 \\
d + 1 + d(d + 1) / 2 & \leq n \\
(2(d + 1) + d(d + 1)) / 2 & \leq n \\
(d + 1)(d + 2) / 2 & \leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1) / 2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).

Since \(k \leq d \), we have that \(0 \leq k - d \), so \(k - d \in \mathbb{N} \). Now, consider the value of \(f(k, d - k) \). This is
\[
\begin{align*}
f(k, d - k) &= (k + d - k)(k + d - k + 1) / 2 + k \\
&= d(d + 1) / 2 + k \\
&= d(d + 1) / 2 + n - d(d + 1) / 2 \\
&= n
\end{align*}
\]
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
 d + 1 &\leq k \\
 d + 1 &\leq n - d(d + 1) / 2 \\
 d + 1 + d(d + 1) / 2 &\leq n \\
 (2(d + 1) + d(d + 1)) / 2 &\leq n \\
 (d + 1)(d + 2) / 2 &\leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1) / 2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).

Since \(k \leq d \), we have that \(0 \leq k - d \), so \(k - d \in \mathbb{N} \). Now, consider the value of \(f(k, d - k) \). This is

\[
\begin{align*}
 f(k, d - k) &= (k + d - k)(k + d - k + 1) / 2 + k \\
 &= d(d + 1) / 2 + k \\
 &= d(d + 1) / 2 + n - d(d + 1) / 2 \\
 &= n
\end{align*}
\]

Thus there is a pair \((a, b) \in \mathbb{N}^2 \) (namely, \((k, d - k) \)) such that \(f(a, b) = n \).
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2\) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
 d + 1 & \leq k \\
 d + 1 & \leq n - d(d + 1) / 2 \\
 d + 1 + d(d + 1) / 2 & \leq n \\
 (2(d + 1) + d(d + 1)) / 2 & \leq n \\
 (d + 1)(d + 2) / 2 & \leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1) / 2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).

Since \(k \leq d \), we have that \(0 \leq k - d \), so \(k - d \in \mathbb{N} \). Now, consider the value of \(f(k, d - k) \). This is

\[
\begin{align*}
 f(k, d - k) & = (k + d - k)(k + d - k + 1) / 2 + k \\
 & = d(d + 1) / 2 + k \\
 & = d(d + 1) / 2 + n - d(d + 1) / 2 \\
 & = n
\end{align*}
\]

Thus there is a pair \((a, b) \in \mathbb{N}^2 \) (namely, \((k, d - k)\)) such that \(f(a, b) = n \). Consequently, \(f \) is surjective. ■
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
 d + 1 & \leq k, \\
 d + 1 & \leq n - d(d + 1) / 2, \\
 d + 1 + d(d + 1) / 2 & \leq n, \\
 (2(d + 1) + d(d + 1)) / 2 & \leq n, \\
 (d + 1)(d + 2) / 2 & \leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1) / 2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).

Since \(k \leq d \), we have that \(0 \leq k - d \), so \(k - d \in \mathbb{N} \). Now, consider the value of \(f(k, d - k) \). This is

\[
\begin{align*}
 f(k, d - k) & = (k + d - k)(k + d - k + 1) / 2 + k \\
 & = d(d + 1) / 2 + k \\
 & = d(d + 1) / 2 + n - d(d + 1) / 2 \\
 & = n
\end{align*}
\]

Thus there is a pair \((a, b) \in \mathbb{N}^2 \) (namely, \((k, d - k) \)) such that \(f(a, b) = n \). Consequently, \(f \) is surjective. ■
Proving Injectivity

- Given the function

\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]

- It is not at all obvious that \(f \) is injective.

- We'll have to use our intuition to figure out why this would be.
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0, 0)</td>
<td>(0, 1)</td>
<td>(0, 2)</td>
<td>(0, 3)</td>
<td>(0, 4)</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>(1, 0)</td>
<td>(1, 1)</td>
<td>(1, 2)</td>
<td>(1, 3)</td>
<td>(1, 4)</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>(2, 0)</td>
<td>(2, 1)</td>
<td>(2, 2)</td>
<td>(2, 3)</td>
<td>(2, 4)</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>(3, 0)</td>
<td>(3, 1)</td>
<td>(3, 2)</td>
<td>(3, 3)</td>
<td>(3, 4)</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>(4, 0)</td>
<td>(4, 1)</td>
<td>(4, 2)</td>
<td>(4, 3)</td>
<td>(4, 4)</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) (0, 3) (1, 2) (2, 1) (3, 0) (0, 4) (1, 3) (2, 2) (3, 1) (4, 0) ...
Proving Injectivity

\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]

- Suppose that \(f(a, b) = f(c, d) \). We need to prove \((a, b) = (c, d) \).
- Our proof will proceed in two steps:
 - First, we'll prove that \((a, b) \) and \((c, d) \) have to be in the same diagonal.
 - Next, using the fact that they're in the same diagonal, we'll show that they're at the same position within that diagonal.
 - From this, we can conclude \((a, b) = (c, d) \).
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

The point of this lemma is to let us “read off” what diagonal we are in just by looking at \(a \) and \(b \). We will need this in a second.
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1)/2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1)/2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality.
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1)/2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1)/2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
f(a, b) & = (a + b)(a + b + 1)/2 + a \\
& = (a + b)(a + b + 1)/2 + a \\
& > (a + b)(a + b + 1)/2 + a
\end{align*}
\]
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have
\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&\geq (a + b)(a + b + 1) / 2
\end{align*}
\]
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&\geq (a + b)(a + b + 1) / 2 \\
&= m(m + 1) / 2
\end{align*}
\]

Thus \(m' \) does not satisfy the inequality. Consequently, \(m = a + b \) is the largest natural number satisfying the inequality. ■
Lemma: Suppose \(f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
f(a, b) &= \frac{(a + b)(a + b + 1)}{2} + a \\
&\geq \frac{(a + b)(a + b + 1)}{2} \\
&= \frac{m(m + 1)}{2}
\end{align*}
\]

So \(m \) satisfies the inequality.
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
 f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
 &\geq (a + b)(a + b + 1) / 2 \\
 &= m(m + 1) / 2
\end{align*}
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality.
Lemma: Suppose \(f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1)/2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \\
\geq \frac{(a + b)(a + b + 1)}{2} \\
= \frac{m(m + 1)}{2}
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality. Take any \(m' \in \mathbb{N} \) where \(m' > a + b \).
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&\geq (a + b)(a + b + 1) / 2 \\
&= m(m + 1) / 2
\end{align*}
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality. Take any \(m' \in \mathbb{N} \) where \(m' > a + b \). This means that \(m' \geq a + b + 1 \).
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&\geq (a + b)(a + b + 1) / 2 \\
&= m(m + 1) / 2
\end{align*}
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality. Take any \(m' \in \mathbb{N} \) where \(m' > a + b \). This means that \(m' \geq a + b + 1 \). Consequently, we have

\[
m'(m' + 1) / 2 \geq (a + b + 1)(a + b + 2) / 2
\]
Lemma: Suppose $f(a, b) = (a + b)(a + b + 1) / 2 + a$. Then the largest $m \in \mathbb{N}$ for which $m(m + 1) / 2 \leq f(a, b)$ is given by $m = a + b$.

Proof: First, we show that $m = a + b$ satisfies the above inequality. Note that if $m = a + b$, we have

\[
f(a, b) = (a + b)(a + b + 1) / 2 + a \\
\geq (a + b)(a + b + 1) / 2 \\
= m(m + 1) / 2
\]

So m satisfies the inequality.

Next, we will show that any $m' \in \mathbb{N}$ with $m' > a + b$ will not satisfy the inequality. Take any $m' \in \mathbb{N}$ where $m' > a + b$. This means that $m' \geq a + b + 1$. Consequently, we have

\[
m'(m' + 1) / 2 \geq (a + b + 1)(a + b + 2) / 2 \\
= ((a + b)(a + b + 2) + 2(a + b + 1)) / 2
\]
Lemma: Suppose $f(a, b) = (a + b)(a + b + 1) / 2 + a$. Then the largest $m \in \mathbb{N}$ for which $m(m + 1) / 2 \leq f(a, b)$ is given by $m = a + b$.

Proof: First, we show that $m = a + b$ satisfies the above inequality. Note that if $m = a + b$, we have

$$f(a, b) = (a + b)(a + b + 1) / 2 + a$$
$$\geq (a + b)(a + b + 1) / 2$$
$$= m(m + 1) / 2$$

So m satisfies the inequality.

Next, we will show that any $m' \in \mathbb{N}$ with $m' > a + b$ will not satisfy the inequality. Take any $m' \in \mathbb{N}$ where $m' > a + b$. This means that $m' \geq a + b + 1$. Consequently, we have

$$m'(m' + 1) / 2 \geq (a + b + 1)(a + b + 2) / 2$$
$$= ((a + b)(a + b + 2) + 2(a + b + 1)) / 2$$
$$= (a + b)(a + b + 1) / 2 + a + b + 1$$
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
f(a, b) = (a + b)(a + b + 1) / 2 + a \\
\geq (a + b)(a + b + 1) / 2 \\
= m(m + 1) / 2
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality. Take any \(m' \in \mathbb{N} \) where \(m' > a + b \). This means that \(m' \geq a + b + 1 \). Consequently, we have

\[
m'(m' + 1) / 2 \geq (a + b + 1)(a + b + 2) / 2 \\
= ((a + b)(a + b + 2) + 2(a + b + 1)) / 2 \\
= (a + b)(a + b + 1) / 2 + a + b + 1 \\
> (a + b)(a + b + 1) / 2 + a
\]

Thus \(m' \) does not satisfy the inequality. Consequently, \(m = a + b \) is the largest natural number satisfying the inequality. ■
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
 f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
 &\geq (a + b)(a + b + 1) / 2 \\
 &= m(m + 1) / 2
\end{align*}
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality. Take any \(m' \in \mathbb{N} \) where \(m' > a + b \). This means that \(m' \geq a + b + 1 \). Consequently, we have

\[
\begin{align*}
 m'(m' + 1) / 2 &\geq (a + b + 1)(a + b + 2) / 2 \\
 &= ((a + b)(a + b + 2) + 2(a + b + 1)) / 2 \\
 &= (a + b)(a + b + 1) / 2 + a + b + 1 \\
 &> (a + b)(a + b + 1) / 2 + a \\
 &= f(a, b)
\end{align*}
\]

Thus \(m' \) does not satisfy the inequality. Consequently, \(m = a + b \) is the largest natural number satisfying the inequality. ■
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&\geq (a + b)(a + b + 1) / 2 \\
&= m(m + 1) / 2
\end{align*}
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality. Take any \(m' \in \mathbb{N} \) where \(m' > a + b \). This means that \(m' \geq a + b + 1 \). Consequently, we have

\[
\begin{align*}
m'(m' + 1) / 2 &\geq (a + b + 1)(a + b + 2) / 2 \\
&= ((a + b)(a + b + 2) + 2(a + b + 1)) / 2 \\
&= (a + b)(a + b + 1) / 2 + a + b + 1 \\
&> (a + b)(a + b + 1) / 2 + a \\
&= f(a, b)
\end{align*}
\]

Thus \(m' \) does not satisfy the inequality.
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1)/2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1)/2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
f(a, b) = (a + b)(a + b + 1)/2 + a \\
\geq (a + b)(a + b + 1)/2 \\
= m(m + 1)/2
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality. Take any \(m' \in \mathbb{N} \) where \(m' > a + b \). This means that \(m' \geq a + b + 1 \). Consequently, we have

\[
m'(m' + 1)/2 \geq (a + b + 1)(a + b + 2)/2 \\
= ((a + b)(a + b + 2) + 2(a + b + 1))/2 \\
= (a + b)(a + b + 1)/2 + a + b + 1 \\
> (a + b)(a + b + 1)/2 + a \\
= f(a, b)
\]

Thus \(m' \) does not satisfy the inequality. Consequently, \(m = a + b \) is the largest natural number satisfying the inequality.
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&\geq (a + b)(a + b + 1) / 2 \\
&= m(m + 1) / 2
\end{align*}
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality. Take any \(m' \in \mathbb{N} \) where \(m' > a + b \). This means that \(m' \geq a + b + 1 \). Consequently, we have

\[
\begin{align*}
m'(m' + 1) / 2 &\geq (a + b + 1)(a + b + 2) / 2 \\
&= ((a + b)(a + b + 2) + 2(a + b + 1)) / 2 \\
&= (a + b)(a + b + 1) / 2 + a + b + 1 \\
&> (a + b)(a + b + 1) / 2 + a \\
&= f(a, b)
\end{align*}
\]

Thus \(m' \) does not satisfy the inequality. Consequently, \(m = a + b \) is the largest natural number satisfying the inequality. \(\square \)
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.
Theorem: Let $f(a, b) = (a + b)(a + b + 1)/2 + a$. Then f is injective.

Proof: Consider any $(a, b), (c, d) \in \mathbb{N}^2$ such that $f(a, b) = f(c, d)$.
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that \(f(a, b) < (c + d)(c + d + 1) / 2 = f(c, d) \), contradicting that \(f(a, b) = f(c, d) \).

We have reached a contradiction, so our assumption must have been wrong. Thus \(a + b = c + d \).

Given this, we have that \(f(a, b) = f(c, d) \) since \((a, b) = (c, d) \), as required. ■
Theorem: Let \(f(a, b) = (a + b)(a + b + 1)/2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \).

Intuitively, this proves that \((a, b)\) and \((c, d)\) belong to the same diagonal.
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \).

But this means that \(f(a, b) < f(c, d) \), contradicting that \(f(a, b) = f(c, d) \). We have reached a contradiction, so our assumption must have been wrong. Thus \(a + b = c + d \). Given this, we have that \(f(a, b) = f(c, d) \) and \(a = c \) and \(a + b = c + d \), so we have that \(b = d \). Thus \((a, b) = (c, d)\), as required. ■
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \).
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a. \) Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \).
Theorem: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$. Then f is injective.

Proof: Consider any $(a, b), (c, d) \in \mathbb{N}^2$ such that $f(a, b) = f(c, d)$. We will show that $(a, b) = (c, d)$.

First, we will show that $a + b = c + d$. To do this, assume for the sake of contradiction that $a + b \neq c + d$. Then either $a + b < c + d$ or $a + b > c + d$. Assume without loss of generality that $a + b < c + d$.

By our lemma, we know that $m = a + b$ is the largest natural number such that $f(a, b) \leq m(m + 1) / 2$. Since $a + b < c + d$, this means that

$$f(a, b) = (a + b)(a + b + 1) / 2 + a$$
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&< (c + d)(c + d + 1) / 2
\end{align*}
\]

This step works because we know that any number \(n \) bigger than \(a + b \) doesn't satisfy

\[n(n + 1) / 2 \leq f(a, b) \]

This means that

\[f(a, b) < n(n + 1) / 2. \]
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&< (c + d)(c + d + 1) / 2 \\
&\leq (c + d)(c + d + 1) / 2 + c
\end{align*}
\]
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
 f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
 &< (c + d)(c + d + 1) / 2 \\
 \leq (c + d)(c + d + 1) / 2 + c \\
 &= f(c, d)
\end{align*}
\]
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2 \) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d) \).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&< (c + d)(c + d + 1) / 2 \\
&\leq (c + d)(c + d + 1) / 2 + c \\
&= f(c, d)
\end{align*}
\]

But this means that \(f(a, b) < f(c, d) \), contradicting that \(f(a, b) = f(c, d) \).
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
 f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
 &< (c + d)(c + d + 1) / 2 \\
 &\leq (c + d)(c + d + 1) / 2 + c \\
 &= f(c, d)
\end{align*}
\]

But this means that \(f(a, b) < f(c, d) \), contradicting that \(f(a, b) = f(c, d) \). We have reached a contradiction, so our assumption must have been wrong.
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
 f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
 &< (c + d)(c + d + 1) / 2 \\
 &\leq (c + d)(c + d + 1) / 2 + c \\
 &= f(c, d)
\end{align*}
\]

But this means that \(f(a, b) < f(c, d) \), contradicting that \(f(a, b) = f(c, d) \). We have reached a contradiction, so our assumption must have been wrong. Thus \(a + b = c + d \).

Now that we've got these points in the same diagonal, we just need to show that they have the same index.
Theorem: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$. Then f is injective.

Proof: Consider any $(a, b), (c, d) \in \mathbb{N}^2$ such that $f(a, b) = f(c, d)$. We will show that $(a, b) = (c, d)$.

First, we will show that $a + b = c + d$. To do this, assume for the sake of contradiction that $a + b \neq c + d$. Then either $a + b < c + d$ or $a + b > c + d$. Assume without loss of generality that $a + b < c + d$.

By our lemma, we know that $m = a + b$ is the largest natural number such that $f(a, b) \leq m(m + 1) / 2$. Since $a + b < c + d$, this means that

$$f(a, b) = (a + b)(a + b + 1) / 2 + a$$
$$< (c + d)(c + d + 1) / 2$$
$$\leq (c + d)(c + d + 1) / 2 + c$$
$$= f(c, d)$$

But this means that $f(a, b) < f(c, d)$, contradicting that $f(a, b) = f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a + b = c + d$. Given this, we have that

$$f(a, b) = f(c, d)$$
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
 f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
 &< (c + d)(c + d + 1) / 2 \\
 &\leq (c + d)(c + d + 1) / 2 + c \\
 &= f(c, d)
\end{align*}
\]

But this means that \(f(a, b) < f(c, d) \), contradicting that \(f(a, b) = f(c, d) \). We have reached a contradiction, so our assumption must have been wrong. Thus \(a + b = c + d \). Given this, we have that

\[
\begin{align*}
 f(a, b) &= f(c, d) \\
 (a + b)(a + b + 1) / 2 + a &= (c + d)(c + d + 1) / 2 + c
\end{align*}
\]
Theorem: Let $f(a, b) = (a + b)(a + b + 1) / 2 + a$. Then f is injective.

Proof: Consider any $(a, b), (c, d) \in \mathbb{N}^2$ such that $f(a, b) = f(c, d)$. We will show that $(a, b) = (c, d)$.

First, we will show that $a + b = c + d$. To do this, assume for the sake of contradiction that $a + b \neq c + d$. Then either $a + b < c + d$ or $a + b > c + d$. Assume without loss of generality that $a + b < c + d$.

By our lemma, we know that $m = a + b$ is the largest natural number such that $f(a, b) \leq m(m + 1) / 2$. Since $a + b < c + d$, this means that

$$f(a, b) = (a + b)(a + b + 1) / 2 + a < (c + d)(c + d + 1) / 2 \leq (c + d)(c + d + 1) / 2 + c = f(c, d)$$

But this means that $f(a, b) < f(c, d)$, contradicting that $f(a, b) = f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a + b = c + d$. Given this, we have that

$$f(a, b) = f(c, d)$$

$$(a + b)(a + b + 1) / 2 + a = (c + d)(c + d + 1) / 2 + c$$

$$(a + b)(a + b + 1) / 2 + a = (a + b)(a + b + 1) / 2 + c$$
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
 f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
 &< (c + d)(c + d + 1) / 2 \\
 &\leq (c + d)(c + d + 1) / 2 + c \\
 &= f(c, d)
\end{align*}
\]

But this means that \(f(a, b) < f(c, d) \), contradicting that \(f(a, b) = f(c, d) \). We have reached a contradiction, so our assumption must have been wrong. Thus \(a + b = c + d \). Given this, we have that

\[
\begin{align*}
 f(a, b) &= f(c, d) \\
 (a + b)(a + b + 1) / 2 + a &= (c + d)(c + d + 1) / 2 + c \\
 (a + b)(a + b + 1) / 2 + a &= (a + b)(a + b + 1) / 2 + c \\
 a &= c
\end{align*}
\]
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&< (c + d)(c + d + 1) / 2 \\
&\leq (c + d)(c + d + 1) / 2 + c \\
&= f(c, d)
\end{align*}
\]

But this means that \(f(a, b) < f(c, d) \), contradicting that \(f(a, b) = f(c, d) \). We have reached a contradiction, so our assumption must have been wrong. Thus \(a + b = c + d \). Given this, we have that

\[
\begin{align*}
f(a, b) &= f(c, d) \\
(a + b)(a + b + 1) / 2 + a &= (c + d)(c + d + 1) / 2 + c \\
(a + b)(a + b + 1) / 2 + a &= (a + b)(a + b + 1) / 2 + c \\
&\quad \quad a = c
\end{align*}
\]

Since \(a = c \) and \(a + b = c + d \), we have that \(b = d \).
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&< (c + d)(c + d + 1) / 2 \\
&\leq (c + d)(c + d + 1) / 2 + c \\
&= f(c, d)
\end{align*}
\]

But this means that \(f(a, b) < f(c, d) \), contradicting that \(f(a, b) = f(c, d) \). We have reached a contradiction, so our assumption must have been wrong. Thus \(a + b = c + d \). Given this, we have that

\[
\begin{align*}
f(a, b) &= f(c, d) \\
(a + b)(a + b + 1) / 2 + a &= (c + d)(c + d + 1) / 2 + c \\
(a + b)(a + b + 1) / 2 + a &= (a + b)(a + b + 1) / 2 + c \\
a &= c
\end{align*}
\]

Since \(a = c \) and \(a + b = c + d \), we have that \(b = d \). Thus \((a, b) = (c, d)\), as required.
Theorem: Let $f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a$. Then f is injective.

Proof: Consider any $(a, b), (c, d) \in \mathbb{N}^2$ such that $f(a, b) = f(c, d)$. We will show that $(a, b) = (c, d)$.

First, we will show that $a + b = c + d$. To do this, assume for the sake of contradiction that $a + b \neq c + d$. Then either $a + b < c + d$ or $a + b > c + d$. Assume without loss of generality that $a + b < c + d$.

By our lemma, we know that $m = a + b$ is the largest natural number such that $f(a, b) \leq m(m + 1) / 2$. Since $a + b < c + d$, this means that

$$f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a$$
$$< \frac{(c + d)(c + d + 1)}{2}$$
$$\leq \frac{(c + d)(c + d + 1)}{2} + c$$
$$= f(c, d)$$

But this means that $f(a, b) < f(c, d)$, contradicting that $f(a, b) = f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a + b = c + d$. Given this, we have that

$$f(a, b) = f(c, d)$$
$$\frac{(a + b)(a + b + 1)}{2} + a = \frac{(c + d)(c + d + 1)}{2} + c$$
$$a = c$$

Since $a = c$ and $a + b = c + d$, we have that $b = d$. Thus $(a, b) = (c, d)$, as required. ■