Decidability and Undecidability
Major Ideas from Last Time

- Every TM can be converted into a string representation of itself.
 - The **encoding** of M is denoted $\langle M \rangle$.
- The **universal Turing machine** U^{TM} accepts an encoding $\langle M, w \rangle$ of a TM M and string w, then simulates the execution of M on w.
- The language of U^{TM} is the language A^{TM}:
 \[A^{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w. \} \]
- Equivalently:
 \[A^{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in \mathcal{L}(M) \} \]
Major Ideas from Last Time

- The universal Turing machine \(U_{\text{TM}} \) can be used as a subroutine in other Turing machines.

\[H = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a Turing machine:} \]
\[\begin{align*}
&\text{· Run } M \text{ on } \varepsilon. \\
&\text{· If } M \text{ accepts } \varepsilon, \text{ then } H \text{ accepts } \langle M \rangle. \\
&\text{· If } M \text{ rejects } \varepsilon, \text{ then } H \text{ rejects } \langle M \rangle.
\end{align*} \]

\[H = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a Turing machine:} \]
\[\begin{align*}
&\text{· Nondeterministically guess a string } w. \\
&\text{· Run } M \text{ on } w. \\
&\text{· If } M \text{ accepts } w, \text{ then } H \text{ accepts } \langle M \rangle. \\
&\text{· If } M \text{ rejects } w, \text{ then } H \text{ rejects } \langle M \rangle.
\end{align*} \]
Major Ideas from Last Time

- The **diagonalization language**, which we denote L_D, is defined as

 $$L_D = \{ \langle M \rangle | M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

- That is, L_D is the set of descriptions of Turing machines that do not accept themselves.

- **Theorem:** $L_D \notin \text{RE}$
Outline for Today

- **More non-RE Languages**
 - We now know $L_D \notin \text{RE}$. Can we use this to find other non-RE languages?

- **Decidability and Class R**
 - How do we formalize the idea of an algorithm?

- **Undecidable Problems**
 - What problems admit no algorithmic solution?
Additional Unsolvable Problems
Finding Unsolvable Problems

- We can use the fact that $L_D \notin \text{RE}$ to show that other languages are also not \text{RE}.

- General proof approach: to show that some language L is not \text{RE}, we will do the following:
 - Assume for the sake of contradiction that $L \in \text{RE}$, meaning that there is some TM M for it.
 - Show that we can build a TM that uses M as a subroutine in order to recognize L_D.
 - Reach a contradiction, since no TM recognizes L_D.
 - Conclude, therefore, that $L \notin \text{RE}$.
The Complement of A_{TM}

- Recall: the language A_{TM} is the language of the universal Turing machine U_{TM}:

 $$A_{TM} = \mathcal{L}(U_{TM}) = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$$

- The complement of A_{TM} (denoted \overline{A}_{TM}) is the language of all strings not contained in A_{TM}.

- Questions:
 - What language is this?
 - Is this language RE?
The language A_{TM} is defined as:

$$\{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$$

Equivalently:

$$\{x \mid x = \langle M, w \rangle \text{ for some TM } M \text{ and string } w, \text{ and } M \text{ accepts } w\}$$

Thus \overline{A}_{TM} is:

$$\{x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \text{ or } M \text{ is a TM that does not accept } w\}$$
The language A_{TM} is defined as

$$\{⟨M, w⟩ | M \text{ is a TM that accepts } w\}$$

Equivalently:

$$\{x | x = ⟨M, w⟩ \text{ for some TM } M \text{ and string } w, \text{ and } M \text{ accepts } w\}$$

Thus A_{TM} is

$$\{x | x \neq ⟨M, w⟩ \text{ for any TM } M \text{ and string } w, \text{ or } M \text{ is a TM that does not accept } w\}$$
Cheating With Math

• As a mathematical simplification, we will assume the following:

 Every string can be decoded into any collection of objects.

• Every string is an encoding of some TM M.
• Every string is an encoding of some TM M and string w.

• Can do this as follows:
 • If the string is a legal encoding, go with that encoding.
 • Otherwise, pretend the string decodes to some predetermined group of objects.
Cheating With Math

- Example: Every string will be a valid C++ program.
- If it's already a C++ program, just compile it.
- Otherwise, pretend it's this program:
  ```
  int main() {
      return 0;
  }
  ```
A_{TM} and \overline{A}_{TM}

- The language A_{TM} is defined as
 \[\{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \} \]
- Thus \overline{A}_{TM} is the language
 \[\{ \langle M, w \rangle \mid M \text{ is a TM that doesn't accept } w \} \]
\[\overline{A}_{TM} \not\in \text{RE} \]

- Although the language \(A_{TM} \in \text{RE} \) (since it's the language of \(U_{TM} \)), its complement \(\overline{A}_{TM} \not\in \text{RE} \).

- We will prove this as follows:

 - Assume, for contradiction, that \(\overline{A}_{TM} \in \text{RE} \).

 - This means there is a TM \(R \) for \(\overline{A}_{TM} \).

 - Using \(R \) as a subroutine, we will build a TM \(H \) that will recognize \(L_D \).

 - This is impossible, since \(L_D \not\in \text{RE} \).

 - Conclude, therefore, that \(\overline{A}_{TM} \not\in \text{RE} \).
Comparing L_D and \overline{A}_{TM}

- The languages L_D and \overline{A}_{TM} are closely related:
 - L_D: Does M not accept $\langle M \rangle$?
 - \overline{A}_{TM}: Does M not accept string w?

- Given this connection, we will show how to turn a hypothetical recognizer for \overline{A}_{TM} into a hypothetical recognizer for L_D.
\(\langle M \rangle \xrightarrow{w} \text{Recognizer for } \overline{A_{TM}} \xrightarrow{} \text{Yes} \)

\(\text{Recognizer for } \overline{A_{TM}} \xrightarrow{} \text{No} \)
\begin{itemize}
\item \(\langle M \rangle\)
\item \(w\)
\end{itemize}

Recognizer for \(\overline{A_{TM}}\)

\begin{itemize}
\item Machine \(R\)
\item Yes
\item No
\end{itemize}
Recognizer for $\overline{A_{TM}}$

Machine R

Machine H

$\langle M \rangle$

w

Yes

No
$H = "\text{On input } \langle M \rangle:\n\begin{itemize}
\item \text{Construct the string } \langle M, \langle M \rangle \rangle.
\item \text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.
\item \text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ accepts } \langle M \rangle.
\item \text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ rejects } \langle M \rangle."
\end{itemize}
$H = \text{"On input } \langle M \rangle:\n\text{• Construct the string } \langle M, \langle M \rangle \rangle.\n\text{• Run } R \text{ on } \langle M, \langle M \rangle \rangle.\n\text{• If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ accepts } \langle M \rangle.\n\text{• If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ rejects } \langle M \rangle."
$H = \text{"On input } \langle M \rangle: \text{"
- Construct the string } \langle M, \langle M \rangle \rangle.
- Run R on } \langle M, \langle M \rangle \rangle.
- \text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ accepts } \langle M \rangle.
- \text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ rejects } \langle M \rangle."
$H = \text{"On input } \langle M \rangle:\$

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$.

Machine R accepts $\langle M, \langle M \rangle \rangle$
$H = \text{"On input } \langle M \rangle:\n\quad \cdot \text{Construct the string } \langle M, \langle M \rangle \rangle. \\
\quad \cdot \text{Run } R \text{ on } \langle M, \langle M \rangle \rangle. \\
\quad \cdot \text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ accepts } \langle M \rangle. \\
\quad \cdot \text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ rejects } \langle M \rangle.\text{"}
$\langle M \rangle$

Recognizer for $\overline{A_{TM}}$

Machine R

Yes

No

Machine H

$H = "On input $\langle M \rangle$:
- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle."

What happens if...
M does not accept $\langle M \rangle$?

Accept

Machine R accepts $\langle M, \langle M \rangle \rangle$
$H =$ “On input $\langle M \rangle$:
\begin{itemize}
 \item Construct the string $\langle M, \langle M \rangle \rangle$.
 \item Run R on $\langle M, \langle M \rangle \rangle$.
 \item If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
 \item If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$.
\end{itemize}
$H = \text{"On input } \langle M \rangle:\n$
- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$?

Accept

M accepts $\langle M \rangle$?
$H = \text{"On input } \langle M \rangle:\$

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
 - If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
 - If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$.

What happens if...

M does not accept $\langle M \rangle$?

Accept

M accepts $\langle M \rangle$?

Machine R does not accept $\langle M, \langle M \rangle \rangle$
$H = "On\ input \langle M \rangle:\$

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$.

What happens if...

- M does not accept $\langle M \rangle$?
 - **Accept**
- M accepts $\langle M \rangle$?
 - **Reject or Loop**

Machine R does not accept $\langle M, \langle M \rangle \rangle$.
$H = \text{“On input } \langle M \rangle: \text{”}$

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$?

Accept

M accepts $\langle M \rangle$?

Reject or Loop
H = “On input $⟨M⟩$:
 • Construct the string $⟨M, ⟨M⟩⟩$.
 • Run R on $⟨M, ⟨M⟩⟩$.
 • If R accepts $⟨M, ⟨M⟩⟩$, then H accepts $⟨M⟩$.
 • If R rejects $⟨M, ⟨M⟩⟩$, then H rejects $⟨M⟩$.”

H is a TM for L_D!
Theorem: \(\overline{A_{TM}} \not\in \text{RE}. \)
Theorem: $\overline{A}_{TM} \notin \text{RE}$.

Proof:
Theorem: \(\overline{A_{TM}} \notin \text{RE} \).

Proof: By contradiction; assume that \(\overline{A_{TM}} \in \text{RE} \).
Theorem: $\overline{A_{TM}} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $\overline{A_{TM}} \in \mathbf{RE}$. Then there must be a recognizer for $\overline{A_{TM}}$; call it R.
Theorem: $\overline{A_{TM}} \not\in \text{RE}$.

Proof: By contradiction; assume that $\overline{A_{TM}} \in \text{RE}$. Then there must be a recognizer for $\overline{A_{TM}}$; call it R.

Consider the TM H defined below:

$H = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \newline \text{ Construct the string } \langle M, \langle M \rangle \rangle. \newline \text{ Run } R \text{ on } \langle M, \langle M \rangle \rangle. \newline \text{ If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle. \newline \text{ If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle."}$
Theorem: \(\overline{A_{TM}} \not\in \text{RE} \).

Proof: By contradiction; assume that \(\overline{A_{TM}} \in \text{RE} \). Then there must be a recognizer for \(\overline{A_{TM}} \); call it \(R \).

Consider the TM \(H \) defined below:

\[
H = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \\
\text{Construct the string } \langle M, \langle M \rangle \rangle. \\
\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle. \\
\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle. \\
\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle."
\]

We claim that \(\mathcal{L}(H) = L_D \).
Theorem: $\overline{A_{TM}} \notin \text{RE}$.

Proof: By contradiction; assume that $\overline{A_{TM}} \in \text{RE}$. Then there must be a recognizer for $\overline{A_{TM}}$; call it R.

Consider the TM H defined below:

$$H = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:}
\text{Construct the string } \langle M, \langle M \rangle \rangle.
\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.
\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ } H \text{ accepts } \langle M \rangle.
\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ } H \text{ rejects } \langle M \rangle."$$

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

Theorem: $\overline{A_{TM}} \notin \text{RE}$.

Proof: By contradiction; assume that $\overline{A_{TM}} \in \text{RE}$. Then there must be a recognizer for $\overline{A_{TM}}$; call it R.

Consider the TM H defined below:

\[
H = "\text{On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \\
\quad \text{Construct the string } \langle M, \langle M \rangle \rangle. \\
\quad \text{Run } R \text{ on } \langle M, \langle M \rangle \rangle. \\
\quad \text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle. \\
\quad \text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle."
\]

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$.
Theorem: $\overline{A}_{TM} \notin RE$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in RE$. Then there must be a recognizer for \overline{A}_{TM}; call it R.

Consider the TM H defined below:

$$H = "On \text{ input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$

Construct the string $\langle M, \langle M \rangle \rangle$.

Run R on $\langle M, \langle M \rangle \rangle$.

If R accepts $\langle M, \langle M \rangle \rangle$, H accepts $\langle M \rangle$.

If R rejects $\langle M, \langle M \rangle \rangle$, H rejects $\langle M \rangle$.”

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$.

Since R is a recognizer for \overline{A}_{TM}, R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathcal{L}(H) = L_D$. But this is impossible, since $L_D \notin RE$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $\overline{A}_{TM} \notin RE$, as required. ■
Theorem: $\overline{A_{TM}} \notin \text{RE}$.

Proof: By contradiction; assume that $\overline{A_{TM}} \in \text{RE}$. Then there must be a recognizer for $\overline{A_{TM}}$; call it R.

Consider the TM H defined below:

$$H = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:}\n\text{Construct the string } \langle M, \langle M \rangle \rangle.\n\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.\n\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle.\n\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle."$$

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for $\overline{A_{TM}}$, R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $\overline{A_{TM}} \notin \text{RE}$, as required.■
Theorem: $\overline{A}_{TM} \notin \text{RE}$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \text{RE}$. Then there must be a recognizer for \overline{A}_{TM}; call it R.

Consider the TM H defined below:

$$H = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, H rejects $\langle M \rangle$.”

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM}, R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathcal{L}(H) = L_D$. Therefore, we have reached a contradiction, so our assumption must have been incorrect. Thus $\overline{A}_{TM} \notin \text{RE}$, as required. ■
Theorem: $\overline{A_{\text{TM}}} \notin \text{RE}$.

Proof: By contradiction; assume that $\overline{A_{\text{TM}}} \in \text{RE}$. Then there must be a recognizer for $\overline{A_{\text{TM}}}$; call it R.

Consider the TM H defined below:

$$H = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:}\$$
$$\text{Construct the string } \langle M, \langle M \rangle \rangle.\$$
$$\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.\$$
$$\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle.\$$
$$\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle."$$

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for $\overline{A_{\text{TM}}}$, R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathcal{L}(H) = L_D$. But this is impossible, since $L_D \notin \text{RE}$.
Theorem: $\overline{A}_{TM} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM}; call it R.

Consider the TM H defined below:

$$H = "\text{On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$

$$\text{Construct the string } \langle M, \langle M \rangle \rangle.$$

$$\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.$$

$$\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle.$$

$$\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle."$$

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM}, R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathcal{L}(H) = L_D$. But this is impossible, since $L_D \notin \mathbf{RE}$.

We have reached a contradiction, so our assumption must have been incorrect.
Theorem: $\overline{A_{TM}} \notin \text{RE}$.

Proof: By contradiction; assume that $\overline{A_{TM}} \in \text{RE}$. Then there must be a recognizer for $\overline{A_{TM}}$; call it R.

Consider the TM H defined below:

$$H = \text{"On input } \langle M \rangle \text{, where } M \text{ is a TM:}
\quad \text{Construct the string } \langle M, \langle M \rangle \rangle.
\quad \text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.
\quad \text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \ H \text{ accepts } \langle M \rangle.
\quad \text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \ H \text{ rejects } \langle M \rangle."
$$

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for $\overline{A_{TM}}$, R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathcal{L}(H) = L_D$. But this is impossible, since $L_D \notin \text{RE}$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $\overline{A_{TM}} \notin \text{RE}$, as required.
Theorem: $\overline{A}_{TM} \notin \text{RE}$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \text{RE}$. Then there must be a recognizer for \overline{A}_{TM}; call it R.

Consider the TM H defined below:

$$H = "\text{On input } \langle M \rangle, \text{ where } M \text{ is a TM:}\n\text{Construct the string } \langle M, \langle M \rangle \rangle.\n\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.\n\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle.\n\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle."$$

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM}, R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$.

Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathcal{L}(H) = L_D$. But this is impossible, since $L_D \notin \text{RE}$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $\overline{A}_{TM} \notin \text{RE}$, as required. \blacksquare
Why All This Matters

• We finally have found concrete examples of unsolvable problems!

• We are starting to see a line of reasoning we can use to find unsolvable problems:
 • Start with a known unsolvable problem.
 • Try to show that the unsolvability of that problem entails the unsolvability of other problems.

• We will see this used extensively in the upcoming weeks.
Revisiting RE
Recall: Language of a TM

- The language of a Turing machine M, denoted $\mathcal{L}(M)$, is the set of all strings that M accepts:

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$$

- For any $w \in \mathcal{L}(M)$, M accepts w.
- For any $w \notin \mathcal{L}(M)$, M does not accept w.
 - It might loop forever, or it might explicitly reject.
- A language is called **recognizable** if it is the language of some TM.
- Notation: RE is the set of all recognizable languages.

$$L \in \text{RE} \iff L \text{ is recognizable}$$
Why “Recognizable?”

- Given TM M with language $\mathcal{L}(M)$, running M on a string w will not necessarily tell you whether $w \in \mathcal{L}(M)$.

- If the machine is running, you can't tell whether
 - It is eventually going to halt, but just needs more time, or
 - It is never going to halt.

- However, if you know for a fact that $w \in \mathcal{L}(M)$, then the machine can confirm this (it eventually accepts).

- The machine can't decide whether or not $w \in \mathcal{L}(M)$, but it can recognize strings that are in the language.

- We sometimes call a TM for a language L a recognizer for L.
Deciders

- Some Turing machines always halt; they never go into an infinite loop.
- Turing machines of this sort are called **deciders**.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.
Decidable Languages

- A language L is called **decidable** iff there is a decider M such that $\mathcal{L}(M) = L$.
- Given a decider M, you *can* learn whether or not a string $w \in \mathcal{L}(M)$.
 - Run M on w.
 - Although it might take a staggeringly long time, M will eventually accept or reject w.
- The set \mathbb{R} is the set of all decidable languages.

 \[L \in \mathbb{R} \iff L \text{ is decidable} \]
R and RE Languages

• Intuitively, a language is in RE if there is some way that you could exhaustively search for a proof that $w \in L$.
 • If you find it, accept!
 • If you don't find one, keep looking!
• Intuitively, a language is in R if there is a concrete algorithm that can determine whether $w \in L$.
 • It tends to be much harder to show that a language is in R than in RE.
Examples of \(\mathbf{R} \) Languages

- All regular languages are in \(\mathbf{R} \).
 - If \(L \) is regular, we can run the DFA for \(L \) on a string \(w \) and then either accept or reject \(w \) based on what state it ends in.

- \(\{ 0^n1^n \mid n \in \mathbb{N} \} \) is in \(\mathbf{R} \).
 - The TM we built last Wednesday is a decider.

- Multiplication is in \(\mathbf{R} \).
 - Can check if \(m \times n = p \) by repeatedly subtracting out copies of \(n \). If the equation balances, accept; if not, reject.
CFLs and \mathbb{R}

• Using an NTM, we sketched a proof that all CFLs are in \mathbb{RE}.
 • Nondeterministically guess a derivation, then deterministically check that derivation.

• Harder result: all CFLs are in \mathbb{R}.
 • Read Sipser, Ch. 4.1 for details.
 • Or come talk to me after lecture!
Why \mathbf{R} Matters

- If a language is in \mathbf{R}, there is an algorithm that can decide membership in that language.
 - Run the decider and see what it says.
- If there is an algorithm that can decide membership in a language, that language is in \mathbf{R}.
 - By the Church-Turing thesis, any effective model of computation is equivalent in power to a Turing machine.
 - Thus if there is any algorithm for deciding membership in the language, there must be a decider for it.
 - Thus the language is in \mathbf{R}.
- A language is in \mathbf{R} iff there is an algorithm for deciding membership in that language.
R \supseteq RE

- Every decider is a Turing machine, but not every Turing machine is a decider.
- Thus R \subseteq RE.
- Hugely important theoretical question:

 Is \(R = RE \)?

- That is, if we can verify that a string is in a language, can we decide whether that string is in the language?
An Important Observation
R is Closed Under Complementation

If $L \in R$, then $\overline{L} \in R$ as well.

Decider for L

$M' = "On input w: Run M on w. If M accepts w, reject. If M rejects w, accept."$

Will this work if M is a recognizer, rather than a decider?
Theorem: \(\mathbf{R} \) is closed under complementation.

Proof: Consider any \(L \in \mathbf{R} \). We will prove that \(L \in \mathbf{R} \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = L \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[M' = \text{"On input } w \in \Sigma^*:\text{ Run } M \text{ on } w. \text{ If } M \text{ accepts } w, \text{ reject. If } M \text{ rejects } w, \text{ accept."} \]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = L \).

To show that \(M' \) is a decider, we will prove that it always halts.

Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \). If \(M \) rejects \(w \), \(M' \) accepts \(w \). Thus \(M' \) always accepts or rejects, so \(M' \) is a decider.

To show that \(\mathcal{L}(M') = L \), we will prove that \(M' \) accepts \(w \) iff \(w \in L \).

Note that \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(M \) rejects \(w \). Since \(M \) is a decider, \(M \) rejects \(w \) iff \(M \) does not accept \(w \). \(M \) does not accept \(w \) iff \(w \not\in \mathcal{L}(M) \). Thus \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(w \not\in \mathcal{L}(M) \), so \(M' \) accepts \(w \) iff \(w \in L \). Therefore, \(\mathcal{L}(M') = L \).

Since \(M' \) is a decider with \(\mathcal{L}(M') = L \), we have \(L \in \mathbf{R} \), as required. \(\square \)
Theorem: R is closed under complementation.

Proof: Consider any $L \in R$.

Let M be a decider for L. Then construct the machine M' as follows:

$M' = \text{On input } w \in \Sigma^*:
\quad \text{Run } M \text{ on } w.
\quad \text{If } M \text{ accepts } w, \text{ reject.}
\quad \text{If } M \text{ rejects } w, \text{ accept.}$

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $(\mathcal{L}M') = L$, we will prove that M' accepts w iff $w \in L$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w. M does not accept w iff $w \notin (\mathcal{L}M)$. Thus M' accepts w iff $w \in \Sigma^*$ and $w \notin (\mathcal{L}M)$, so M' accepts w iff $w \in L$. Therefore, $(\mathcal{L}M') = L$.

Since M' is a decider with $(\mathcal{L}M') = L$, we have $L \in R$, as required. ■
Theorem: R is closed under complementation.
Proof: Consider any $L \in R$. We will prove that $\overline{L} \in R$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

M' will be constructed as follows:

- **On input $w \in \Sigma^*$:**
 - Run M on w.
 - If M accepts w, reject.
 - If M rejects w, accept.

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts.

Consider what happens if we run M' on any input w.

First, M' runs M on w. Since M is a decider, M either accepts w or rejects w.

- If M accepts w, M' rejects w.
- If M rejects w, M' accepts w.

Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathcal{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \notin \mathcal{L}(M')$.

Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w.

M does not accept w iff $w \notin \mathcal{L}(M')$. Thus M' accepts w iff $w \in \Sigma^*$ and $w \notin \mathcal{L}(M')$, so M' accepts w iff $w \notin \overline{L}$. Therefore, $\mathcal{L}(M') = \overline{L}$.

Since M' is a decider with $\mathcal{L}(M') = \overline{L}$, we have $L \in R$, as required. ■
Theorem: R is closed under complementation.

Proof: Consider any $L \in R$. We will prove that $\overline{L} \in R$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

This is the standard way to show that a language is in R. Note that we aren’t just building any arbitrary TM; it has to be a decider.
Theorem: \(R \) is closed under complementation.

Proof: Consider any \(L \in R \). We will prove that \(\overline{L} \in R \) by constructing a decider \(M' \) such that \(L(M') = \overline{L} \).

Let \(M \) be a decider for \(L \).
Theorem: \(\mathbf{R} \) is closed under complementation.

Proof: Consider any \(L \in \mathbf{R} \). We will prove that \(\overline{L} \in \mathbf{R} \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*:\
\begin{align*}
\text{Run } M \text{ on } w.
\text{If } M \text{ accepts } w, \text{ reject.}
\text{If } M \text{ rejects } w, \text{ accept."
}\end{align*}
\]
Theorem: R is closed under complementation.

Proof: Consider any $L \in R$. We will prove that $\overline{L} \in R$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

$$M' = \text{"On input } w \in \Sigma^*:$$

- Run M on w.
- If M accepts w, reject.
- If M rejects w, accept.$$

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

Theorem: \mathbf{R} is closed under complementation.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

$$M' = \text{"On input } w \in \Sigma^*:\n\text{Run } M \text{ on } w.\n\text{If } M \text{ accepts } w, \text{ reject.}\n\text{If } M \text{ rejects } w, \text{ accept."}$$

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

There are two proofs required here, and they're separate from one another. Just showing one or the other isn't sufficient.
Theorem: \(\mathcal{R} \) is closed under complementation.

Proof: Consider any \(L \in \mathcal{R} \). We will prove that \(\overline{L} \in \mathcal{R} \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*:\n\begin{align*}
\text{Run } M \text{ on } w. \\
\text{If } M \text{ accepts } w, \text{ reject.} \\
\text{If } M \text{ rejects } w, \text{ accept.}\n\end{align*}
\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts.
Theorem: \(\mathcal{R} \) is closed under complementation.

Proof: Consider any \(L \in \mathcal{R} \). We will prove that \(\overline{L} \in \mathcal{R} \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{“On input } w \in \Sigma^*:\n\begin{align*}
\text{Run } M \text{ on } w. \\
\text{If } M \text{ accepts } w, \text{ reject.} \\
\text{If } M \text{ rejects } w, \text{ accept.}
\end{align*}
\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \).
Theorem: \(R \) is closed under complementation.

Proof: Consider any \(L \in R \). We will prove that \(\overline{L} \in R \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*: \\
\text{Run } M \text{ on } w. \\
\text{If } M \text{ accepts } w, \text{ reject.} \\
\text{If } M \text{ rejects } w, \text{ accept."
}\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \).
Theorem: R is closed under complementation.

Proof: Consider any $L \in R$. We will prove that $\bar{L} \in R$ by constructing a decider M' such that $L(M') = \bar{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

$$M' = \text{"On input } w \in \Sigma^*: \text{ Run } M \text{ on } w. \text{ If } M \text{ accepts } w, \text{ reject. If } M \text{ rejects } w, \text{ accept."

We need to show that M' is a decider and that $L(M') = \bar{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w.

Theorem: \(\mathbf{R} \) is closed under complementation.

Proof: Consider any \(L \in \mathbf{R} \). We will prove that \(\overline{L} \in \mathbf{R} \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*:\
\quad \text{Run } M \text{ on } w.
\quad \text{If } M \text{ accepts } w, \text{ reject.}
\quad \text{If } M \text{ rejects } w, \text{ accept."}
\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \).
Theorem: \(\mathbb{R} \) is closed under complementation.

Proof: Consider any \(L \in \mathbb{R} \). We will prove that \(\overline{L} \in \mathbb{R} \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*:\ \\
\quad \text{Run } M \text{ on } w. \\
\quad \text{If } M \text{ accepts } w, \text{ reject.} \\
\quad \text{If } M \text{ rejects } w, \text{ accept."}
\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \). If \(M \) rejects \(w \), \(M' \) accepts \(w \).
Theorem: \(R \) is closed under complementation.

Proof: Consider any \(L \in R \). We will prove that \(\overline{L} \in R \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[M' = \text{On input } w \in \Sigma^*: \]

 Run \(M \) on \(w \).

 If \(M \) accepts \(w \), reject.

 If \(M \) rejects \(w \), accept.

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \). If \(M \) rejects \(w \), \(M' \) accepts \(w \). Thus \(M' \) always accepts or rejects, so \(M' \) is a decider.
Theorem: \mathbf{R} is closed under complementation.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

$$M' = \text{"On input } w \in \Sigma^*: \text{ Run } M \text{ on } w. \text{ If } M \text{ accepts } w, \text{ reject. If } M \text{ rejects } w, \text{ accept."}$$

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathcal{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$.
Theorem: \(\mathbf{R} \) is closed under complementation.

Proof: Consider any \(L \in \mathbf{R} \). We will prove that \(\overline{L} \in \mathbf{R} \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*: \\
\text{Run } M \text{ on } w. \\
\text{If } M \text{ accepts } w, \text{ reject.} \\
\text{If } M \text{ rejects } w, \text{ accept.}"
\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \). If \(M \) rejects \(w \), \(M' \) accepts \(w \). Thus \(M' \) always accepts or rejects, so \(M' \) is a decider.

To show that \(\mathcal{L}(M') = \overline{L} \), we will prove that \(M' \) accepts \(w \) iff \(w \in \overline{L} \). Note that \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(M \) rejects \(w \).
Theorem: \(\mathbf{R} \) is closed under complementation.

Proof: Consider any \(L \in \mathbf{R} \). We will prove that \(\overline{L} \in \mathbf{R} \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*: \\
\text{Run } M \text{ on } w. \\
\text{If } M \text{ accepts } w, \text{ reject.} \\
\text{If } M \text{ rejects } w, \text{ accept."}
\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \). If \(M \) rejects \(w \), \(M' \) accepts \(w \). Thus \(M' \) always accepts or rejects, so \(M' \) is a decider.

To show that \(\mathcal{L}(M') = \overline{L} \), we will prove that \(M' \) accepts \(w \) iff \(w \in \overline{L} \). Note that \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(M \) rejects \(w \). Since \(M \) is a decider, \(M \) rejects \(w \) iff \(M \) does not accept \(w \).
Theorem: \(R \) is closed under complementation.

Proof: Consider any \(L \in R \). We will prove that \(\overline{L} \in R \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*:\text{ Run } M \text{ on } w. \text{ If } M \text{ accepts } w, \text{ reject. If } M \text{ rejects } w, \text{ accept."}
\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \). If \(M \) rejects \(w \), \(M' \) accepts \(w \). Thus \(M' \) always accepts or rejects, so \(M' \) is a decider.

To show that \(\mathcal{L}(M') = \overline{L} \), we will prove that \(M' \) accepts \(w \) iff \(w \in \overline{L} \). Note that \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(M \) rejects \(w \). Since \(M \) is a decider, \(M \) rejects \(w \) iff \(M \) does not accept \(w \). \(M \) does not accept \(w \) iff \(w \not\in \mathcal{L}(M) \).

Theorem: \mathbf{R} is closed under complementation.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

$$M' = \text{"On input } w \in \Sigma^*:\n\text{Run } M \text{ on } w.\n\text{If } M \text{ accepts } w, \text{ reject.}\n\text{If } M \text{ rejects } w, \text{ accept."}$$

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathcal{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w. M does not accept w iff $w \notin \mathcal{L}(M)$. Thus M' accepts w iff $w \in \Sigma^*$ and $w \notin \mathcal{L}(M)$, so M' accepts w iff $w \in \overline{L}$.

\[\square\]
Theorem: \(R \) is closed under complementation.

Proof: Consider any \(L \in R \). We will prove that \(\overline{L} \in R \) by constructing a decider \(M' \) such that \(L(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*:\n\begin{align*}
&\text{Run } M \text{ on } w. \\
&\text{If } M \text{ accepts } w, \text{ reject.} \\
&\text{If } M \text{ rejects } w, \text{ accept."
}\]

We need to show that \(M' \) is a decider and that \(L(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \). If \(M \) rejects \(w \), \(M' \) accepts \(w \). Thus \(M' \) always accepts or rejects, so \(M' \) is a decider.

To show that \(L(M') = \overline{L} \), we will prove that \(M' \) accepts \(w \) iff \(w \in \overline{L} \). Note that \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(M \) rejects \(w \). Since \(M \) is a decider, \(M \) rejects \(w \) iff \(M \) does not accept \(w \). \(M \) does not accept \(w \) iff \(w \not\in L(M) \). Thus \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(w \not\in L(M) \), so \(M' \) accepts \(w \) iff \(w \in \overline{L} \). Therefore, \(L(M') = \overline{L} \).
Theorem: \(R \) is closed under complementation.

Proof: Consider any \(L \in R \). We will prove that \(\overline{L} \in R \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*:\
 \begin{align*}
 \text{Run } M \text{ on } w. \\
 \text{If } M \text{ accepts } w, \text{ reject.} \\
 \text{If } M \text{ rejects } w, \text{ accept."
}\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \). If \(M \) rejects \(w \), \(M' \) accepts \(w \). Thus \(M' \) always accepts or rejects, so \(M' \) is a decider.

To show that \(\mathcal{L}(M') = \overline{L} \), we will prove that \(M' \) accepts \(w \) iff \(w \in \overline{L} \). Note that \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(M \) rejects \(w \). Since \(M \) is a decider, \(M \) rejects \(w \) iff \(M \) does not accept \(w \). \(M \) does not accept \(w \) iff \(w \notin \mathcal{L}(M) \). Thus \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(w \notin \mathcal{L}(M) \), so \(M' \) accepts \(w \) iff \(w \in \overline{L} \). Therefore, \(\mathcal{L}(M') = \overline{L} \).

Since \(M' \) is a decider with \(\mathcal{L}(M') = \overline{L} \), we have \(\overline{L} \in R \), as required.
Theorem: \(R \) is closed under complementation.

Proof: Consider any \(L \in R \). We will prove that \(\overline{L} \in R \) by constructing a decider \(M' \) such that \(\mathcal{L}(M') = \overline{L} \).

Let \(M \) be a decider for \(L \). Then construct the machine \(M' \) as follows:

\[
M' = \text{"On input } w \in \Sigma^*:\n\quad \text{Run } M \text{ on } w. \\
\quad \text{If } M \text{ accepts } w, \text{ reject.} \\
\quad \text{If } M \text{ rejects } w, \text{ accept."
}\]

We need to show that \(M' \) is a decider and that \(\mathcal{L}(M') = \overline{L} \).

To show that \(M' \) is a decider, we will prove that it always halts. Consider what happens if we run \(M' \) on any input \(w \). First, \(M' \) runs \(M \) on \(w \). Since \(M \) is a decider, \(M \) either accepts \(w \) or rejects \(w \). If \(M \) accepts \(w \), \(M' \) rejects \(w \). If \(M \) rejects \(w \), \(M' \) accepts \(w \). Thus \(M' \) always accepts or rejects, so \(M' \) is a decider.

To show that \(\mathcal{L}(M') = \overline{L} \), we will prove that \(M' \) accepts \(w \) iff \(w \in \overline{L} \).

Note that \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(M \) rejects \(w \). Since \(M \) is a decider, \(M \) rejects \(w \) iff \(M \) does not accept \(w \). \(M \) does not accept \(w \) iff \(w \notin \mathcal{L}(M) \). Thus \(M' \) accepts \(w \) iff \(w \in \Sigma^* \) and \(w \notin \mathcal{L}(M) \), so \(M' \) accepts \(w \) iff \(w \in \overline{L} \). Therefore, \(\mathcal{L}(M') = \overline{L} \).

Since \(M' \) is a decider with \(\mathcal{L}(M') = \overline{L} \), we have \(\overline{L} \in R \), as required. ■
\(R = \text{RE} \)

- We can now resolve the question of \(R = \text{RE} \).
- If \(R = \text{RE} \), we need to show that if there is a recognizer for any \(\text{RE} \) language \(L \), there has to be a decider for \(L \).
- If \(R \neq \text{RE} \), we just need to find a single language in \(\text{RE} \) that is not in \(R \).
A_{TM}

- Recall: the language A_{TM} is the language of the universal Turing machine U_{TM}.
- Consequently, $A_{TM} \in \text{RE}$.
- Is $A_{TM} \in \text{R}$?
Theorem: $A_{TM} \notin R$.
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume $A_{TM} \in R$. Since R is closed under complementation, this means that $A_{TM} \in R$. Since $R \subseteq RE$, this means that $A_{TM} \in RE$. But this is impossible, since we know $A_{TM} \notin RE$. We have reached a contradiction, so our assumption must have been incorrect. Thus $A_{TM} \notin R$, as required. ■
Theorem: \(A_{TM} \notin R. \)

Proof: By contradiction; assume \(A_{TM} \in R. \) Since \(R \) is closed under complementation, this means that \(\overline{A}_{TM} \in R. \) But this is impossible, since we know \(A_{TM} \notin RE. \) We have reached a contradiction, so our assumption must have been incorrect. Thus \(A_{TM} \notin R, \) as required. ■
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume $A_{TM} \in R$. Since R is closed under complementation, this means that $\overline{A_{TM}} \in R$. Since $R \subseteq RE$, this means that $\overline{A_{TM}} \in RE$. But this is impossible, since we know $A_{TM} \notin RE$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $A_{TM} \notin R$, as required. ■
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume $A_{TM} \in R$. Since R is closed under complementation, this means that $\overline{A}_{TM} \in R$. Since $R \subseteq RE$, this means that $\overline{A}_{TM} \in RE$. But this is impossible, since we know $\overline{A}_{TM} \notin RE$.

Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume $A_{TM} \in R$. Since R is closed under complementation, this means that $\overline{A}_{TM} \in R$. Since $R \subseteq RE$, this means that $\overline{A}_{TM} \in RE$. But this is impossible, since we know $\overline{A}_{TM} \notin RE$.

We have reached a contradiction, so our assumption must have been incorrect.
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume $A_{TM} \in R$. Since R is closed under complementation, this means that $\overline{A}_{TM} \in R$. Since $R \subseteq RE$, this means that $\overline{A}_{TM} \in RE$. But this is impossible, since we know $\overline{A}_{TM} \notin RE$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $A_{TM} \notin R$, as required.
Theorem: \(A_{TM} \notin \mathbb{R} \).

Proof: By contradiction; assume \(A_{TM} \in \mathbb{R} \). Since \(\mathbb{R} \) is closed under complementation, this means that \(\overline{A}_{TM} \in \mathbb{R} \). Since \(\mathbb{R} \subseteq \mathbb{RE} \), this means that \(\overline{A}_{TM} \in \mathbb{RE} \). But this is impossible, since we know \(\overline{A}_{TM} \notin \mathbb{RE} \).

We have reached a contradiction, so our assumption must have been incorrect. Thus \(A_{TM} \notin \mathbb{R} \), as required. \(\blacksquare \)
The Limits of Computability
What this Means

- The undecidability of A_{TM} means that we cannot "cheat" with Turing machines.

- We cannot necessarily build a TM to do an exhaustive search over a space (i.e. a recognizer), then decide whether it accepts without running it.

- **Intuition:** In most cases, you cannot decide what a TM will do without running it to see what happens.

- In some cases, you can recognize when a TM has performed some task.

- In some cases, you can't do either. For example, you cannot always recognize that a TM will not accept a string.
What this Means

- **Major result:** $R \neq RE$.

- There are some problems where we can only give a “yes” answer when the answer is “yes” and cannot necessarily give a yes-or-no answer.

- Solving a problem is *fundamentally harder* than recognizing a correct answer.
Another Undecidable Problem
L_D Revisited

- The diagonalization language L_D is the language

$$L_D = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

- As we saw before, $L_D \notin \text{RE}$.

- But what about $\overline{L_D}$?
The language L_D is the language

$L_D = \{\langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M)\}$

Therefore, \overline{L}_D is the language

$\overline{L}_D = \{\langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M)\}$

Two questions:

- What is this language?
- Is this language RE?
All Turing machines, listed in some order.
All descriptions of TMs, listed in the same order.
<table>
<thead>
<tr>
<th>$\langle M_0 \rangle$</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle M_5 \rangle$</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
<td>...</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
<td>...</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
<td>…</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_5</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₀</td>
<td>M₁</td>
<td>M₂</td>
<td>M₃</td>
<td>M₄</td>
<td>M₅</td>
<td>…</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>…</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>$\langle M_0 \rangle$</td>
<td>$\langle M_1 \rangle$</td>
<td>$\langle M_2 \rangle$</td>
<td>$\langle M_3 \rangle$</td>
<td>$\langle M_4 \rangle$</td>
<td>$\langle M_5 \rangle$</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_5</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>\langle M_0 \rangle</td>
<td>\langle M_1 \rangle</td>
<td>\langle M_2 \rangle</td>
<td>\langle M_3 \rangle</td>
<td>\langle M_4 \rangle</td>
<td>\langle M_5 \rangle</td>
<td>...</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>\text{Acc}</td>
<td>No</td>
<td>No</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>...</td>
</tr>
<tr>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>...</td>
</tr>
<tr>
<td>No</td>
<td>\text{Acc}</td>
<td>No</td>
<td>No</td>
<td>\text{Acc}</td>
<td>\text{Acc}</td>
<td>...</td>
</tr>
<tr>
<td>\text{Acc}</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>\text{Acc}</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

\text{Acc} \quad \text{Acc} \quad \text{Acc} \quad \text{No} \quad \text{Acc} \quad \text{No} \quad \ldots
<table>
<thead>
<tr>
<th></th>
<th>$\langle M_0 \rangle$</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle M_5 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>M_5</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>\langle M_0 \rangle</td>
<td>\langle M_1 \rangle</td>
<td>\langle M_2 \rangle</td>
<td>\langle M_3 \rangle</td>
<td>\langle M_4 \rangle</td>
<td>\langle M_5 \rangle</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>M_5</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

“The language of all TMs that accept their own description.”
<table>
<thead>
<tr>
<th>\langle M_0 \rangle</th>
<th>\langle M_1 \rangle</th>
<th>\langle M_2 \rangle</th>
<th>\langle M_3 \rangle</th>
<th>\langle M_4 \rangle</th>
<th>\langle M_5 \rangle</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
</tr>
<tr>
<td>M_5</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

\{ \langle M \rangle \mid M \text{ is a TM that accepts } \langle M \rangle \}
<table>
<thead>
<tr>
<th></th>
<th>$\langle M_0 \rangle$</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle M_5 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>M_1</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M_2</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M_3</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>M_4</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>M_5</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$\{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M) \}$
<table>
<thead>
<tr>
<th>$\langle M_0 \rangle$</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle M_5 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

This language is \mathcal{L}_D.

$\{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M) \}$
Here's an TM for \overline{L}_D:

$$R = \text{"On input } \langle M \rangle:\text{ run } M \text{ on } \langle M \rangle.\text{ If } M \text{ accepts } \langle M \rangle, \text{ accept. If } M \text{ rejects } \langle M \rangle, \text{ reject."}$$

Then R accepts $\langle M \rangle$ iff $\langle M \rangle \in \mathcal{L}(M)$ iff $\langle M \rangle \in \overline{L}_D$, so $\mathcal{L}(R) = \overline{L}_D$.

$\overline{L}_D \in \text{RE}$
Is $\overline{L_D}$ Decidable?

- We know that $\overline{L_D} \in \text{RE}$. Is $\overline{L_D} \in \text{R}$?

- No – by a similar argument from before.
 - If $\overline{L_D} \in \text{R}$, then $\overline{\overline{L_D}} = L_D \in \text{R}$.
 - Since $\text{R} \subset \text{RE}$, this means that $L_D \in \text{RE}$.
 - This contradicts that $L_D \notin \text{RE}$.
 - So our assumption is wrong and $\overline{L_D} \notin \text{R}$.

The Limits of Computability

- Regular Languages
- DCFLs
- CFLs
- All Languages
- A_{TM}
- L_D
- $\overline{L_D}$
- RE
- $\overline{A_{TM}}$
- L_D

All Languages
Finding Unsolvable Problems

\[L_D \rightarrow \overline{A}_{TM} \rightarrow A_{TM} \]

\[\overline{L}_D \rightarrow \text{Not } \mathbf{R} \]

\[\text{Not } \mathbf{RE} \]

\[\text{Not } \mathbf{RE} \]

\[\text{Not } \mathbf{R} \]