Reductions
The Limits of Computability

- Regular Languages
- CFLs
- DCFLs

- All Languages

- \(\overline{A_{TM}} \)
- \(L_D \)
- \(\overline{HALT} \)
- \(A_{TM} \)
The language $HALT$ is defined as

$$\{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$$

Equivalently:

$$\{x \mid x = \langle M, w \rangle \text{ for some TM } M \text{ and string } w, \text{ and } M \text{ halts on } w\}$$

Thus \overline{HALT} is

$$\{x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \text{ or } M \text{ is a TM that does not halt on } w\}$$
The language \text{HALT} is defined as \{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}.

Equivalently: \{x \mid x = \langle M, w \rangle \text{ for some TM } M \text{ and string } w, \text{ and } M \text{ halts on } w\}.

Thus, \text{HALT} is \{x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \text{ or } M \text{ is a TM that does not halt on } w\}.

That looks hard.
Cheating With Math

- As a mathematical simplification, we will assume the following:

 Every string can be decoded into any collection of objects.

- Every string is an encoding of some TM M.
- Every string is an encoding of some TM M and string w.
- Can do this as follows:
 - If the string is a legal encoding, go with that encoding.
 - Otherwise, pretend the string decodes to some predetermined group of objects.
Cheating With Math

• Example: Every string will be a valid C++ program.

• If it's already a C++ program, just compile it.

• Otherwise, pretend it's this program:

```cpp
int main() {
    return 0;
}
```
HALT and HALT

- The language $HALT$ is defined as
 \[
 \{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}.
 \]
- Thus \overline{HALT} is the language
 \[
 \{\langle M, w \rangle \mid M \text{ is a TM that doesn't halt on } w\}.
 \]
- Equivalently:
 \[
 HALT = \{\langle M, w \rangle \mid M \text{ is a TM that loops on } w\}.
 \]
The language $HALT$ is defined as:

$$\{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$$

Thus \overline{HALT} is the language:

$$\{\langle M, w \rangle \mid M \text{ is a TM that doesn't halt on } w\}$$

Equivalently:

$$\overline{HALT} = \{\langle M, w \rangle \mid M \text{ is a TM that loops on } w\}$$
The Takeaway Point

- When dealing with encodings, you don't need to consider strings that aren't valid encodings.
- This will keep our proofs much simpler than before.
Reductions
Finding Unsolvable Problems

- Last time, we found five unsolvable problems.
- We proved that L_D was unrecognizable, then used this fact to show four other languages were either undecidable or unrecognizable.
- In general, to prove that a problem is unsolvable (not R or not RE), we don't directly show that it is unsolvable.
- Instead, we show how a solution to that problem would let us solve an unsolvable problem.
Reductions

$\varphi \equiv \psi$?

Can be converted to

Can be used to solve

Tautology
Defining Reductions

- A **reduction** from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

 \[
 \text{For any } w \in \Sigma_1^*, \ w \in A \text{ iff } f(w) \in B
 \]
Defining Reductions

- A **reduction** from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$
Defining Reductions

- A **reduction** from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

 For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$
Defining Reductions

- A reduction from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

 \begin{align*}
 \text{For any } w \in \Sigma_1^*, \ w \in A \iff f(w) \in B
 \end{align*}

- Every $w \in A$ maps to some $f(w)$ in B.
- Every $w \notin A$ maps to some $f(w)$ not in B.
- f does not have to be injective or surjective.
Reducing $\varphi \equiv \psi$ to Tautology

- Let $EQUIV$ be
 \[
 EQUIV = \{ \langle \varphi, \psi \rangle \mid \varphi \equiv \psi \}
 \]
- Let $TAUTOLOGY$ be
 \[
 TAUTOLOGY = \{ \langle \varphi \rangle \mid \varphi \text{ is a tautology} \}
 \]
- To reduce $EQUIV$ to $TAUTOLOGY$, we want a function f such that
 \[
 \langle \varphi, \psi \rangle \in EQUIV \text{ iff } f(\langle \varphi, \psi \rangle) \in TAUTOLOGY
 \]
- One possible function we could use is
 \[
 f(\langle \varphi, \psi \rangle) = \langle \varphi \leftrightarrow \psi \rangle
 \]
Reducing any RE Language to A_{TM}

- Let L be any RE language, and let R be a recognizer for L.
- To reduce L to A_{TM}, we want a function f such that

$$w \in L \iff f(w) \in A_{TM}$$

- One possible reduction is

$$f(w) = \langle R, w \rangle$$
Why Reductions Matter

• If problem A reduces to problem B, we can use a recognizer/decider for B to recognize/decide problem A.

 • (There's a slight catch – we'll talk about this in a second).

• How is this possible?
$w \in A \iff f(w) \in B$

$H = \text{"On input } w:\n\begin{align*}
\text{Compute } f(w). \\
\text{Run } M \text{ on } f(w). \\
\text{If } M \text{ accepts } f(w), \text{ accept } w. \\
\text{If } M \text{ rejects } f(w), \text{ reject } w.\end{align*}$

$H \text{ accepts } w \iff M \text{ accepts } f(w) \iff f(w) \in B \iff w \in A$
A Problem

- Recall: f is a reduction from A to B iff
 \[w \in A \iff f(w) \in B \]
- Under this definition, any language A reduces to any language B unless $B = \emptyset$ or Σ^*.
- Since $B \neq \emptyset$ and $B \neq \Sigma^*$, there is some $w_{yes} \in B$ and some $w_{no} \notin B$.
- Define $f : \Sigma_1^* \rightarrow \Sigma_2^*$ as follows:
 \[
 \begin{align*}
 &\text{If } w \in A, \text{ then } f(w) = w_{yes} \\
 &\text{If } w \notin A, \text{ then } f(w) = w_{no}
 \end{align*}
 \]
- Then f is a reduction from A to B.
A Problem

• Example: let's reduce L_D to 0^*1^*.

• Take $w_{\text{yes}} = 01$, $w_{\text{no}} = 10$.

• Then $f(w)$ is defined as
 • If $w \in L_D$, $f(w) = 01$.
 • If $w \notin L_D$, $f(w) = 10$.

• There is no TM that can actually evaluate the function $f(w)$ on all inputs, since no TM can decide whether or not $w \in L_D$.
Example: let's reduce L_D to $\emptyset^* 1^*$.

Take $w_{yes} = 01$, $w_{no} = 10$.

Then $f(w)$ is defined as:

- If $w \in L_D$, $f(w) = 01$.
- If $w \notin L_D$, $f(w) = 10$.

There is no TM that can actually evaluate the function $f(w)$ on all inputs, since no TM can decide whether or not $w \in L_D$. That's bad!
Computable Functions

- This general reduction is mathematically well-defined, but might be impossible to actually compute!
- To fix our definition, we need to introduce the idea of a computable function.
- A function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ is called a **computable function** if there is some TM M with the following behavior:

 "On input w:

 Determine the value of $f(w)$.

 Write $f(w)$ on the tape.

 Move the tape head back to the far left.

 Halt."
Computable Functions

\[f(w) = ww \]
Computable Functions

\[f(w) = ww \]
Computable Functions

\[f(w) = \begin{cases} 2^{nm} & \text{if } w = 0^n1^m \\ \epsilon & \text{otherwise} \end{cases} \]
Computable Functions

\[f(w) = \begin{cases}
2^{nm} & \text{if } w = 0^n1^m \\
\varepsilon & \text{otherwise}
\end{cases} \]
Mapping Reductions

- A function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ is called a **mapping reduction** from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - f is a computable function.
- Intuitively, a mapping reduction from A to B says that a computer can transform any instance of A into an instance of B such that the answer to B is the answer to A.
Mapping Reducibility

• If there is a mapping reduction from A to B, we say that A is mapping reducible to B.

• Notation: $A \leq_M B$ iff A is mapping reducible to B.

• This is not a partial order (it's not antisymmetric), but it is reflexive and transitive. (Why?)
Why Mapping Reducibility Matters

- **Theorem**: If $B \in \mathbf{R}$ and $A \leq_M B$, then $A \in \mathbf{R}$.

- **Theorem**: If $B \in \mathbf{RE}$ and $A \leq_M B$, then $A \in \mathbf{RE}$.

- $A \leq_M B$ informally means “A is not harder than B.”
Why Mapping Reducibility Matters

- **Theorem**: If $A \notin R$ and $A \leq M B$, then $B \notin R$.
- **Theorem**: If $A \notin \text{RE}$ and $A \leq M B$, then $B \notin \text{RE}$.
- $A \leq M B$ informally means “B is at at least as hard as A. ”
Why Mapping Reducibility Matters

$A \leq_{M} B$

If this one is "easy" (R or RE)...

... then this one is "easy" (R or RE) too.
Why Mapping Reducibility Matters

If this one is “hard” (not R or not RE)…

$A \leq_{M} B$

… then this one is “hard” (not R or not RE) too.
\[A \leq_M B \]

\[w \leftarrow \text{Compute } f \rightarrow f(w) \rightarrow \text{Machine for } B \]

Machine \(M' \)

Machine \(M' \)

\[M' = \text{"On input } w: \]
\[\begin{align*}
\text{Compute } f(w). \\
\text{Run } M \text{ on } f(w). \\
\text{If } M \text{ accepts } f(w), \text{ accept } w. \\
\text{If } M \text{ rejects } f(w), \text{ reject } w.
\end{align*} \]

\(M' \) accepts \(w \)

iff

\(M \) accepts \(f(w) \)

iff

\[f(w) \in B \]

iff

\[w \in A \]
M' accepts w iff M accepts $f(w)$ iff $f(w) \in B$ iff $w \in A$
Using Reductions
Using Reductions

- Recall: The language A_{TM} is defined as

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in \mathcal{L}(M) \}$$

- Last time, we proved that $A_{TM} \in \text{RE} - \text{R}$ (that is, $A_{TM} \in \text{RE}$ but $A_{TM} \notin \text{R}$) by showing that a decider for A_{TM} could be converted into a decider for the diagonalization language L_D.

- Let's see an alternate proof that A_{TM} is undecidable by using reductions.
The Complement of A_{TM}

- Recall: if $A_{TM} \in \mathbb{R}$, then $\overline{A}_{TM} \in \mathbb{R}$ as well.
- To show that A_{TM} is undecidable, we will prove that the complement of A_{TM} (denoted \overline{A}_{TM}) is undecidable.
- The language \overline{A}_{TM} is the following:

$$\overline{A}_{TM} = \{(M, w) \mid M \text{ is a TM and } w \notin L(M)\}$$
\[L_D \leq_M \overline{A}_{TM} \]

- Recall: The diagonalization language \(L_D \) is the language
 \[L_D = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \} \]
- We directly established that \(L_D \notin \text{RE} \) using a diagonal argument.
- If we can show that \(L_D \leq_M \overline{A}_{TM} \), then since \(L_D \notin \text{RE} \), we have proven that \(\overline{A}_{TM} \notin \text{RE} \).
- Therefore, \(\overline{A}_{TM} \notin \mathbb{R} \), so \(A_{TM} \notin \mathbb{R} \).
Where We're Going

Goal: Choose our function $f(w)$ such that this machine H is a recognizer for L_D.
L_D and \bar{A}_{TM}

- L_D and \bar{A}_{TM} are similar languages:
 \[
 \langle M \rangle \in L_D \iff \langle M \rangle \notin \mathcal{L}(M) \\
 \langle M, w \rangle \in \bar{A}_{TM} \iff w \notin \mathcal{L}(M)
 \]

- \bar{A}_{TM} is more general than L_D:
 - L_D asks if a machine doesn't accept itself.
 - \bar{A}_{TM} asks if a machine doesn't accept some specific string.
\[L_D \leq M \overline{A}_{TM} \]

- Goal: Find a computable function \(f \) such that
 \[\langle M \rangle \in L_D \quad \text{iff} \quad f(\langle M \rangle) \in \overline{A}_{TM} \]

- Simplifying this using the definition of \(L_D \)
 \[\langle M \rangle \notin \mathcal{L}(M) \quad \text{iff} \quad f(\langle M \rangle) \in \overline{A}_{TM} \]

- Let's assume that \(f(\langle M \rangle) \) has the form \(\langle M', w \rangle \) for some TM \(M' \) and string \(w \). This means that
 \[\langle M \rangle \notin \mathcal{L}(M) \quad \text{iff} \quad \langle M', w \rangle \in \overline{A}_{TM} \]
 \[\langle M \rangle \notin \mathcal{L}(M) \quad \text{iff} \quad w \notin \mathcal{L}(M') \]

- If we can choose \(w \) and \(M' \) such that the above is true, we will have our reduction from \(L_D \) to \(\overline{A}_{TM} \).

- Choose \(M' = M \) and \(w = \langle M \rangle \).
What We Just Did

\[H = \text{"On input } \langle M \rangle \text{:}
\]
\[\text{Compute } \langle M, \langle M \rangle \rangle.
\]
\[\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.
\]
\[\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ accept } \langle M \rangle.
\]
\[\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ reject } \langle M \rangle."
\]

\[H \text{ accepts } \langle M \rangle \iff R \text{ accepts } \langle M, \langle M \rangle \rangle \iff \langle M, \langle M \rangle \rangle \in A_{\text{TM}} \iff \langle M \rangle \notin L_M \iff \langle M \rangle \in L_D \]
The final version of our function f is defined here:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

It's reasonable to assume that f is computable; details are left as an exercise.

If we can formally prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$, then we have that $L_D \leq_M \overline{A}_{TM}$. Thus $\overline{A}_{TM} \notin RE$.

$$L_D \leq_M \overline{A}_{TM}$$
Theorem: $\overline{A}_{TM} \notin RE$.
Theorem: $\overline{A_{TM}} \notin \text{RE}$.

Proof: We exhibit a mapping reduction f from L_D to $\overline{A_{TM}}$.

Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in A_{TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in A_{TM}$ iff $\langle M, \langle M \rangle \rangle \in A_{TM}$. By definition of A_{TM}, $\langle M, \langle M \rangle \rangle \in A_{TM}$ iff $\langle M \rangle \notin \ell_M$. Finally, note that $\langle M \rangle \notin \ell_M$ iff $\langle M \rangle \in L_D$.

Thus $f(\langle M \rangle) \in A_{TM}$ iff $\langle M \rangle \in L_D$, so f is a mapping reduction from L_D to $\overline{A_{TM}}$.

Since f is a mapping reduction from L_D to $\overline{A_{TM}}$, we have $L_D \leq_M \overline{A_{TM}}$. Since $L_D \notin \text{RE}$ and $L_D \leq_M \overline{A_{TM}}$, this means $\overline{A_{TM}} \notin \text{RE}$, as required. ■
Theorem: \(\overline{A_{TM}} \notin \text{RE} \).

Proof: We exhibit a mapping reduction \(f \) from \(L_D \) to \(\overline{A_{TM}} \).
Consider the function \(f \) defined as follows:
\[
f(\langle M \rangle) = \langle M, \langle M \rangle \rangle
\]
Theorem: $\overline{A}_{TM} \notin RE$.

Proof: We exhibit a mapping reduction f from L_D to \overline{A}_{TM}.

Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof.
Theorem: $\overline{A}_{TM} \notin \text{RE}$.

Proof: We exhibit a mapping reduction f from L_D to \overline{A}_{TM}. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$.

Thus $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M \rangle \in L_D$, so f is a mapping reduction from L_D to \overline{A}_{TM}. Since f is a mapping reduction from L_D to \overline{A}_{TM}, we have $L_D \leq_M \overline{A}_{TM}$. Since $L_D \notin \text{RE}$ and $L_D \leq_M \overline{A}_{TM}$, this means $\overline{A}_{TM} \notin \text{RE}$, as required. ■
Theorem: $\overline{A}_{TM} \notin \text{RE}$.

Proof: We exhibit a mapping reduction f from L_D to \overline{A}_{TM}. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$.

Thus $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M \rangle \in L_D$, so f is a mapping reduction from L_D to \overline{A}_{TM}. Since f is a mapping reduction from L_D to \overline{A}_{TM}, we have $L_D \leq_M \overline{A}_{TM}$. Since $L_D \notin \text{RE}$ and $L_D \leq_M \overline{A}_{TM}$, this means $\overline{A}_{TM} \notin \text{RE}$, as required. ■
Theorem: $\overline{A}_{TM} \notin \text{RE}$.

Proof: We exhibit a mapping reduction f from L_D to \overline{A}_{TM}. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$. By definition of \overline{A}_{TM}, $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$ iff $\langle M \rangle \notin \mathcal{L}(M)$.

Thus $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M \rangle \in L_D$, so f is a mapping reduction from L_D to \overline{A}_{TM}.

Since f is a mapping reduction from L_D to \overline{A}_{TM}, we have $L_D \leq_M \overline{A}_{TM}$. Since $L_D \notin \text{RE}$ and $L_D \leq_M \overline{A}_{TM}$, this means $\overline{A}_{TM} \notin \text{RE}$, as required. \blacksquare
Theorem: $\overline{A}_{TM} \notin \text{RE}$.

Proof: We exhibit a mapping reduction f from L_D to \overline{A}_{TM}. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$. By definition of \overline{A}_{TM}, $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Finally, note that $\langle M \rangle \notin \mathcal{L}(M)$ iff $\langle M \rangle \in L_D$.

Since f is a mapping reduction from L_D to \overline{A}_{TM}, we have $L_D \leq_M A_{TM}$. Since $L_D \notin \text{RE}$ and $L_D \leq_M A_{TM}$, this means $A_{TM} \notin \text{RE}$, as required. \blacksquare
Theorem: $\overline{A}_{TM} \notin \text{RE}$.

Proof: We exhibit a mapping reduction f from L_D to \overline{A}_{TM}.
Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$. By definition of \overline{A}_{TM}, $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$ iff $\langle M \rangle \notin \mathcal{R}(M)$. Finally, note that $\langle M \rangle \notin \mathcal{R}(M)$ iff $\langle M \rangle \in L_D$. Thus $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M \rangle \in L_D$, so f is a mapping reduction from L_D to \overline{A}_{TM}.

Theorem: $\overline{A_{TM}} \notin RE$.

Proof: We exhibit a mapping reduction f from L_D to $\overline{A_{TM}}$.

Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \overline{A_{TM}}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{A_{TM}}$ iff $\langle M, \langle M \rangle \rangle \in \overline{A_{TM}}$. By definition of $\overline{A_{TM}}$, $\langle M, \langle M \rangle \rangle \in \overline{A_{TM}}$ iff $\langle M \rangle \notin \mathcal{L}(M)$. Finally, note that $\langle M \rangle \notin \mathcal{L}(M)$ iff $\langle M \rangle \in L_D$.

Thus $f(\langle M \rangle) \in \overline{A_{TM}}$ iff $\langle M \rangle \in L_D$, so f is a mapping reduction from L_D to $\overline{A_{TM}}$.

Since f is a mapping reduction from L_D to $\overline{A_{TM}}$, we have $L_D \leq_M \overline{A_{TM}}$.
Theorem: $\overline{A}_{TM} \notin RE$.

Proof: We exhibit a mapping reduction f from L_D to \overline{A}_{TM}. Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$. By definition of \overline{A}_{TM}, $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$ iff $\langle M \rangle \notin D(M)$. Finally, note that $\langle M \rangle \notin D(M)$ iff $\langle M \rangle \in L_D$.

Thus $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M \rangle \in L_D$, so f is a mapping reduction from L_D to \overline{A}_{TM}.

Since f is a mapping reduction from L_D to \overline{A}_{TM}, we have $L_D \leq_M \overline{A}_{TM}$. Since $L_D \notin RE$ and $L_D \leq_M \overline{A}_{TM}$, this means $\overline{A}_{TM} \notin RE$, as required.
Theorem: $\overline{A}_{TM} \notin \text{RE}$.

Proof: We exhibit a mapping reduction f from L_D to \overline{A}_{TM}.

Consider the function f defined as follows:

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

We claim that f can be computed by a TM and omit the details from this proof. We will prove that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \overline{A}_{TM}$. Note that $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$, so $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$. By definition of \overline{A}_{TM}, $\langle M, \langle M \rangle \rangle \in \overline{A}_{TM}$ iff $\langle M \rangle \notin \mathcal{D}(M)$. Finally, note that $\langle M \rangle \notin \mathcal{D}(M)$ iff $\langle M \rangle \in L_D$.

Thus $f(\langle M \rangle) \in \overline{A}_{TM}$ iff $\langle M \rangle \in L_D$, so f is a mapping reduction from L_D to \overline{A}_{TM}.

Since f is a mapping reduction from L_D to \overline{A}_{TM}, we have $L_D \leq_M \overline{A}_{TM}$. Since $L_D \notin \text{RE}$ and $L_D \leq_M \overline{A}_{TM}$, this means $\overline{A}_{TM} \notin \text{RE}$, as required. ■
The Halting Problem

• Recall the definition of \(HALT \):

\[
HALT = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on } w \}
\]

• That is, the set of TM / string pairs where the TM \(M \) either accepts or rejects the string \(w \).

• Last time, we proved that \(HALT \in \text{RE} - \text{R} \) by building a TM for it, then by showing a decider for \(HALT \) could be turned into a decider for \(A_{\text{TM}} \).

• Let's explore an alternate proof using mapping reductions.
HALT is RE

- Recall: $A_{TM} \in \mathbf{RE}$.

- To prove that HALT is RE, we will show that HALT $\leq^M A_{TM}$.

- Since $A_{TM} \in \mathbf{RE}$, this proves HALT $\in \mathbf{RE}$.

- Idea: we need to find some function f such that

 $\langle M, w \rangle \in HALT \iff f(\langle M, w \rangle) \in A_{TM}$
Where We're Going

\[\langle M, w \rangle \xrightarrow{\text{Compute } f} \langle M', w' \rangle \xrightarrow{\text{Machine for } A_{TM}} \]

Machine H

Goal: Choose our function \(f(w) \) such that this machine \(H \) is a recognizer for \(\text{HALT} \).
\[\text{HALT} \leq_M A_{\text{TM}} \]

- Goal: Find a function \(f \) such that
 \[\langle M, w \rangle \in \text{HALT} \iff f(\langle M, w \rangle) \in A_{\text{TM}} \]

- Substituting the definitions:
 \[M \text{ halts on } w \iff f(\langle M, w \rangle) \in A_{\text{TM}}. \]

- Assume that \(f(\langle M, w \rangle) = \langle M', w' \rangle \) for some TM \(M' \) and string \(w' \). Then we have
 \[M \text{ halts on } w \iff \langle M', w' \rangle \in A_{\text{TM}} \]
 \[M \text{ halts on } w \iff w' \in \mathcal{L}(M') \]
 \[M \text{ halts on } w \iff M' \text{ accepts } w' \]
Choosing M' and w'

- We need to find M' and w' such that
 \[M \text{ halts on } w \iff M' \text{ accepts } w'. \]
- This is the creative step of the proof – how do we choose an M' and w' with that property?
- **Key idea that shows up in almost all major reduction proofs**: Construct a machine M' and string w' so that running M' on w' runs M on w.
- This causes the behavior of M' running on w' to depend on what M does on w.
Choosing M' and w'

• Here is one possible choice of M' and w' we can make:

$$M' = \text{“On input } \langle N, z \rangle:\text{ Run } N \text{ on } z. \text{ If } N \text{ halts on } z, \text{ accept.”}$$

$$w' = \langle M, w \rangle$$

• Now, running M' on w' runs M on w. If M halts on w, then M' accepts w'. If M loops on w, then M' does not accept w'.
Machine H = “On input $\langle M, w \rangle$:

- Compute f.
- Run R on $\langle M', \langle M, w \rangle \rangle$.
- If R accepts $\langle M', \langle M, w \rangle \rangle$, accept.
- If R rejects $\langle M', \langle M, w \rangle \rangle$, reject.”

H accepts $\langle M, w \rangle$ iff R accepts $\langle M', \langle M, w \rangle \rangle$ iff $\langle M', \langle M, w \rangle \rangle \in A_{TM}$ iff M' accepts $\langle M, w \rangle$ iff M halts on w iff $\langle M, w \rangle \in HALT$.

$M' = \text{“On input } \langle N, z \rangle:\n
\hspace{2em} \text{Run } N \text{ on } z.\n\hspace{2em} \text{If } N \text{ halts, accept.”}
Theorem: $\text{HALT} \leq_{M} A_{\text{TM}}$.
Theorem: $\text{HALT} \leq_{M} A_{TM}$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM}.
Theorem: \(\text{HALT} \leq_{M} \text{A}_{\text{TM}} \).

Proof: We exhibit a mapping reduction \(f \) from \(\text{HALT} \) to \(\text{A}_{\text{TM}} \). Let the machine \(M' \) be defined as follows:
Theorem: $\text{HALT} \leq_A \text{A}_{TM}$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM}. Let the machine M' be defined as follows:

$$M' = \text{"On input } \langle N, z \rangle: \text{ Run } N \text{ on } z. \text{ If } N \text{ halts on } z, \text{ accept."}$$
Theorem: \(\text{HALT} \leq \text{M} \ A_{\text{TM}} \).

Proof: We exhibit a mapping reduction \(f \) from \(\text{HALT} \) to \(A_{\text{TM}} \).

Let the machine \(\text{M}' \) be defined as follows:

\[
\text{M}' = "\text{On input } \langle N, z \rangle:\n\quad \text{Run } N \text{ on } z.\n\quad \text{If } N \text{ halts on } z, \text{ accept.}"\]

Then let \(f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \).
Theorem: \(\text{HALT} \leq_{m} A_{\text{TM}} \).

Proof: We exhibit a mapping reduction \(f \) from \(\text{HALT} \) to \(A_{\text{TM}} \). Let the machine \(M' \) be defined as follows:

\[
M' = \text{"On input } \langle N, z \rangle:\
\quad \text{Run } N \text{ on } z.
\quad \text{If } N \text{ halts on } z, \text{ accept."
}\]

Then let \(f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \). We claim that \(f \) is computable and omit the details from this proof.
Theorem: \(\text{HALT} \leq_{M} A_{TM}\).

Proof: We exhibit a mapping reduction \(f\) from \(\text{HALT}\) to \(A_{TM}\).

Let the machine \(M'\) be defined as follows:

\[
M' = \text{"On input }\langle N, z \rangle: \\
\text{Run } N \text{ on } z. \\
\text{If } N \text{ halts on } z, \text{ accept."}
\]

Then let \(f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle\). We claim that \(f\) is computable and omit the details from this proof. We further claim that \(\langle M, w \rangle \in \text{HALT} \iff f(\langle M, w \rangle) \in A_{TM}\).
Theorem: $\text{HALT} \leq^M \text{A}_{\text{TM}}$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM}. Let the machine M' be defined as follows:

$$M' = \text{"On input } \langle N, z \rangle:\text{ Run } N \text{ on } z. \text{ If } N \text{ halts on } z, \text{ accept."}$$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{A}_{\text{TM}}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in \text{A}_{\text{TM}}$ iff M' accepts $\langle M, w \rangle$.

Theorem: $\text{HALT} \leq_{\text{m}} \text{A}_\text{TM}$.

Proof: We exhibit a mapping reduction f from HALT to A_TM.

Let the machine M' be defined as follows:

\[
M' = \text{“On input } \langle N, z \rangle:\n\hspace{1cm} \text{Run } N \text{ on } z.
\hspace{1cm} \text{If } N \text{ halts on } z, \text{ accept.”}
\]

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{A}_\text{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in \text{A}_\text{TM}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on w.
Theorem: $\text{HALT} \leq_{M} A_{\text{TM}}$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM}. Let the machine M' be defined as follows:

$$M' = \text{"On input } \langle N, z \rangle:\text{ Run } N \text{ on } z. \text{ If } N \text{ halts on } z, \text{ accept."}$$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in A_{\text{TM}}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in A_{\text{TM}}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on w. Finally, note that M halts on w iff $\langle M, w \rangle \in \text{HALT}$.

Theorem: \(\text{HALT} \leq_{M} A_{\text{TM}} \).

Proof: We exhibit a mapping reduction \(f \) from \(\text{HALT} \) to \(A_{\text{TM}} \).

Let the machine \(M' \) be defined as follows:

\[
M' = \text{“On input } \langle N, z \rangle:\]
 \[\text{Run } N \text{ on } z.\]
 \[\text{If } N \text{ halts on } z, \text{ accept.”}\]

Then let \(f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \). We claim that \(f \) is computable and omit the details from this proof. We further claim that \(\langle M, w \rangle \in \text{HALT} \) iff \(f(\langle M, w \rangle) \in A_{\text{TM}} \). To see this, note that \(f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in A_{\text{TM}} \) iff \(M' \) accepts \(\langle M, w \rangle \). By construction, \(M' \) accepts \(\langle M, w \rangle \) iff \(M \) halts on \(w \). Finally, note that \(M \) halts on \(w \) iff \(\langle M, w \rangle \in \text{HALT} \). Thus \(\langle M, w \rangle \in \text{HALT} \) iff \(f(\langle M, w \rangle) \in A_{\text{TM}} \).

\[\square\]
Theorem: $\text{HALT} \leq_{M} A_{TM}$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM}.

Let the machine M' be defined as follows:

$$M' = \text{"On input } \langle N, z \rangle:\$$
 Run N on z.
 If N halts on z, accept."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in A_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in A_{TM}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on w. Finally, note that M halts on w iff $\langle M, w \rangle \in \text{HALT}$. Thus $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in A_{TM}$. Therefore, f is a mapping reduction from HALT to A_{TM}, so $\text{HALT} \leq_{M} A_{TM}$. ■
Theorem: $\text{HALT} \leq_m A_{\text{TM}}$.

Proof: We exhibit a mapping reduction f from HALT to A_{TM}. Let the machine M' be defined as follows:

$$M' = \text{"On input } \langle N, z \rangle:\$$
$$\text{Run } N \text{ on } z.$$
$$\text{If } N \text{ halts on } z, \text{ accept."}$$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in A_{\text{TM}}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in A_{\text{TM}}$ iff M' accepts $\langle M, w \rangle$. By construction, M' accepts $\langle M, w \rangle$ iff M halts on w. Finally, note that M halts on w iff $\langle M, w \rangle \in \text{HALT}$. Thus $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in A_{\text{TM}}$. Therefore, f is a mapping reduction from HALT to A_{TM}, so $\text{HALT} \leq_m A_{\text{TM}}$. ■
A Math Joke
A Math Joke
HALT is Undecidable

- We proved $HALT \in \text{RE}$ by showing that $HALT \leq^m A_{TM}$.

- We can prove $HALT \notin \text{R}$ by showing that $A_{TM} \leq^m HALT$.

- Note that this has to be a completely separate reduction! We're transforming A_{TM} into $HALT$ this time, not the other way around.
\[A_{\text{TM}} \leq M \text{HALT} \]

- We want to find a computable function \(f \) such that
 \[\langle M, w \rangle \in A_{\text{TM}} \iff f(\langle M, w \rangle) \in \text{HALT}. \]
- Assume \(f(\langle M, w \rangle) \) has the form \(\langle M', w' \rangle \) for some TM \(M' \) and string \(w' \).
- We want
 \[\langle M, w \rangle \in A_{\text{TM}} \iff \langle M', w' \rangle \in \text{HALT}. \]
- Substituting definitions:
 \[M \text{ accepts } w \iff M' \text{ halts on } w'. \]
- How might we design \(M' \) and \(w' \)?
\[A_{TM} \leq_M HALT \]

- We need to choose a TM/string pair \(M' \) and \(w' \) such that \(M' \) halts on \(w' \) iff \(M \) accepts \(w \).

- Repeated idea: Construct \(M' \) and \(w' \) such that running \(M' \) on \(w' \) simulates \(M \) on \(w \) and bases its decision on what happens.

- One option:

 \[
 M' = \text{"On input } \langle N, z \rangle: \\
 \text{Run } N \text{ on } z. \\
 \text{If } N \text{ accepts } z, \text{ accept.} \\
 \text{If } N \text{ rejects } z, \text{ loop infinitely."}
 \]

 \[w' = \langle M, w \rangle \]
Machine H = “On input $\langle M, w \rangle$:
 Compute $\langle M', \langle M, w \rangle \rangle$.
 Run R on $\langle M', \langle M, w \rangle \rangle$.
 If R accepts $\langle M', \langle M, w \rangle \rangle$, accept.
 If R rejects $\langle M', \langle M, w \rangle \rangle$, reject.”

$M' = “On input $\langle N, z \rangle$:
 Run N on z.
 If N accepts, accept.
 If N rejects, loop infinitely.”

H accepts $\langle M, w \rangle$ iff R accepts $\langle M', \langle M, w \rangle \rangle$ iff $\langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$ iff M accepts w iff $\langle M, w \rangle \in A_{TM}$.
An Important Detail

• In the course of this reduction, we construct a new machine M'.

• We never actually run the machine M'! That might loop forever.

• We instead just build a description of that machine and fed it into our machine for $HALT$.

• The answer given back by this machine about what M' would do if we were to run it can then be used to solve A_{TM}.
Theorem: $A_{TM} \leq_M HALT$.
Theorem: $A_{\text{TM}} \leq_M \text{HALT}$.

Proof: We exhibit a mapping reduction from A_{TM} to HALT.
Theorem: $A_{TM} \leq_M HALT$.

Proof: We exhibit a mapping reduction from A_{TM} to $HALT$. Let M' be the following TM:

Let M' be the following TM:
Theorem: $A_{TM} \leq_M HALT$.

Proof: We exhibit a mapping reduction from A_{TM} to $HALT$. Let M' be the following TM:

$$M' = \text{"On input } \langle N, z \rangle:\n\text{Run } N \text{ on } z.\n\text{If } N \text{ accepts, accept.}\n\text{If } N \text{ rejects, loop infinitely."}$$
Theorem: $A_{\text{TM}} \leq_{M} \text{HALT}$.

Proof: We exhibit a mapping reduction from A_{TM} to HALT. Let M' be the following TM:

\begin{quote}
$M' = "\text{On input } \langle N, z \rangle:"
\begin{itemize}
 \item Run N on z.
 \item If N accepts, accept.
 \item If N rejects, loop infinitely."
\end{itemize}
\end{quote}

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$.
Theorem: $A_{TM} \leq_M HALT$.

Proof: We exhibit a mapping reduction from A_{TM} to $HALT$. Let M' be the following TM:

$$M' = \text{"On input } \langle N, z \rangle:\n\text{Run } N \text{ on } z.\n\text{If } N \text{ accepts, accept.}\n\text{If } N \text{ rejects, loop infinitely."}$$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof.
Theorem: $A_{\text{TM}} \leq_{\text{M}} \text{HALT}$.

Proof: We exhibit a mapping reduction from A_{TM} to HALT. Let M' be the following TM:

$$M' = \text{“On input } \langle N, z \rangle:\text{ }
\begin{align*}
\text{Run } N \text{ on } z. \\
\text{If } N \text{ accepts, accept.} \\
\text{If } N \text{ rejects, loop infinitely."
}\end{align*}$$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$.
Theorem: \(A_{\text{TM}} \leq_M \text{HALT} \).

Proof: We exhibit a mapping reduction from \(A_{\text{TM}} \) to \(\text{HALT} \).

Let \(M' \) be the following TM:

\[
M' = \text{"On input } \langle N, z \rangle: \\
\text{Run } N \text{ on } z. \\
\text{If } N \text{ accepts, accept.} \\
\text{If } N \text{ rejects, loop infinitely."}
\]

Then let \(f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \). We claim that \(f \) is computable and omit the details from this proof. We further claim that \(\langle M, w \rangle \in A_{\text{TM}} \) iff \(f(\langle M, w \rangle) \in \text{HALT} \). To see this, note that \(f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in \text{HALT} \) iff \(M' \) halts on \(\langle M, w \rangle \).
Theorem: $A_{\text{TM}} \leq_M \text{HALT}$.

Proof: We exhibit a mapping reduction from A_{TM} to HALT. Let M' be the following TM:

$$M' = \text{"On input } \langle N, z \rangle:\text{ Run } N \text{ on } z. \text{ If } N \text{ accepts, accept. If } N \text{ rejects, loop infinitely."}$$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in \text{HALT}$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts w.
Theorem: $A_{TM} \leq_M HALT$.

Proof: We exhibit a mapping reduction from A_{TM} to $HALT$. Let M' be the following TM:

$$M' = \text{"On input } \langle N, z \rangle:\$$
 - Run N on z.
 - If N accepts, accept.
 - If N rejects, loop infinitely."

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. ■
Theorem: $A_{TM} \leq_M HALT$.

Proof: We exhibit a mapping reduction from A_{TM} to $HALT$. Let M' be the following TM:

$$M' = \text{"On input } \langle N, z \rangle:\n\quad \text{Run } N \text{ on } z.\n\quad \text{If } N \text{ accepts, accept.}\n\quad \text{If } N \text{ rejects, loop infinitely."}$$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in HALT$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus we have that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$.

Thus we have that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. ■
Theorem: $A_{\text{TM}} \leq_M \text{HALT}$.

Proof: We exhibit a mapping reduction from A_{TM} to HALT. Let M' be the following TM:

$$M' = "\text{On input } \langle N, z \rangle:\"$$

- **Run** N on z.
- **If** N accepts, accept.
- **If** N rejects, loop infinitely.”

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in \text{HALT}$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{\text{TM}}$. Thus we have that $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$. Therefore, f is a mapping reduction from A_{TM} to HALT, so $A_{\text{TM}} \leq_M \text{HALT}$.

\blacksquare
Theorem: $A_{\text{TM}} \leq_M \text{HALT}$.

Proof: We exhibit a mapping reduction from A_{TM} to HALT. Let M' be the following TM:

$$M' = \text{"On input } \langle N, z \rangle:\n \text{Run } N \text{ on } z.\n \text{If } N \text{ accepts, accept.}\n \text{If } N \text{ rejects, loop infinitely."}$$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$. To see this, note that $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle \in \text{HALT}$ iff M' halts on $\langle M, w \rangle$. By construction, M' halts on $\langle M, w \rangle$ iff M accepts w. Finally, M accepts w iff $\langle M, w \rangle \in A_{\text{TM}}$. Thus we have that $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$. Therefore, f is a mapping reduction from A_{TM} to HALT, so $A_{\text{TM}} \leq_M \text{HALT}$. ■
Theorem: $A_{TM} \leq_M HALT$.

Proof: We exhibit a mapping reduction from A_{TM} to $HALT$. Let M' be the following TM:

$$M' = \text{"On input } \langle N, z \rangle:\text{ Run } N \text{ on } z.\text{ If } N \text{ accepts, accept. If } N \text{ rejects, loop infinitely."}$$

Then let $f(\langle M, w \rangle) = \langle M', \langle M, w \rangle \rangle$. We claim that f is computable and omit the details from this proof. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. To see this, note that M' halts on $\langle M, w \rangle$ iff M accepts w. Thus we have that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in HALT$. Therefore, f is a mapping reduction from A_{TM} to $HALT$, so $A_{TM} \leq_M HALT$. ■
A Note on Directionality
Note the Direction

- To show that a language A is RE, reduce it to something that is known to be RE:
 \[A \leq^M \text{some-RE-problem} \]

- To show that a language A is not R, reduce a problem that is known not to be R to A:
 \[\text{some-non-R-problem} \leq^M A \]

- The single most common mistake with reductions is doing the reduction in the wrong direction.
Next Time

• **co-RE and Beyond**
 • What lies outside of RE? How much of it can be solved by computers?

• **More Reductions**
 • More examples of mapping reductions.