More

NP

Completeness
Final Exam Details

• Final exam is **Wednesday, December 12** from 12:15 – 3:15PM in **Cubberly Auditorium**.

• Covers material up through and including Wednesday's lecture.

• Exam focuses primarily on material starting with DFAs and NFAs, though there will be at least one midterm-style question on the exam.

• If you need to take the final exam at an alternate time, please contact us as soon as possible so that we can make arrangements.
Exam Review

- Two final exam review sessions this weekend:
 - Saturday, 2PM – 5PM in Gates 104
 - Sunday, 2PM – 5PM in Gates 104
- There is an **extra credit practice final exam** available right now.
 - Worth 5 points extra credit if you make an honest effort to complete all the problems.
 - Due at the time that you take the exam.
 - No solutions released; come talk to us during office hours or the review session if you have questions!
- Second practice exam will be released on Wednesday along with solutions, though not for extra credit.
Previously on CS103...
A language L is called **NP-hard** iff for every $L' \in \text{NP}$, we have $L' \leq_p L$.

A language in L is called **NP-complete** iff L is NP-hard and $L \in \text{NP}$.

The class **NPC** is the set of NP-complete problems.
The Tantalizing Truth

Theorem: If *any* NP-complete language is in \(P \), then \(P = NP \).
The Tantalizing Truth

Theorem: If *any* NP-complete language is not in P, then P \neq NP.
3-CNF

- A propositional formula is in **3-CNФ** if
 - It is in CNF, and
 - Every clause has *exactly* three literals.

- For example:
 - \((x \lor y \lor z) \land (\neg x \lor \neg y \lor z)\)
 - \((x \lor x \lor x) \land (y \lor \neg y \lor \neg x) \land (x \lor y \lor \neg y)\)
 - But not \((x \lor y \lor z \lor w) \land (x \lor y)\)

- The language **3SAT** is defined as follows:

 \[
 3SAT = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable 3-CNФ formula} \}
 \]

- **Theorem (Cook-Levin):** 3SAT is \textbf{NP}-complete.
The Structure of 3CNF

Each clause must have at least one true literal in it…
The Structure of 3CNF

\[
(x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)
\]

... subject to the constraint that we never choose a literal and its negation
NP-Completeness

Theorem: If $L \in \text{NPC}$, $L \leq_p L'$, and $L' \in \text{NP}$, then $L' \in \text{NPC}$.
Structuring \textbf{NP}-Completeness Reductions
The Shape of a Reduction

- Polynomial-time reductions work by solving one problem with a solver for a different problem.

- Most problems in \(\textbf{NP} \) have different pieces that must be solved simultaneously.

- For example, in 3SAT:
 - Each clause must be made true,
 - but no literal and its complement may be picked.
Reductions and Gadgets

• Many reductions used to show \(\text{NP} \)-completeness work by using gadgets.

• Each piece of the original problem is translated into a “gadget” that handles some particular detail of the problem.

• These gadgets are then connected together to solve the overall problem.
Gadgets in INDSET

Each of these gadgets is designed to solve one part of the problem: ensuring each clause is satisfied.
Gadgets in INDSET

These connections ensure that the solutions to each gadget are linked to one another.
Gadgets in INDSET
A More Complex Reduction
A 3-coloring of a graph is a way of coloring its nodes one of three colors such that no two connected nodes have the same color.
The 3-Coloring Problem

• The **3-coloring problem** is

 Given an undirected graph G, is there a legal 3-coloring of its nodes?

• As a formal language:

 $$3\text{COLOR} = \{ \langle G \rangle \mid G \text{ is an undirected graph with a legal 3-coloring.} \}$$

• This problem is known to be **NP-complete** by a reduction from 3SAT.
3COLOR ∈ NP

- We can prove that 3COLOR ∈ NP by designing a polynomial-time nondeterministic TM for 3COLOR.

M = “On input ⟨G⟩:

- **Nondeterministically** guess an assignment of colors to the nodes.
- **Deterministically** check whether it is a 3-coloring.
- If so, accept; otherwise reject.”
A Note on Terminology

- Although 3COLOR and 3SAT both have “3” in their names, the two are very different problems.
 - 3SAT means “there are three literals in every clause.” However, each literal can take on only one of two different values.
 - 3COLOR means “every node can take on one of three different colors.”

Key difference:
- In 3SAT variables have two choices of value.
- In 3COLOR nodes have three choices of value.
Why Not Two Colors?

- It would seem that 2COLOR (whether a graph has a 2-coloring) would be a better fit.
 - Every variable has one of two values.
 - Every node has one of two values.
- Interestingly, 2COLOR is known to be in \(\mathbf{P} \) and is conjectured not to be \(\mathbf{NP} \)-complete.
 - Though, if you can prove that it is, you've just won $1,000,000!
From 3SAT to 3COLOR

• In order to reduce 3SAT to 3COLOR, we need to somehow make a graph that is 3-colorable iff some 3-CNF formula ϕ is satisfiable.

• **Idea**: Use a collection of gadgets to solve the problem.
 • Build a gadget to assign two of the colors the labels “true” and “false.”
 • Build a gadget to force each variable to be either true or false.
 • Build a series of gadgets to force those variable assignments to satisfy each clause.
Gadget One: Assigning Meanings

These nodes must all have different colors.

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with O.
Gadget Two: Forcing a Choice

\[(x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z)\]
Gadget Three: Clause Satisfiability

\((x \lor y \lor \neg z)\)

This node is colorable iff one of the inputs is the same color as T
Putting It All Together

• Construct the first gadget so we have a consistent definition of true and false.

• For each variable \(v \):
 • Construct nodes \(v \) and \(\neg v \).
 • Add an edge between \(v \) and \(\neg v \).
 • Add an edge between \(v \) and \(O \) and between \(\neg v \) and \(O \).

• For each clause \(C \):
 • Construct the earlier gadget from \(C \) by adding in the extra nodes and edges.
Putting It All Together

C_1 \quad C_2 \quad ... \quad C_n

T \quad F \quad O

\bar{x}_1 \quad x_1 \quad \bar{x}_k \quad x_k
Analyzing the Reduction

- How large is the resulting graph?
- We have $O(1)$ nodes to give meaning to “true” and “false.”
- Each variable gives $O(1)$ nodes for its true and false values.
- Each clause gives $O(1)$ nodes for its colorability gadget.
- Collectively, if there are n clauses, there are $O(n)$ variables.
- Total size of the graph is $O(n)$.
Another \textbf{NP}-Complete Problem
Let U be a set of elements (the **universe**) and $S \subseteq \mathcal{P}(U)$. An **exact covering** of U is a collection of sets $I \subseteq S$ such that every element of U belongs to exactly one set in I.

$U = \{1, 2, 3, 4, 5, 6\}$

$\begin{align*}
S &= \{1, 2, 5\}, \{2, 5\}, \{1, 3, 6\}, \\
& \quad \{2, 3, 4\}, \{4\}, \{1, 5, 6\}\end{align*}$
Applications of Exact Covering

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array}
\]

\[
\{C, 1, 4, 5\} \\
\{C, 1, 2, 4\} \\
\{C, 1, 2, 5\} \\
\{C, 2, 4, 5\} \\
\{M, 1, 4, 7\} \\
\{M, 2, 5, 8\} \\
\{M, 3, 6, 9\}
\]
Exact Covering

• Given a universe U and a set $S \subseteq \mathcal{P}(U)$, the exact covering problem is

 Does S contain an exact covering of U?

• As a formal language:

 \[
 \text{EXACT-COVER} = \{ \langle U, S \rangle \mid S \subseteq \mathcal{P}(U) \text{ and } S \text{ contains an exact covering of } U \}
 \]
EXACT-COVER ∈ NPC

- We will prove that EXACT-COVER is NP-complete.
- To do this, we will show that
 - EXACT-COVER ∈ NP, and
 - 3COLOR ≤_p EXACT-COVER
- Note that we're using the fact that 3COLOR is NP-complete to establish that EXACT-COVER is NP-hard.
EXACT-COVER ∈ NP

- Here is a polynomial-time verifier for EXACT-COVER:

 - $V = \text{“On input } \langle U, S, I \rangle:\$
 - Verify that every set in S is a subset of U.
 - Verify that every set in I is an element of S.
 - Verify that every element of U belongs to an element of I.
 - Verify that every element of U belongs to at most one element of I.”
3COLOR \leq_p EXACT-COVER

- We now reduce 3-colorability to the exact cover problem.
- A graph is 3-colorable iff
 - Every node is assigned one of three colors, and
 - No two nodes connected by an edge are assigned the same color.
- We will construct our universe U and sets S such that an exact covering
 - Assigns every node in G one of three colors, and
 - Never assigns two adjacent nodes the same color.
\{ W, R_w, R_y, R_z \}
\{ W, G_w, G_y, G_z \}
\{ W, B_w, B_y, B_z \}
\{ X, R_x, R_z \}
\{ X, G_x, G_z \}
\{ X, B_x, B_z \}
\{ Y, R_y, R_w, R_z \}
\{ Y, G_y, G_w, G_z \}
\{ Y, B_y, B_w, B_z \}
\{ Z, R_z, R_w, R_y \}
\{ Z, G_z, G_w, G_y \}
\{ Z, B_z, B_w, B_y \}
\{ W, R_W, R_Y, R_Z \} \\
\{ W, G_W, G_Y, G_Z \} \\
\{ W, B_W, B_Y, B_Z \} \\
\{ X, R_X, R_Z \} \\
\{ X, G_X, G_Z \} \\
\{ X, B_X, B_Z \} \\
\{ Y, R_Y, R_W, R_Z \} \\
\{ Y, G_Y, G_W, G_Z \} \\
\{ Y, B_Y, B_W, B_Z \} \\
\{ Z, R_Z, R_W, R_Y \} \\
\{ Z, G_Z, G_W, G_Y \} \\
\{ Z, B_Z, B_W, B_Y \}
Nothing covers this element, since \(X\) has no blue neighbors.
Two sets cover this element, since Z has two green neighbors.

\[
\{ \{ W, R_w, R_y, R_z \} \}
\{ \{ W, G_w, G_y, G_z \} \}
\{ \{ W, B_w, B_y, B_z \} \}
\{ \{ X, R_x, R_z \} \}
\{ \{ X, G_x, G_z \} \}
\{ \{ X, B_x, B_z \} \}
\{ \{ Y, R_y, R_w, R_z \} \}
\{ \{ Y, G_y, G_w, G_z \} \}
\{ \{ Y, B_y, B_w, B_z \} \}
\{ \{ Z, R_z, R_w, R_y \} \}
\{ \{ Z, G_z, G_w, G_y \} \}
\{ \{ Z, B_z, B_w, B_y \} \}
\]
Correction 1: Filling in Gaps
Correction 2: Avoiding Duplicates
\{ W, R_{WY}, R_{WZ} \} \quad \{ R_{WY} \}
\{ W, G_{WY}, G_{WZ} \} \quad \{ R_{WZ} \}
\{ W, B_{WY}, B_{WZ} \} \quad \{ R_{XZ} \}
\{ X, R_{XZ} \} \quad \{ R_{YZ} \}
\{ X, G_{XZ} \} \quad \{ G_{WY} \}
\{ X, B_{XZ} \} \quad \{ G_{WZ} \}
\{ Y, R_{WY}, R_{YZ} \} \quad \{ G_{XZ} \}
\{ Y, G_{WY}, G_{YZ} \} \quad \{ G_{YZ} \}
\{ Y, B_{WY}, B_{YZ} \} \quad \{ B_{WY} \}
\{ Z, R_{WZ}, R_{XZ}, R_{YZ} \} \quad \{ B_{WZ} \}
\{ Z, G_{WZ}, G_{XZ}, G_{YZ} \} \quad \{ B_{XZ} \}
\{ Z, B_{WZ}, B_{XZ}, B_{YZ} \} \quad \{ B_{YZ} \}
\{ W, R_{wy}, R_{wz} \} \quad \{ R_{wy} \}
\{ W, G_{wy}, G_{wz} \} \quad \{ R_{wz} \}
\{ W, B_{wy}, B_{wz} \} \quad \{ R_{xz} \}
 \quad \{ X, R_{xz} \} \quad \{ R_{yz} \}
\{ X, G_{xz} \} \quad \{ G_{wy} \}
\{ X, B_{xz} \} \quad \{ G_{wz} \}
\{ Y, R_{wy}, R_{yz} \} \quad \{ G_{xz} \}
\{ Y, G_{wy}, G_{yz} \} \quad \{ G_{yz} \}
\{ Y, B_{wy}, B_{yz} \} \quad \{ B_{wy} \}
\{ Z, R_{wz}, R_{xz}, R_{yz} \} \quad \{ B_{wz} \}
\{ Z, G_{wz}, G_{xz}, G_{yz} \} \quad \{ B_{xz} \}
\{ Z, B_{wz}, B_{xz}, B_{yz} \} \quad \{ B_{yz} \}
The Construction

• For each node v in graph G, construct four elements in the universe U:
 • An element v.
 • Elements R_v, G_v, and B_v.

• For each edge $\{u, v\}$ in graph G, construct three elements in the universe U:
 • Elements R_{uv}, G_{uv}, B_{uv}

• Total size of the universe U: $O(|V| + |E|)$.
The Construction

- For each node v in graph G, construct a set belonging to S containing
 - The element v,
 - Each R_{uv} for each edge $\{u, v\}$ in the graph.
- Repeat the above for colors G and B.
- Add singleton sets containing each individual element except for elements corresponding to nodes.
- Total size of all sets is $O(|V| + |E|)$
 - Counts each node three times and each edge six times.
The Story So Far

3SAT

INDSET

3COLOR

EXACT-COVER
Another NP-Complete Problem
Given a set \(S \subseteq \mathbb{N} \) and a natural number \(k \), the \textbf{subset sum problem} is to find a subset of \(S \) whose sum is exactly \(k \).
MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT

APPETIZERS

- Mixed Fruit $2.15
- French Fries $2.75
- Side Salad $3.35
- Hot Wings $3.55
- Mozzarella Sticks $4.20
- Sampler Plate $5.80

SANDWICHES

- Barbecue $6.55

WE'D LIKE EXACTLY $15.05 WORTH OF APPETIZERS, PLEASE.

...EXACTLY? UHH...

HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER TABLES TO GET TO—

AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?
Subset Sum

• Given a set $S \subseteq \mathbb{N}$ and a natural number k, the subset sum problem is

 Is there a subset of S with sum exactly k?

• As a formal language:

\[
\text{SUBSET-SUM} = \{ \langle S, k \rangle \mid S \subseteq \mathbb{N}, k \in \mathbb{N} \text{ and there is a subset of } S \text{ with sum exactly } k \} \]
SUBSET-SUM ∈ NPC

• We will prove that SUBSET-SUM is NP-complete.

• To do this, we will show that
 • SUBSET-SUM ∈ NP, and
 • EXACT-COVER ≤_p SUBSET-SUM

• Again, we're using our new NP-complete problem to show other languages are NP-complete.
Here is a nondeterministic polynomial-time algorithm for SUBSET-SUM:

N = “On input \langle S, k \rangle:

- **Nondeterministically** guess a subset \(I \subseteq S \).
- **Deterministically** verify whether the sum of the elements of \(I \) is equal to \(k \).
- If so, accept; otherwise reject.”
EXACT-COVER \leq_p SUBSET-SUM

• We now reduce exact cover to subset sum.
• The exact cover problem has a solution iff
 • Every element of the universe belongs to at least one set, and
 • Every element of the universe belongs to at most one set.
• We will construct our set S and number k such that
 • Each number corresponds to a set of elements, and
 • k corresponds to the universe U.
$S = \left\{ \{1, 2, 5\}, \{2, 5\}, \{1, 3, 6\}, \{2, 3, 4\}, \{4\}, \{1, 5, 6\} \right\}$

$U = \left\{ 1, 2, 3, 4, 5, 6 \right\}$
\[S = \{1, 2, 5\}, \{2, 5\}, \{1, 3, 6\}, \{2, 3, 4\}, \{4\}, \{1, 5, 6\} \]

\[U = \{1, 2, 3, 4, 5, 6\} \]

\[S' = \{110010, 010010, 101001, 011100, 000100, 100011\} \]

\[k = 1111111 \]
The Basic Intuition

- Suppose there are n elements in the universe and k different sets.
- Replace each set S with a number that is 1 in its ith position if $i \in S$ and has a 0 in its ith position otherwise.
- Set k to a number that is n copies of the number 1.
A Slight Complexity

• To ensure that the columns don't overflow, write the numbers in base \((B + 1)\) where \(B\) is the total number of sets.

• That way, the columns can't overflow from one column into the next.
The Story So Far

3SAT

INDSET

3COLOR

EXACT-COVER

SUBSET-SUM
Yet Another \textbf{NP}-Complete Problem
Given a set \(S \subseteq \mathbb{N} \), the **partitioning problem** is to find a way to split \(S \) into two sets with equal sum.
Partitioning

• Given a set $S \subseteq \mathbb{N}$, the partitioning problem is

 Can S be split into two sets whose sums are the same?

• As a formal language:

 $\text{PARTITION} = \{ \langle S \rangle \mid S \subseteq \mathbb{N}, \text{ and there is a way to split } S \text{ into two sets with the same sum. } \}$
\textbf{PARTITION} \in \textbf{NPC}

- We will prove that \textit{PARTITION} is \textbf{NP}-complete.

- To do this, we will show that
 - \textit{PARTITION} \in \textbf{NP}, and
 - \textit{SUBSET-SUM} \leq_{p} \textit{PARTITION}

- Sense a pattern? 😊
PARTITION ∈ NP

- Here is a polynomial-time verifier for PARTITION:

 \(V = \text{"On input } \langle S, S_1, S_2 \rangle:\)

 - Check that \(S_1 \cup S_2 = S \) and that \(S_1 \cap S_2 = \emptyset \).
 - Check that the sum of the elements in \(S_1 \) equals the sum of the elements in \(S_2 \).
 - If so, accept; otherwise, reject."
SUBSET-SUM \(\leq_p \) PARTITION

- We now reduce subset sum to partitioning.
- The subset sum has a solution iff
 - Some subset of the master set \(S \) is equal to \(k \).
- We will construct our new set \(S' \) such that
 - If a subset of \(S \) has total \(k \), we can add in a new element to make up the difference to half the total sum.
\{137, 42, 271, 103, 154, 16, 3\}

\[k = 452\]

Total of all elements in this set: 726

\[726 - 452 = 274\]

\[452 - 274 = 178\]

\{137, 42, 271, 103, 154, 16, 3, 178\}
The General Idea

- Add in a new element to the set such that a subset with the appropriate sum also forms a partition.
- The new element added in might need to go in the subset that originally added to k, or it might have to go in the complement of that set.
The Story So Far

3SAT

INDSET

3COLOR

EXACT-COVER

SUBSET-SUM

PARTITION
One Final NP-Complete Problem
Given a set J of jobs that take some amount of time to complete and k workers, the job scheduling problem is to minimize the total time required to complete all jobs (called the makespan).
Job Scheduling

• Given a set J of jobs of different lengths, a number of workers k, and a number t, the job scheduling problem is

 Can the jobs in J be assigned to the k workers such that all jobs are finished within t units of time?

• As a formal language:

 $JOB\text{-}SCHEDULING = \{ \langle J, k, t \rangle \mid \text{The jobs in } J \text{ can be assigned to the } k \text{ workers so all jobs are completed within } t \text{ time} \}$
JOB-SCHEDULING \in NPC

- We will prove that JOB-SCHEDULING is NP-complete.
- To do this, we will show that
 - JOB-SCHEDULING \in NP, and
 - PARTITION \leq_p JOB-SCHEDULING
$$\text{JOB-SCHEDULING} \in \text{NP}$$

- Here is a polynomial-time NTM for JOB-SCHEDULING:

 - \(N = \text{“On input } \langle J, k, t \rangle:\)
 - \textbf{Nondeterministically} guess an assignment of the jobs in \(J\) to the \(k\) workers.
 - \textbf{Deterministically} find the maximum amount of time used by any worker.
 - If it is at most \(t\), accept; otherwise, reject.”
PARTITION \leq_p JOB-SCHEDULING

- We now reduce partitioning to job scheduling.
- The reduction is actually straightforward:
 - Given a set of numbers to partition, create one task for each number.
 - Have two workers.
 - See if the workers can complete the tasks in time at most half the total time required to do all jobs.
\(\text{PARTITION} \leq_p \text{JOB-SCHEDULING} \)

\[\{2, 3, 4, 5, 10\} \]

Total time: 24

12 Time Units
The Story So Far

3SAT

INDSET

3COLOR

EXACT-COVER

SUBSET-SUM

PARTITION

JOB-SCHEDULING
A Historical Note
A Feel for **NP**-Completeness

- We have just seen **NP**-complete problems from
 - Formal logic (3SAT)
 - Graph theory (3-colorability)
 - Set theory (exact cover)
 - Number theory (subset sum / partition)
 - Operations research (job scheduling)

- **You will encounter NP-complete problems in the real world.**
Next Time

• **Approximation Algorithms**
 • Can we *approximate* **NP**-hard problems within polynomial time?

• **P, NP, and Cryptography**
 • How can we use hard problems to our advantage?