co-RE and Beyond
Friday Four Square!
Today at 4:15PM, Outside Gates
Announcements

- Problem Set 7 due right now.
 - With a late day, due this Monday at 2:15PM.
- Problem Set 8 out, due Friday, November 30.
 - Explore properties of R, RE, and co-RE.
 - Play around with mapping reductions.
 - Find problems far beyond the realm of computers.
 - No checkpoint, even though the syllabus says there is one.
- Most (but not all Problem Set 6 graded; will be returned at end of lecture).
Recap From Last Time
Mapping Reducibility

- A **mapping reduction** from A to B is a function f such that
 - f is computable, and
 - For any w, $w \in A$ iff $f(w) \in B$.
- If there is a mapping reduction from A to B, we say that A is **mapping reducible** to B.
- Notation: $A \leq_M B$ iff A is mapping reducible to B.
Why Mapping Reducibility Matters

$A \leq_{M} B$

If this one is "easy" (R or RE)...

... then this one is "easy" (R or RE) too.
Why Mapping Reducibility Matters

If this one is “hard” (not R or not RE)...

$A \leq_{M} B$

... then this one is “hard” (not R or not RE) too.
Sketch of the Proof

$H = \text{"On input } w:\text{ Compute } f(w). \text{ Run } M \text{ on } f(w). \text{ If } M \text{ accepts } f(w), \text{ accept } w. \text{ If } M \text{ rejects } f(w), \text{ reject } w."$
More Unsolvable Problems
A More Elaborate Reduction

• Since $HALT \notin R$, there is no algorithm for determining whether a TM will halt on some particular input.

• It seems, therefore, that we shouldn't be able to decide whether a TM halts on all possible inputs.

• Consider the language

\[DECIDER = \{ \langle M \rangle \mid M \text{ is a decider} \} \]

• How would we prove that $DECIDER$ is, itself, undecidable?
We will prove that \textit{DECIDER} is undecidable by reducing \textit{HALT} to \textit{DECIDER}.

Want to find a function \(f \) such that

\[
\langle M, w \rangle \in \text{HALT} \iff f(\langle M, w \rangle) \in \text{DECIDER}.
\]

Assuming that \(f(\langle M, w \rangle) = \langle M' \rangle \) for some TM \(M' \), we have that

\[
\langle M, w \rangle \in \text{HALT} \iff \langle M' \rangle \in \text{DECIDER}.
\]

\(M \) halts on \(w \) \iff \(M' \) is a decider.

\(M \) halts on \(w \) \iff \(M' \) halts on all inputs.
The Reduction

- Find a TM M' such that M' halts on all inputs iff M halts on w.
- **Key idea:** Build M' such that running M' on any input runs M on w.
- Here is one choice of M':

 $M' = \text{“On input } x:\n
 \quad \text{Ignore } x.$

 \quad \text{Run } M \text{ on } w.$

 \quad \text{If } M \text{ accepts } w, \text{ accept.}$

 \quad \text{If } M \text{ rejects } w, \text{ reject.”}

- Notice that M' “amplifies” what M does on w:
 - If M halts on w, M' halts on every input.
 - If M loops on w, M' loops on every input.
DECIDER is Undecidable

Decider for DECIDER
DECIDER is Undecidable

\[\langle M, w \rangle \]
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER
DECIDER is Undecidable

\[\langle M, w \rangle \rightarrow \text{Construct } M' \text{ from } \langle M, w \rangle \rightarrow \text{Decider for DECIDER} \]
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

(Ignored)

$\langle M, w \rangle$

x

(Ignored)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Simulate M on w

(Ignored)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Simulate M on w

$Ignored$

x

$Ignored$

Machine M'

DECIDER is Undecidable

Construct M' from ⟨M, w⟩

Decider for DECIDER

⟨M, w⟩

M' = “On input x:
 Ignore x.
 Run M on w.
 If M accepts w, accept.
 If M rejects w, reject.”
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Simulate M on w

(Ignored)

(x)

Machine M'
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

What does M' do if M halts on w?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

What does M' do if M halts on w?

M' always halts
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$.

Decider for **DECIDER**

What does M' do if M loops on w?

Simulate M on w (Ignored)

Machine M'

x
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

What does M' do if M loops on w?

M' never halts
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Simulate M on w

(Ignored)

Machine M'
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Simulate M on w

(Ignored)

Machine M'
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

Machine H

Simulate M on w

(Ignored)

Machine M'

x
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

What does H do if M halts on w?

Simulate M on w

(Ignored)
DECIDER is Undecidable

- Construct M' from $\langle M, w \rangle$
- Decider for DECIDER

What does H do if M halts on w?

- Simulate M on w
- Machine M'
- Machine H

(x) (Ignored)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$

(Always Halts)

Decider for DECIDER

Machine H

Simulate M on w

(Ignored)

x

Machine M'

What does H do if M halts on w?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$

Decider for DECIDER

Machine H

Simulate M on w

$\langle M, w \rangle$

x

(Ignored)

Machine M'
DECIDER is Undecidable

Simulate M on w

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$

Decider for DECIDER

What does H do if M loops on w?
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$

Decider for DECIDER

Machine H

Simulate M on w

$\langle M' \rangle$ (Never Halts)

What does H do if M loops on w?

Machine M' (Ignored)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$

Decider for DECIDER

(M' never halts)

What does H do if M loops on w?
DECIDER is Undecidable

- **Construct** M' from $\langle M, w \rangle$
- **Decider** for DECIDER
- **Simulate** M on w
- **Machine H**
- x (Ignored)
DECIDER is Undecidable

(M, w) -> Machine H

Simulate M on w

(x) (Ignored)
DECIDER is Undecidable

What does H do if M halts on w?
DECIDER is Undecidable

\[\langle M, w \rangle \]

What does H do if M halts on w?
DECIDER is Undecidable

\[(M, w)\]

Simulate \(M\) on \(w\)

(Ignored)

Machine \(H\)

\(\{\text{Machine } \ M'\}\)
DECIDER is Undecidable

What does H do if M loops on w?
DECIDER is Undecidable

What does H do if M loops on w?

(M, w)
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

$\langle M' \rangle$

Decider for DECIDER

Machine H

Simulate M on w

(Ignored)

Machine M'
DECIDER is Undecidable

Construct M' from $\langle M, w \rangle$

Decider for DECIDER

This is a decider for HALT!
Justifying M'

- Notice that our machine M' has the machine M and string w built into it!
- This is different from the machines we have constructed in the past.
- How do we justify that it's possible for some TM to construct a new TM at all?

\[M' = \text{“On input } x:\text{ Ignore } x. \text{ Run } M \text{ on } w. \text{ If } M \text{ accepts } w, \text{ accept. If } M \text{ rejects } w, \text{ reject.”} \]
The Parameterization Theorem

Theorem: Let M be a TM of the form

$$M = \text{"On input } \langle x_1, x_2, \ldots, x_n \rangle:\text{ Do something with } x_1, x_2, \ldots, x_n\text{"}$$

and any value p for parameter x_1, then a TM can construct the following TM M':

$$M' = \text{"On input } \langle x_2, \ldots, x_n \rangle:\text{ Do something with } p, x_2, \ldots, x_n\text{"}$$
Justifying M'

- Consider this machine X:

 $X = \text{"On input } \langle N, z, x \rangle:\$

 Ignore x.

 Run N on z.

 If N accepts z, accept.

 If N rejects z, reject."

- Applying the parameterization theorem twice with the values M and w produces the machine

 $M' = \text{"On input } x:\$

 Ignore x.

 Run M on w.

 If M accepts w, accept.

 If M rejects w, reject.
Consider this machine X:

$X = \text{On input } \langle N, z, x \rangle$:
- Ignore x.
- Run N on z.
- If N accepts z, accept.
- If N rejects z, reject.

Applying the parameterization theorem twice with the values M and w produces the machine M':

$M' = \text{On input } x$:
- Ignore x.
- Run M on w.
- If M accepts w, accept.
- If M rejects w, reject.

Justifying M': That looks hard.
The Takeaway Point

- It is possible for a mapping reduction to take in a TM or TM/string pair and construct a new TM with that TM embedded within it.
- The parameterization theorem is just a formal way of justifying this.
The Takeaway Point

- It is possible for a mapping reduction to take in a TM or TM/string pair and construct a new TM with that TM embedded within it.
- The parameterization theorem is just a formal way of justifying this.
Theorem: $\text{HALT} \leq_M \text{DECIDER}$.

Proof: We exhibit a mapping reduction from HALT to DECIDER. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where $\langle M' \rangle$ is defined in terms of M and w as follows:

$$M' = \text{"On input } x:\text{ Ignore } x.\text{ Run } M \text{ on } w.\text{ If } M \text{ accepts } w, \text{ accept. If } M \text{ rejects } w, \text{ reject."}$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in \text{DECIDER}$ iff M' halts on all inputs. We claim that M' halts on all inputs iff M halts on w. To see this, note that when M' is run on any input, it halts iff M halts on w. Thus if M halts on w, then M' halts on all inputs, and if M loops on w, M' loops on all inputs. Finally, note that M halts on w iff $\langle M, w \rangle \in \text{HALT}$. Thus $\langle M, w \rangle \in \text{HALT}$ iff $f(\langle M, w \rangle) \in \text{DECIDER}$. Therefore, f is a mapping reduction from HALT to DECIDER, so $\text{HALT} \leq_M \text{DECIDER}$. ■
Other Hard Languages

- We can't tell if a TM accepts a specific string.
- Could we determine whether or not a TM accepts one of many different strings with specific properties?
- For example, could we build a TM that determines whether some other TM accepts a string of all 1s?
- Let \(\text{ONES}_\text{TM} \) be the following language:

\[
\text{ONES}_\text{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts at least one string of the form } 1^n \}
\]

- Is \(\text{ONES}_\text{TM} \in R \)? Is it \(\text{RE} \)?
\textbf{ONES}_{\text{T}M}

• Unfortunately, \text{ONES}_{\text{T}M} is undecidable.

• However, \text{ONES}_{\text{T}M} is recognizable.

 • Intuition: Nondeterministically \textit{guess} the string of the form 1^n that M will accept, then deterministically \textit{check} that M accepts it.

• We'll show that \text{ONES}_{\text{T}M} is undecidable by showing that $A_{\text{T}M} \leq_M \text{ONES}$.
\[\text{A}_{TM} \leq_{M} \text{ONES}_{TM} \]

- As before, let's try to find a function \(f \) such that
 \[\langle M, w \rangle \in \text{A}_{TM} \iff f(\langle M, w \rangle) \in \text{ONES}_{TM}. \]
- Let's let \(f(\langle M, w \rangle) = \langle M' \rangle \) for some TM \(M' \). Then we want to pick \(M' \) such that
 - \[\langle M, w \rangle \in \text{A}_{TM} \iff f(\langle M, w \rangle) \in \text{ONES}_{TM} \]
 - \[\langle M, w \rangle \in \text{A}_{TM} \iff \langle M' \rangle \in \text{ONES}_{TM} \]
 - \(M \) accepts \(w \) if and only if \(M' \) accepts \(1^n \) for some \(n \).
The Reduction

- Goal: construct M' so M' accepts 1^n for some n iff M accepts w.
- Here is one possible option:

 $M' = \text{"On input } x:\n \text{Ignore } x.\n \text{Run } M \text{ on } w.\n \text{If } M \text{ accepts } w, \text{ accept } x.\n \text{If } M \text{ rejects } w, \text{ reject } x."

- As with before, we can justify the construction of M' using the parameterization theorem.
- If M accepts w, then M' accepts all strings, including 1^n for any n.
- If M does not accept w, then M' does not accept any strings, so it certainly does not accept any strings of the form 1^n.
Theorem: $A_{TM} \leq_M ONES_{TM}$.

Proof: We exhibit a mapping reduction from A_{TM} to $ONES_{TM}$. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is defined in terms of M and w as follows:

\[M' = "On input x:
 \begin{align*}
 &\text{Ignore } x. \\
 &\text{Run } M \text{ on } w. \\
 &\text{If } M \text{ accepts } w, \text{ accept } x. \\
 &\text{If } M \text{ rejects } w, \text{ reject } x."
\]

By the parameterization theorem, f is a computable function. We further claim that $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. To see this, note that $f(\langle M, w \rangle) = \langle M' \rangle \in ONES_{TM}$ iff M' accepts at least one string of the form 1^n. We claim that M' accepts at least one string of the form 1^n iff M accepts w. To see this, note that if M accepts w, then M' accepts 1, and if M does not accept w, then M' rejects all strings, including all strings of the form 1^n. Finally, M accepts w iff $\langle M, w \rangle \in A_{TM}$. Thus $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle) \in ONES_{TM}$. Consequently, f is a mapping reduction from A_{TM} to $ONES_{TM}$, so $A_{TM} \leq_M ONES_{TM}$ as required. ■
A Slightly Modified Question

- We cannot determine whether or not a TM will accept at least one string of all 1s.
- Can we determine whether a TM only accepts strings of all 1s?
- In other words, for a TM M, is $\mathcal{L}(M) \subseteq 1^*$?
- Let $\text{ONLYONES}_{\text{TM}}$ be the language

$$\text{ONLYONES}_{\text{TM}} = \{ \langle M \rangle \mid \mathcal{L}(M) \subseteq 1^* \}$$

- Is $\text{ONLYONES}_{\text{TM}} \in \text{R}$? How about RE?
\[\text{ONLYONES}_{TM} \notin \text{RE} \]

- It turns out that the language \(\text{ONLYONES}_{TM} \) is unrecognizable.
- We can prove this by reducing \(L_D \) to \(\text{ONLYONES}_{TM} \).
- If \(L_D \leq M \text{ONLYONES}_{TM} \), then we have that \(\text{ONLYONES}_{TM} \notin \text{RE} \).
We want to find a computable function f such that

$$\langle M \rangle \in L_D \iff f(\langle M \rangle) \in \text{ONLYONES}_\text{TM}.$$

We want to set $f(\langle M \rangle) = \langle M' \rangle$ for some suitable choice of M'. This means

$$\langle M \rangle \in L_D \iff \langle M' \rangle \in \text{ONLYONES}_\text{TM}$$

$$\langle M \rangle \notin \mathcal{L}(M) \iff \mathcal{L}(M') \subseteq 1^*$$

How would we pick our machine M'?
One Possible Reduction

- We want to build M' from M such that $\langle M \rangle \notin \mathcal{L}(M)$ iff $\mathcal{L}(M') \subseteq 1^*$.

- In other words, we construct M' such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M')$ is not a subset of 1^*.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M')$ is a subset of 1^*.

- One option: Come up with some languages with these properties, then construct our machine M' such that its language changes based on whether $\langle M \rangle \in \mathcal{L}(M)$.
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \Sigma^*$, which isn't a subset of 1^*.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$, which is a subset of 1^*.
One Possible Reduction

• We want
 • If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \Sigma^*$
 • If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$
• Here is one possible M' that does this:

 $M' = \text{"On input } x:\$

 Ignore x.

 Run M on $\langle M \rangle$.

 If M accepts $\langle M \rangle$, accept x.

 If M rejects $\langle M \rangle$, reject x."
Theorem: $L_D \leq_M \text{ONLYONES}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\n\text{Ignore } x.\n\text{Run } M \text{ on } \langle M \rangle.\n\text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n\text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{ONLYONES}_{\text{TM}}$ iff $\mathcal{L}(M') \subseteq 1^*$. We claim that $\mathcal{L}(M') \subseteq 1^*$ iff M does not accept $\langle M \rangle$. To see this, note that if M does not accept $\langle M \rangle$, then M' never accepts any strings, so $\mathcal{L}(M') = \emptyset \subseteq 1^*$. Otherwise, if M accepts $\langle M \rangle$, then M' accepts all strings, so $\mathcal{L}(M) = \Sigma^*$, which is not a subset of 1^*. Finally, M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Thus $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{ONLYONES}_{\text{TM}}$. Consequently, f is a mapping reduction from L_D to $\text{ONLYONES}_{\text{TM}}$, so $L_D \leq_M \text{ONLYONES}_{\text{TM}}$ as required. ■
ONLYONES™

- Although ONLYONES™ is not RE, its complement (ONLYONES™) is RE:

 \[\{ \langle M \rangle \mid L(M) \text{ is not a subset of } 1^* \} \]

- Intuition: Can nondeterministically guess a string in \(L(M) \) that is not of the form \(1^n \), then check that \(M \) accepts it.
The Limits of Computability

- Regular Languages
- DCFLs
- CFLs
- \(R \)
- \(\bar{HALT} \)
- \(L_D \)
- \(\bar{A}_{TM} \)
- \(A_{TM} \)
- \(HALT \)
- \(ONES_{TM} \)
- \(ONLYONES_{TM} \)
- \(ONES_{TM} \)
- \(ONLYONES_{TM} \)

All Languages
RE and co-RE

- The class **RE** is the set of languages that are recognized by a TM.
- The class **co-RE** is the set of languages whose *complements* are recognized by a TM.
- In other words:
 \[L \in \text{co-RE} \Leftrightarrow \overline{L} \in \text{RE} \]
 \[\overline{L} \in \text{co-RE} \Leftrightarrow L \in \text{RE} \]
- Languages in co-RE are called **co-recognizable**. Languages not in co-RE are called **co-unrecognizable**.
Intuiting **RE** and **co-RE**

- A language L is in **RE** iff there is a recognizer for it.
 - If $w \in L$, the recognizer accepts.
 - If $w \notin L$, the recognizer does not accept.

- A language L is in **co-RE** iff there is a refuter for it.
 - If $w \notin L$, the refuter rejects.
 - If $w \in L$, the refuter does not reject.
RE, and co-RE

- **RE** and co-RE are fundamental classes of problems.
 - **RE** is the class of problems where a computer can always verify “yes” instances.
 - co-RE is the class of problems where a computer can always refute “no” instances.
- **RE** and co-RE are, in a sense, the weakest possible conditions for which a problem can be approached by computers.
R, RE, and co-RE

• Recall:
 \[\text{If } L \in \text{RE and } \overline{L} \in \text{RE, then } L \in R \]

• Rewritten in terms of co-RE:
 \[\text{If } L \in \text{RE and } L \in \text{co-RE, then } L \in R \]

• In other words:
 \[\text{RE } \cap \text{ co-RE } \subseteq R \]

• We also know that \[R \subseteq \text{RE and } R \subseteq \text{co-RE, so} \]
 \[R = \text{RE } \cap \text{ co-RE} \]
The Limits of Computability
\[L_D \text{ Revisited} \]

- The diagonalization language \(L_D \) is the language
 \[
 L_D = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}
 \]
- As we saw before, \(L_D \notin \text{RE} \).
- So where is \(L_D \)? Is it in \(L_D \in \text{co-RE} \)? Or is it someplace else?
To see whether $L_D \in \text{co-RE}$, we will see whether $\overline{L_D} \in \text{RE}$.

The language $\overline{L_D}$ is the language

$$\overline{L_D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M) \}$$

Two questions:
- What is this language?
- Is this language RE?
All Turing machines, listed in some order.
<table>
<thead>
<tr>
<th>$\langle M_0 \rangle$</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle M_5 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_4</td>
<td>M_5</td>
<td>...</td>
</tr>
<tr>
<td>M_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
All descriptions of TMs, listed in the same order.
<table>
<thead>
<tr>
<th>M_0</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>M_4</th>
<th>M_5</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>M_0</td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_4</td>
<td>M_5</td>
<td>…</td>
</tr>
<tr>
<td>M_0</td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_4</td>
<td>M_5</td>
<td>…</td>
</tr>
<tr>
<td>M_0</td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_4</td>
<td>M_5</td>
<td>…</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>M₀</td>
<td>M₁</td>
<td>M₂</td>
<td>M₃</td>
<td>M₄</td>
<td>M₅</td>
<td>…</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>M₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
<td>…</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>\langle M_0 \rangle</td>
<td>\langle M_1 \rangle</td>
<td>\langle M_2 \rangle</td>
<td>\langle M_3 \rangle</td>
<td>\langle M_4 \rangle</td>
<td>\langle M_5 \rangle</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_5</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>(M_0)</td>
<td>(M_1)</td>
<td>(M_2)</td>
<td>(M_3)</td>
<td>(M_4)</td>
<td>(M_5)</td>
<td>…</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>M_0</td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_4</td>
<td>M_5</td>
<td>…</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>M_0</td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_4</td>
<td>M_5</td>
<td>...</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>M1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M5</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>M_0</td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_4</td>
<td>M_5</td>
<td>...</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td></td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td></td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Acc | Acc | Acc | No | Acc | No | |</p>
<table>
<thead>
<tr>
<th>M_0</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>M_4</th>
<th>M_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>M₀</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M₁</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M₂</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M₃</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
</tr>
<tr>
<td>M₄</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
</tr>
<tr>
<td>M₅</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

"The language of all TMs that accept their own description."

The table shows the acceptance (Acc) or non-acceptance (No) of TMs for their own descriptions. The table indicates that no TM accepts its own description, except for the row $\langle M_0 \rangle$ which is not fully shown in the image.
\begin{align*}
\{ \langle M \rangle \mid M \text{ is a TM that accepts } \langle M \rangle \}
\end{align*}

\begin{tabular}{|c|c|c|c|c|c|}
\hline
M_0 & Acc & No & No & Acc & Acc & No \\
\hline
M_1 & Acc & Acc & Acc & Acc & Acc & Acc \\
\hline
M_2 & Acc & Acc & Acc & Acc & Acc & Acc \\
\hline
M_3 & No & Acc & Acc & No & Acc & Acc \\
\hline
M_4 & Acc & No & Acc & No & Acc & No \\
\hline
M_5 & No & No & Acc & Acc & No & No \\
\hline
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline
Acc & Acc & Acc & No & Acc & No \\
\hline
\end{tabular}
\[
\begin{array}{cccccc}
\langle M_0 \rangle & \langle M_1 \rangle & \langle M_2 \rangle & \langle M_3 \rangle & \langle M_4 \rangle & \langle M_5 \rangle & \ldots \\
M_0 & \text{Acc} & \text{No} & \text{No} & \text{Acc} & \text{Acc} & \text{No} & \ldots \\
M_1 & \text{Acc} & \text{Acc} & \text{Acc} & \text{Acc} & \text{Acc} & \text{Acc} & \ldots \\
M_2 & \text{Acc} & \text{Acc} & \text{Acc} & \text{Acc} & \text{Acc} & \text{Acc} & \ldots \\
M_3 & \text{No} & \text{Acc} & \text{Acc} & \text{No} & \text{Acc} & \text{Acc} & \ldots \\
M_4 & \text{Acc} & \text{No} & \text{Acc} & \text{No} & \text{Acc} & \text{No} & \ldots \\
M_5 & \text{No} & \text{No} & \text{Acc} & \text{Acc} & \text{No} & \text{No} & \ldots \\
\ldots & \ldots \\
\end{array}
\]

\[
\{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M) \}\]
<table>
<thead>
<tr>
<th>$\langle M_0 \rangle$</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle M_5 \rangle$</th>
<th>...</th>
</tr>
</thead>
</table>
| **M_0** | **Acc** | **No** | **No** | **Acc** | **Acc** | **No** | ...
| **M_1** | **Acc** | **Acc** | **Acc** | **Acc** | **Acc** | **Acc** | ...
| **M_2** | **Acc** | **Acc** | **Acc** | **Acc** | **Acc** | **Acc** | ...
| **M_3** | **No** | **Acc** | **Acc** | **No** | **Acc** | **Acc** | ...
| **M_4** | **Acc** | **No** | **Acc** | **No** | **Acc** | **No** | ...
| **M_5** | **No** | **No** | **Acc** | **Acc** | **No** | **No** | ...
| ... | ... | ... | ... | ... | ... | ... | ...

{ $\langle M \rangle | M$ is a TM and $\langle M \rangle \in \mathcal{L}(M)$ }

This language is $\overline{L_D}$.
\[L_D \in \text{co-RE} \]

- Here's an TM for \(\overline{L}_D \):

\[
R = "\text{On input } \langle M \rangle:\n\text{Run } M \text{ on } \langle M \rangle. \n\text{If } M \text{ accepts } \langle M \rangle, \text{ accept.} \n\text{If } M \text{ rejects } \langle M \rangle, \text{ reject.}"
\]

- Then \(R \) accepts \(\langle M \rangle \) iff \(\langle M \rangle \in \mathcal{L}(M) \) iff \(\langle M \rangle \in \overline{L}_D \), so \(\mathcal{L}(R) = \overline{L}_D \).
The Limits of Computability

- \(\text{ONES}_{TM} \)
- \(\text{ONLYONES}_{TM} \)
- \(\overline{\text{HALT}} \)
- \(L_D \)
- \(\overline{L_D} \)
- \(\overline{A}_{TM} \)
- ADD
- DOGWALK
- \(0^*1^* \)
- \(\text{ONLYONES}_{TM} \)
- \(\text{ONES}_{TM} \)

All Languages
Theorem: If $A \leq_{M} B$, then $\overline{A} \leq_{M} \overline{B}$.
Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$.

Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$.
Theorem: If $A \leq_B B$, then $\overline{A} \leq_B \overline{B}$.

Proof: Suppose that $A \leq_B B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$.
Theorem: If \(A \leq M B \), then \(\overline{A} \leq M \overline{B} \).

Proof: Suppose that \(A \leq M B \). Then there exists a computable function \(f \) such that \(w \in A \) iff \(f(w) \in B \). Note that \(w \in A \) iff \(w \notin \overline{A} \) and \(f(w) \in B \) iff \(f(w) \notin \overline{B} \). Consequently, we have that \(w \notin \overline{A} \) iff \(f(w) \notin \overline{B} \).
Theorem: If $A \leq_{M} B$, then $\overline{A} \leq_{M} \overline{B}$.

Proof: Suppose that $A \leq_{M} B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. ■
Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. Since f is computable, $\overline{A} \leq_M \overline{B}$.
Theorem: If $A \leq_M B$, then $\overline{A} \leq_M \overline{B}$.

Proof: Suppose that $A \leq_M B$. Then there exists a computable function f such that $w \in A$ iff $f(w) \in B$. Note that $w \in A$ iff $w \notin \overline{A}$ and $f(w) \in B$ iff $f(w) \notin \overline{B}$. Consequently, we have that $w \notin \overline{A}$ iff $f(w) \notin \overline{B}$. Thus $w \in \overline{A}$ iff $f(w) \in \overline{B}$. Since f is computable, $\overline{A} \leq_M \overline{B}$. ■
co-RE Reductions

- **Corollary:** If $A \leq M B$ and $B \in \text{co-RE}$, then $A \in \text{co-RE}$.

 Proof: Since $A \leq M B$, $\overline{A} \leq M \overline{B}$. Since $B \in \text{co-RE}$, $\overline{B} \in \text{RE}$. Thus $\overline{A} \in \text{RE}$, so $A \in \text{co-RE}$. ■

- **Corollary:** If $A \leq M B$ and $A \notin \text{co-RE}$, then $B \notin \text{co-RE}$.

 Proof: Take the contrapositive of the above. ■
Why Mapping Reducibility Matters

If this one is "easy" (R or RE or co-RE)...

\[A \leq_{M} B \]

... then this one is "easy" (R or RE or co-RE) too.
Why Mapping Reducibility Matters

If this one is “hard” (not R or not RE or not co-RE)...

\[A \leq_{M} B \]

... then this one is “hard” (not R or not RE or not co-RE) too.
The Limits of Computability

Is there anything out here?

R

co-RE

RE

All Languages

\text{ONES}_{TM}^c
\text{ONLYONES}_{TM}^c
\text{HALT}
\text{L_D}
\text{ADD}
\text{DOGWALK}
0^*1^*
\text{ONES}_{TM}
\text{ONLYONES}_{TM}
\text{A}_{TM}
\text{L_D}
\text{A}_{TM}
RE ∪ co-RE is Not Everything

- Using the same reasoning as the first day of lecture, we can show that there must be problems that are neither RE nor co-RE.
- There are more sets of strings than TMs.
- There are more sets of strings than twice the number of TMs.
- What do these languages look like?
Recall: All regular languages are also \(\text{RE} \).

This means that some TMs accept regular languages and some TMs do not.

Let \(\text{REGULAR}_{\text{TM}} \) be the language of all TM descriptions that accept regular languages:

\[
\text{REGULAR}_{\text{TM}} = \{ \langle M \rangle \mid \mathcal{L}(M) \text{ is regular} \}
\]

Is \(\text{REGULAR}_{\text{TM}} \in \mathbb{R} \)? How about \(\text{RE} \)?
REGULAR$^\text{TM}$ \notin RE

- It turns out that REGULAR$^\text{TM}$ is unrecognizable, meaning that there is no computer program that can even verify that another TM's language is regular!

- To do this, we'll do another reduction from L_D and prove that $L_D \leq^M \text{REGULAR}^\text{TM}$.
\[L_D \leq_M \text{REGULAR}_{\text{TM}} \]

- We want to find a computable function \(f \) such that
 \[\langle M \rangle \in L_D \iff f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}. \]

- We need to choose \(M' \) such that \(f(\langle M \rangle) = \langle M' \rangle \) for some TM \(M' \). Then
 \[\langle M \rangle \in L_D \iff f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}} \]
 \[\langle M \rangle \in L_D \iff \langle M' \rangle \in \text{REGULAR}_{\text{TM}} \]
 \[\langle M \rangle \notin \mathcal{L}(M) \iff \mathcal{L}(M') \text{ is regular.} \]
$L_D \leq_M \text{REGULAR}_{TM}$

- We want to construct some M' out of M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M')$ is not regular.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M')$ is regular.

- One option: choose two languages, one regular and one nonregular, then construct M' so its language switches from regular to nonregular based on whether $\langle M \rangle \notin \mathcal{L}(M)$.
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \{ 0^n1^n \mid n \in \mathbb{N} \}$
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$
The Reduction

• We want to build M' from M such that
 • If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \{ 0^n1^n \mid n \in \mathbb{N} \}$
 • If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \emptyset$
• Here is one way to do this:

 $M' = \text{“On input } x:\n
 \text{If } x \text{ does not have the form } 0^n1^n, \text{ reject.} \n
 \text{Run } M \text{ on } \langle M \rangle. \n
 \text{If } M \text{ accepts, accept } x. \n
 \text{If } M \text{ rejects, reject } x.”$
Theorem: $L_D \leq_M \text{REGULAR}_{TM}$.

Proof: We exhibit a mapping reduction from L_D to REGULAR_{TM}.

For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = \text{"On input } x:\$$
- If x does not have the form 0^n1^n, reject x.
- Run M on $\langle M \rangle$.
- If M accepts $\langle M \rangle$, accept x.
- If M rejects $\langle M \rangle$, reject x.

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{TM}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{TM}$ iff $\mathcal{L}(M')$ is regular. We claim that $\mathcal{L}(M')$ is regular iff $\langle M \rangle \notin \mathcal{L}(M)$. To see this, note that if $\langle M \rangle \notin \mathcal{L}(M)$, then M' never accepts any strings. Thus $\mathcal{L}(M') = \emptyset$, which is regular. Otherwise, if $\langle M \rangle \in \mathcal{L}(M)$, then M' accepts all strings of the form 0^n1^n, so we have that $\mathcal{L}(M) = \{0^n1^n \mid n \in \mathbb{N}\}$, which is not regular. Finally, $\langle M \rangle \notin \mathcal{L}(\langle M \rangle)$ iff $\langle M \rangle \in L_D$. Thus $\langle M \rangle \in L_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{TM}$, so f is a mapping reduction from L_D to REGULAR_{TM}. Therefore, $L_D \leq_M \text{REGULAR}_{TM}$. ■
REGULAR\textsubscript{TM} \not\in \text{co-RE}

- Not only is \(\text{REGULAR}\textsubscript{TM} \not\in \text{RE} \), but \(\text{REGULAR}\textsubscript{TM} \not\in \text{co-RE} \).

- Before proving this, take a minute to think about just how ridiculously hard this problem is.
 - No computer can confirm that an arbitrary TM has a regular language.
 - No computer can confirm that an arbitrary TM has a nonregular language.
 - This is vastly beyond the limits of what computers could ever hope to solve.
\[\overline{L}_D \leq_M \text{REGULAR}_{TM} \]

- To prove that \text{REGULAR}_{TM} is not co-RE, we will prove that \(\overline{L}_D \leq_M \text{REGULAR}_{TM} \).

- Since \(\overline{L}_D \) is not co-RE, this proves that \text{REGULAR}_{TM} is not co-RE either.

- Goal: Find a function \(f \) such that
 \[\langle M \rangle \in \overline{L}_D \quad \text{iff} \quad f(\langle M \rangle) \in \text{REGULAR}_{TM} \]

- Let \(f(\langle M \rangle) = \langle M' \rangle \) for some TM \(M' \). Then we want
 \[\langle M \rangle \in \overline{L}_D \quad \text{iff} \quad \langle M' \rangle \in \text{REGULAR}_{TM} \]

\[\langle M \rangle \in \mathcal{L}(M) \quad \text{iff} \quad \mathcal{L}(M') \text{ is regular} \]
$\overline{L_D} \leq _M \text{REGULAR}_\text{TM}$

- We want to construct some M' out of M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M')$ is regular.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M')$ is not regular.
- One option: choose two languages, one regular and one nonregular, then construct M' so its language switches from regular to nonregular based on whether $\langle M \rangle \in \mathcal{L}(M)$.
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \Sigma^*$.
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \{0^n1^n \mid n \in \mathbb{N}\}$
$\overline{L_D} \leq_M \text{REGULAR}_{	ext{TM}}$

- We want to build M' from M such that
 - If $\langle M \rangle \in \mathcal{L}(M)$, then $\mathcal{L}(M') = \Sigma^*$
 - If $\langle M \rangle \notin \mathcal{L}(M)$, then $\mathcal{L}(M') = \{ 0^n1^n | n \in \mathbb{N} \}$
- Here is one way to do this:
 $M' = \text{"On input } x:\$
 If x has the form 0^n1^n, accept.
 Run M on $\langle M \rangle$.
 If M accepts, accept x.
 If M rejects, reject x.\"
Theorem: $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$.

Proof: We exhibit a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M' \rangle$, where M' is defined in terms of M as follows:

$$M' = "\text{On input } x:\n\quad \text{If } x \text{ has the form } 0^n1^n, \text{ accept } x.\n\quad \text{Run } M \text{ on } \langle M \rangle.\n\quad \text{If } M \text{ accepts } \langle M \rangle, \text{ accept } x.\n\quad \text{If } M \text{ rejects } \langle M \rangle, \text{ reject } x."$$

By the parameterization theorem, f is a computable function. We further claim that $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$. To see this, note that $f(\langle M \rangle) = \langle M' \rangle \in \text{REGULAR}_{\text{TM}}$ iff $\mathcal{A}(M')$ is regular. We claim that $\mathcal{A}(M')$ is regular iff $\langle M \rangle \in \mathcal{A}(M)$. To see this, note that if $\langle M \rangle \in \mathcal{A}(M)$, then M' accepts all strings, either because that string is of the form 0^n1^n or because M eventually accepts $\langle M \rangle$. Thus $\mathcal{A}(M') = \Sigma^*$, which is regular. Otherwise, if $\langle M \rangle \notin \mathcal{A}(M)$, then M' only accepts strings of the form 0^n1^n, so $\mathcal{A}(M) = \{ 0^n1^n \mid n \in \mathbb{N} \}$, which is not regular. Finally, $\langle M \rangle \in \mathcal{A}(\langle M \rangle)$ iff $\langle M \rangle \in \overline{L}_D$. Thus $\langle M \rangle \in \overline{L}_D$ iff $f(\langle M \rangle) \in \text{REGULAR}_{\text{TM}}$, so f is a mapping reduction from \overline{L}_D to $\text{REGULAR}_{\text{TM}}$. Therefore, $\overline{L}_D \leq_M \text{REGULAR}_{\text{TM}}$. ■
The Limits of Computability

- \textit{REGULAR}_{\text{TM}}
- \textit{HALT}_{\text{TM}}
- \textit{ONES}_{\text{TM}}
- \textit{ONLYONES}_{\text{TM}}

\textbf{co-RE}
- \textit{L}_{\text{D}}
- \textit{A}_{\text{TM}}

\textbf{RE}
- \textit{L}_{\text{D}}
- \textit{A}_{\text{TM}}

\textbf{R}
- \textit{0}^{*}1^{*}
- \textit{DOGWALK}
- \textit{ADD}

All Languages
Beyond \textbf{RE} and co-\textbf{RE}

- The most famous problem that is neither \textbf{RE} nor co-\textbf{RE} is the TM equality problem:
 \[
 \text{EQ}_\text{TM} = \{ \langle M_1, M_2 \rangle \mid \mathcal{L}(M_1) = \mathcal{L}(M_2) \}
 \]
- This is why we have to write testing code; there's no way to have a computer prove or disprove that two programs always have the same output.
- This is related to Q6.ii from Problem Set 7.
Why All This Matters
What problems can be solved by a computer?
What problems can be solved efficiently by a computer?
Where We've Been

- The class \mathbf{R} represents problems that can be solved by a computer.
- The class \mathbf{RE} represents problems where answers can be verified by a computer.
- The class co-RE represents problems where answers can be refuted by a computer.
- The mapping reduction can be used to find connections between problems.
Where We're Going

- The class \mathbf{P} represents problems that can be solved *efficiently* by a computer.
- The class \mathbf{NP} represents problems where answers can be verified *efficiently* by a computer.
- The class co-\mathbf{NP} represents problems where answers can be *efficiently* refuted by a computer.
- The *polynomial-time* mapping reduction can be used to find connections between problems.
Next Time

- **Introduction to Complexity Theory**
 - How do you define efficiency?
 - How do you measure it?
 - What tools will we need?

- **Complexity Class P**
 - What problems can be solved efficiently?
 - How do we reason about them?
Have a wonderful Thanksgiving!