Direct Proofs
Recommended Reading

A Brief History of Infinity

The Mystery of the Aleph

Everything and More
Recommended Courses

Math 161: Set Theory
What is a Proof?
Induction and Deduction

• In the sciences, much reasoning is done *inductively*.
 • Conduct a series of experiments and find a rule that explains all the results.
 • Conclude that there is a general principle explaining the results.
 • Even if all data are correct, the conclusion might be incorrect.
• In mathematics, reasoning is done *deductively*.
 • Begin with a series of statements assumed to be true.
 • Apply logical reasoning to show that some conclusion necessarily follows.
 • If all the starting assumptions are correct, the conclusion necessarily must be correct.
Structure of a Mathematical Proof

• Begin with a set of initial assumptions.
 • Some will be explicitly stated, others assumed as background knowledge.

• Apply logical reasoning to derive the final result from those initial assumptions.

• Assuming all intermediary steps follow sound logical reasoning, the final result necessarily follows from the assumptions.

• It is a secondary question whether the initial assumptions are correct; that's the domain of the philosophy of mathematics.
Direct Proofs
Direct Proofs

- A **direct proof** is the simplest type of proof.
- Starting with an initial set of assumptions, apply simple logical steps to derive the result.
 - *Directly* prove that the result is true.
- Contrasts with **indirect proofs**, which we'll see on Friday.
Two Quick Definitions

- An integer n is **even** if there is some integer k such that $n = 2k$.
 - This means that 0 is even.
- An integer n is **odd** if there is some integer k such that $n = 2k + 1$.
- We'll assume the following for now:
 - Every integer is either even or odd.
 - No integer is both even and odd.
A Simple Direct Proof

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$. Since $2k^2$ is an integer, this means that there is some integer m (namely, $2k^2$) such that $n^2 = 2m$.

Thus n^2 is even. ■

This symbol means “end of proof”
Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$. This means that

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2).$$

Since $2k^2$ is an integer, this means that

there is some integer m (namely, $2k^2$) such that $n^2 = 2m$.

Thus n^2 is even.

To prove a statement of the form

"If P, then Q"

Assume that P is true, then show that Q must be true as well.
A Simple Direct Proof

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

Since $2k^2$ is an even integer, there is some integer m such that $n^2 = 2m$.

Thus n^2 is even.

This is the definition of an even integer. When writing a mathematical proof, it's common to call back to the definitions.
A Simple Direct Proof

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k such that $n = 2k$.

This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$.

Since $2k^2$ is an integer, there is some integer m (namely, $2k^2$) such that $n^2 = 2m$.

Thus n^2 is even. ■

Notice how we use the value of k that we obtained above. Giving names to quantities, even if we aren’t fully sure what they are, allows us to manipulate them. This is similar to variables in programs.
A Simple Direct Proof

Theorem: If n is an even integer, then n^2 is even.

Proof: Let n be an even integer. Since n is even, there is some integer k such that $n = 2k$. This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$. Since $2k^2$ is an integer, this means that there is some integer m (namely, $2k^2$) such that $n^2 = 2m$. Thus n^2 is even. ■
A Simple Direct Proof

Theorem: If \(n \) is an even integer, then \(n^2 \) is even.

Proof: Let \(n \) be an even integer.

Since \(n \) is even, there is some integer \(k \) such that \(n = 2k \).

This means that

\[
\begin{align*}
 n^2 &= (2k)^2 \\
 &= 4k^2 \\
 &= 2(2k^2)
\end{align*}
\]

Since \(2k^2 \) is an integer, this means that there is some integer \(m \) (namely, \(2k^2 \)) such that \(n^2 = 2m \).

Thus \(n^2 \) is even. □
An Important Result

- Set equality is defined as follows

\[A = B \text{ precisely when every element of } A \text{ belongs to } B \text{ and vice-versa} \]

- This definition makes it a bit tricky to prove that two sets are equal.

- It's often easier to use the following result to show that two sets are equal:

For any sets \(A \) and \(B \), if \(A \subseteq B \) and \(B \subseteq A \), then \(A = B \).
Theorem: For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A = B$.

How do we prove that this is true for any choice of sets?
Proving Something Always Holds

• Many statements have the form

For any X, P(X) is true.

• Examples:

 For all integers n, if n is even, \(n^2 \) is even.

 For any sets A and B, if \(A \subseteq B \) and \(B \subseteq A \), then \(A = B \).

 For all sets S, \(|S| < |\emptyset(S)| \).

 Everybody's looking forward to the weekend, weekend.

• How do we prove these statements when there are (potentially) infinitely many cases to check?
Arbitrary Choices

• To prove that $P(x)$ is true for all possible x, show that no matter what choice of x you make, $P(x)$ must be true.

• Start the proof by making an arbitrary choice of x:
 • “Let x be chosen arbitrarily.”
 • “Let x be an arbitrary even integer.”
 • “Let x be an arbitrary set containing 137.”
 • “Consider any x.”

• Demonstrate that $P(x)$ holds true for this choice of x.
Theorem: For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A = B$.

Proof: Let A and B be arbitrary sets such that $A \subseteq B$ and $B \subseteq A$.

We're showing here that regardless of what A and B you pick, the result will still be true.
Theorem: For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A = B$.

Proof: Let A and B be arbitrary sets such that $A \subseteq B$ and $B \subseteq A$.

To prove a statement of the form “If P, then Q”

Assume that P is true, then show that Q must be true as well.
Theorem: For any sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A = B$.

Proof: Let A and B be arbitrary sets such that $A \subseteq B$ and $B \subseteq A$.

By definition, $A \subseteq B$ means that for all $x \in A$, we have $x \in B$.

By definition, $B \subseteq A$ means that for all $x \in B$, we have $x \in A$.

Thus whenever $x \in A$ we have $x \in B$ and whenever $x \in B$ we have $x \in A$.

Consequently, $A = B$. ■
An Incorrect Proof

Theorem: For any natural number n, the sum of all the positive divisors of n is always no greater than $2n$.

Proof: Consider an arbitrary natural number, say, 16. 16 has positive divisors 1, 2, 4, 8, and 16. Note that $1 + 2 + 4 + 8 + 16 = 31 \leq 2 \cdot 16$. Since our choice of n was arbitrary, we see that for an arbitrary natural number n, the sum of all the divisors of n is no greater than $2n$. ■
ar·bi·trar·y
adjective /ˈärbiˌtrerē/

1. Based on random choice or personal whim, rather than any reason or system - “his mealtimes were entirely arbitrary”

2. (of power or a ruling body) Unrestrained and autocratic in the use of authority - “arbitrary rule by King and bishops has been made impossible”

3. (of a constant or other quantity) Of unspecified value

Source: Google
To prove something is true for all x, don't choose an x and base the proof off of your choice.

Instead, leave x unspecified and show that no matter what x is, the specified property must hold.
Another Incorrect Proof

Theorem: For any sets A and B, $A \subseteq A \cap B$.

Proof: We need to show that if $x \in A$, then $x \in A \cap B$ as well.

Consider any arbitrary $x \in A \cap B$. This means that $x \in A$ and $x \in B$, so $x \in A$ as required. ■
If you want to prove that P implies Q, assume P and prove Q.

Don't assume Q and then prove P!
An Entirely Different Proof

Theorem: There exists a natural number \(n > 0 \) such that the sum of all natural numbers less than \(n \) is equal to \(n \).

This is a fundamentally different type of proof that what we've done before. Instead of showing that every object has some property, we want to show that some object has a given property.
Universal vs. Existential Statements

- A **universal statement** is a statement of the form

 For all x, $P(x)$ is true.

- We've seen how to prove these statements.

- An **existential statement** is a statement of the form

 There exists an x for which $P(x)$ is true.

- How do you prove an existential statement?
Proving an Existential Statement

• We will see several different ways to prove “there is some x for which $P(x)$ is true.”

• Simple approach: Just go and find some x for which $P(x)$ is true!
 • In our case, we need to find a positive natural number n such that that sum of all smaller natural numbers is equal to n.
 • Can we find one?
An Entirely Different Proof

Theorem: There exists a natural number \(n > 0 \) such that the sum of all natural numbers less than \(n \) is equal to \(n \).

Proof: Take \(n = 3 \).

There are three natural numbers smaller than 3: 0, 1, and 2.

We have \(0 + 1 + 2 = 3 \).

Thus 3 is a natural number greater than zero equal to the sum of all smaller natural numbers. ■
Extended Example: XOR
Logical Operators

- A **bit** is a value that is either 0 or 1.
- The set $\mathbb{B} = \{0, 1\}$ is the set of all bits.
- A **logical operator** is an operator that takes in some number of bits and produces a new bit as output.
- Example: Logical NOT, denoted $\neg x$:
 \[\neg 0 = 1 \quad \neg 1 = 0 \]
Logical XOR

- The **exclusive OR** operator (**XOR**) operates on two bits and produces 0 if the bits are the same and 1 if they are different.
 - Since XOR operates on two values, it is called a **binary operator**.
- We denote the XOR of a and b by $a \oplus b$.
- Formally, XOR is defined as follows:

 $0 \oplus 0 = 0$ \hspace{1cm} $0 \oplus 1 = 1$

 $1 \oplus 0 = 1$ \hspace{1cm} $1 \oplus 1 = 0$
Fun with XOR

• The XOR operator has numerous uses throughout computer science.
 • Applications in cryptography, data structures, error-correcting codes, networking, machine learning, etc.

• XOR is useful because of four key properties:
 • XOR has an identity element.
 • XOR is self-inverting.
 • XOR is associative.
 • XOR is commutative.
Identity Elements

An **identity element** for a binary operator ★ is some value z such that **for any a:**

\[a \star z = z \star a = a \]

In math-speak, the term "**for any a**" is synonymous with "**for every a**" or "**for every possibly choice of a.**"

It does not mean "**for some specific choice of a.**"
Identity Elements

• An **identity element** for a binary operator ★ is some value z such that for any a:
 \[a \star z = z \star a = a \]

• Example: 0 is an identity element for +:
 \[a + 0 = 0 + a = a \]

• Example: 1 is an identity element for ×:
 \[a \times 1 = 1 \times a = a \]
Theorem: 0 is an identity element for \oplus.

Proof: We will prove that for any $b \in \mathbb{B}$ that $b \oplus 0 = b$ and that $0 \oplus b = b$. To do this, consider an arbitrary $b \in \mathbb{B}$. We consider two cases:

Case 1: $b = 0$.

Case 2: $b = 1$.

This is called a proof by cases (alternatively, a proof by exhaustion) and works by showing that the theorem is true regardless of what specific outcome arises.
Theorem: 0 is an identity element for \(\oplus\).

Proof: We will prove that for any \(b \in \mathbb{B}\) that \(b \oplus 0 = b\) and that \(0 \oplus b = b\). To do this, consider an arbitrary \(b \in \mathbb{B}\). We consider two cases:

Case 1: \(b = 0\). Then we have

\[
b \oplus 0 = 0 \oplus 0 = 0 \quad 0 \oplus b = 0 \oplus 0 = 0
\]

In a proof by cases, after demonstrating each case, you should summarize the cases afterwards to make your point clearer.

Case 2: \(b = 1\). Then we have

\[
b \oplus 0 = 1 \oplus 0 = 1 \quad 0 \oplus b = 0 \oplus 1 = 1
\]

In both cases, we find \(b \oplus 0 = 0 \oplus b = b\).
Theorem: 0 is an identity element for \oplus.

Proof: We will prove that for any $b \in \mathbb{B}$ that $b \oplus 0 = b$ and that $0 \oplus b = b$. To do this, consider an arbitrary $b \in \mathbb{B}$. We consider two cases:

Case 1: $b = 0$. Then we have

\[
\begin{align*}
 b \oplus 0 &= 0 \oplus 0 & 0 \oplus b &= 0 \oplus 0 \\
 &= 0 & = 0 \\
 &= b & = b
\end{align*}
\]

Case 2: $b = 1$. Then we have

\[
\begin{align*}
 b \oplus 0 &= 1 \oplus 0 & 0 \oplus b &= 0 \oplus 1 \\
 &= 1 & = 1 \\
 &= b & = b
\end{align*}
\]

In both cases, we find $b \oplus 0 = 0 \oplus b = b$. Thus 0 is an identity element for \oplus. □
Self-Inverting Operators

• A binary operator ★ with identity element \(z \) is called self-inverting when for any \(a \), we have

\[
a \star a = z
\]

• Is + self-inverting?
• Is – self-inverting?
XOR is Self-Inverting

Theorem: \oplus is self-inverting.

Proof: Since \oplus has identity element 0, we will prove for any $b \in \mathbb{B}$ that $b \oplus b = 0$. To do this, consider any $b \in \mathbb{B}$. We consider two cases:

Case 1: $b = 0$. Then $b \oplus b = 0 \oplus 0 = 0$.

Case 2: $b = 1$. Then $b \oplus b = 1 \oplus 1 = 0$.

In both cases we have $b \oplus b = 0$, so \oplus is self-inverting. ■
Associative Operators

- A binary operator \(\star \) is called **associative** when for any \(a, b \) and \(c \), we have
 \[
 a \star (b \star c) = (a \star b) \star c
 \]
- Is + associative?
- Is – associative?
- Is \(\times \) associative?
Theorem: \oplus is associative.

Proof: Consider any $a, b, c \in \mathbb{B}$. We will prove that $a \oplus (b \oplus c) = (a \oplus b) \oplus c$. To do this, we consider two cases:

Case 1: $c = 0$. Then we have that

$$a \oplus (b \oplus c) = a \oplus (b \oplus 0) = a \oplus b \quad (\text{since } 0 \text{ is an identity})$$
$$= (a \oplus b) \oplus 0 \quad (\text{since } 0 \text{ is an identity})$$
$$= (a \oplus b) \oplus c$$

Case 2: $c = 1$. Then we have that

$$a \oplus (b \oplus c) = a \oplus (b \oplus 1)$$
$$= ?$$
When You Get Stuck

- When writing proofs, you are bound to get stuck at some point.
- When this happens, it can mean multiple things:
 - What you're proving is incorrect.
 - You are on the wrong track.
 - You're on the right tack, but you need to prove an additional result to get to your goal.
- Unfortunately, there is no general way to determine which case you are in.
- You'll build this intuition through experience.
Where We're Stuck

- Right now, we have the expression
 \[a \oplus (b \oplus 1) \]
 and we don't know how to simplify it.
- Let's focus on the \((b \oplus 1)\) part and see what we find:
 - \(0 \oplus 1 = 1\)
 - \(1 \oplus 1 = 0\)
- It seems like \(b \oplus 1 = \neg b\). Could we prove it?
Relations Between Proofs

- Proofs often build off of one another: large results are almost often accomplished by building off of previous work.
 - Like writing a large program – split the work into smaller methods, across different classes, etc. instead of putting the whole thing into `main`.
- A result that is proven specifically as a stepping stone toward a larger result is called a **lemma**.
- Our result that $b \oplus 1 = \neg b$ serves as a lemma in our larger proof that \oplus is associative.
Lemma: For any \(b \in \mathbb{B} \), we have \(b \oplus 1 = \neg b \).

Proof: Consider any \(b \in \mathbb{B} \). We consider two cases:

Case 1: \(b = 0 \). Then

\[
b \oplus 1 = 0 \oplus 1 \\
= 1 \\
= \neg 0 \\
= \neg b.
\]

Case 2: \(b = 1 \). Then

\[
b \oplus 1 = 1 \oplus 1 \\
= 0 \\
= \neg 1 \\
= \neg b.
\]

In both cases, we find that \(b \oplus 1 = \neg b \), which is what we needed to show. \(\blacksquare \)
Theorem: \(\oplus \) is associative.

Proof: Consider any \(a, b, c \in \mathbb{B} \). We will prove that \(a \oplus (b \oplus c) = (a \oplus b) \oplus c \). To do this, we consider two cases:

Case 1: \(c = 0 \). Then we have that

\[
\begin{align*}
 a \oplus (b \oplus c) &= a \oplus (b \oplus 0) \\
 &= a \oplus b \quad \text{(since 0 is an identity)} \\
 &= (a \oplus b) \oplus 0 \quad \text{(since 0 is an identity)} \\
 &= (a \oplus b) \oplus c
\end{align*}
\]

Case 2: \(c = 1 \). Then we have that

\[
\begin{align*}
 a \oplus (b \oplus c) &= a \oplus (b \oplus 1) \\
 &= a \oplus \neg b \quad \text{(using our lemma)} \\
 &= ??
\end{align*}
\]
Lemma 2: For any \(a, b \in \mathbb{B} \), we have \(a \oplus \neg b = \neg(a \oplus b) \).

Proof: Consider any \(a, b \in \mathbb{B} \). We consider two cases:

Case 1: \(b = 0 \). Then

\[
\begin{align*}
 a \oplus \neg b &= a \oplus \neg 0 \\
 &= a \oplus 1 \\
 &= \neg a \\
 &= \neg(a \oplus 0) \quad \text{(using our first lemma)} \\
 &= \neg(a \oplus b) \quad \text{(since 0 is an identity)}
\end{align*}
\]

Case 2: \(b = 1 \). Then

\[
\begin{align*}
 a \oplus \neg b &= a \oplus \neg 1 \\
 &= a \oplus 0 \\
 &= a \quad \text{(since 0 is an identity)} \\
 &= \neg(\neg a) \\
 &= \neg(a \oplus 1) \quad \text{(using our first lemma)} \\
 &= \neg(a \oplus b)
\end{align*}
\]

In both cases, we find that \(a \oplus \neg b = \neg(a \oplus b) \), as required. \(\blacksquare \)
Theorem: \oplus is associative.

Proof: Consider any $a, b, c \in \mathbb{B}$. We will prove that $a \oplus (b \oplus c) = (a \oplus b) \oplus c$. We consider two cases:

Case 1: $c = 0$. Then we have that

\[
\begin{align*}
 a \oplus (b \oplus c) &= a \oplus (b \oplus 0) \\
 &= a \oplus b \quad \text{(since 0 is an identity)} \\
 &= (a \oplus b) \oplus 0 \quad \text{(since 0 is an identity)} \\
 &= (a \oplus b) \oplus c
\end{align*}
\]

Case 2: $c = 1$. Then we have that

\[
\begin{align*}
 a \oplus (b \oplus c) &= a \oplus (b \oplus 1) \\
 &= a \oplus \neg b \quad \text{(using lemma 1)} \\
 &= \neg (a \oplus b) \quad \text{(using lemma 2)} \\
 &= (a \oplus b) \oplus 1 \quad \text{(using lemma 1)} \\
 &= (a \oplus b) \oplus c
\end{align*}
\]

In both cases we have $a \oplus (b \oplus c) = (a \oplus b) \oplus c$, and therefore \oplus is associative. \blacksquare
Commutative Operators

- A binary operator ★ is called **commutative** when the following is always true:

\[a \star b = b \star a \]

- Is + commutative?
- Is – commutative?
Theorem: \oplus is commutative.

Proof: Consider any $a, b \in \mathbb{B}$. We will prove $a \oplus b = b \oplus a$. To do this, let $x = a \oplus b$. Then

\[
\begin{align*}
x &= a \oplus b \\
x \oplus b &= (a \oplus b) \oplus b \\
x \oplus b &= a \oplus (b \oplus b) & \text{(since \oplus is associative)} \\
x \oplus b &= a \oplus 0 & \text{(since \oplus is self-inverting)} \\
x \oplus b &= a & \text{(since 0 is an identity of \oplus)} \\
x \oplus (x \oplus b) &= x \oplus a \\
(x \oplus x) \oplus b &= x \oplus a & \text{(since \oplus is associative)} \\
0 \oplus b &= x \oplus a & \text{(since \oplus is self-inverting)} \\
b &= x \oplus a & \text{(since 0 is an identity of \oplus)} \\
b \oplus a &= (x \oplus a) \oplus a \\
b \oplus a &= x \oplus (a \oplus a) & \text{(since \oplus is associative)} \\
b \oplus a &= x \oplus 0 & \text{(since \oplus is self-inverting)} \\
b \oplus a &= x & \text{(since 0 is an identity of \oplus)}
\end{align*}
\]

This means that $a \oplus b = x = b \oplus a$. Therefore, \oplus is commutative. \blacksquare
Theorem: \oplus is commutative.

Proof: Consider any $a, b \in \mathbb{B}$. We will prove $a \oplus b = b \oplus a$. To do this, let $x = a \oplus b$. Then

\[
\begin{align*}
x &= a \oplus b \\
x \oplus b &= (a \oplus b) \oplus b \\
x \oplus b &= a \oplus (b \oplus b) \\
x \oplus b &= a \oplus 0 \\
x \oplus b &= a \\
x \oplus (x \oplus b) &= x \oplus a \\
(x \oplus x) \oplus b &= x \oplus a \\
0 \oplus b &= x \oplus a \\
b &= x \oplus a \\
b \oplus a &= (x \oplus a) \oplus a \\
b \oplus a &= x \oplus (a \oplus a) \\
b \oplus a &= x \oplus 0 \\
b \oplus a &= x
\end{align*}
\]

This means that $a \oplus b = x = b \oplus a$. Therefore, \oplus is commutative. ■
Application: Encryption
Bitstrings

- A **bitstring** is a finite sequence of 0s and 1s.
- Internally, computers represent all data as bitstrings.
 - For details on how, take CS107 or CS143.
Bitstrings and ⊕

- We can generalize the ⊕ operator from working on individual bits to working on bitstrings.
- If A and B are bitstrings of length n, then we'll define $A \oplus B$ to be the bitstring of length n formed by applying ⊕ to the corresponding bits of A and B.
- For example:

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 0 \\
\oplus & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline
1 & 0 & 1 & 1 & 0 & 0
\end{array}
\]
Encryption

• Suppose that you want to send me a secret bitstring M of length n.
• You should be able to read the message, but anyone who intercepts the secret message should not be able to read it.
• How might we accomplish this?
⊕ and Encryption

• In advance, you and I share a randomly-chosen bitstring K of length n (called the key) and keep it secret.

• To send me message M secretly, you send me the string $C = M \oplus K$.

 • C is called the ciphertext.

• To decrypt the ciphertext C, I compute the string $C \oplus K$. This is

\[
C \oplus K = (M \oplus K) \oplus K \\
= M \oplus (K \oplus K) \\
= M
\]
\(\oplus\) and Encryption

- Suppose that you don't have the key and get the message \(M \oplus K\).
- If \(K\) is chosen to be truly random, then every bit in \(M \oplus K\) appears to be truly random.
- Intuition: Let \(b\) be a original bit from the message and \(k\) be the corresponding bit in the key.
 - If \(k = 0\), then \(b \oplus k = b \oplus 0 = b\).
 - If \(k = 1\), then \(b \oplus k = b \oplus 1 = \neg b\).
- Since the key bit is truly random, the bits in the original string are flipped totally randomly.
- Can formalize the math; take CS109 for details!
An Example

PUPPIES

<table>
<thead>
<tr>
<th>M</th>
<th>0101000001010101010100001010010010100100100010101010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>110111001011101111000100110101111001101111011111000010</td>
</tr>
<tr>
<td>C</td>
<td>10001100111011101001010010010001011010111110110010100100101001001</td>
</tr>
</tbody>
</table>

œî”…©² ‘
An Example

Œî”…©²‘

<table>
<thead>
<tr>
<th></th>
<th>10001100111011010011001001111111111111111011001110001001011111</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1101110010111011101001101101111100110111111101111111111111111100010</td>
</tr>
<tr>
<td>M</td>
<td>0101000010101010101010001010000110100010100010101000101010101010101010101011</td>
</tr>
</tbody>
</table>

PUPPIES
An Example

<table>
<thead>
<tr>
<th>C</th>
<th>01001100111011101001010010001011010111110110010100100010010001</th>
</tr>
</thead>
<tbody>
<tr>
<td>K?</td>
<td>010111000101010101010100000101000001001001010001010100110111111</td>
</tr>
<tr>
<td>M?</td>
<td>010011000100111010011000100110001000110010000010100100101001100</td>
</tr>
</tbody>
</table>

LOLFAIL

©² 'Œî”...
Some Caveats

- This scheme is **very insecure** if you encrypt multiple messages using the same key.
 - Good exercise: Figure out why this is!
- This scheme guarantees security if the key is random, but it isn't tamperproof.
 - You'll see why this is on the problem set.
- General good advice: *never implement your own cryptography!*
- Take CS255 for more details!
Next Time

• **Indirect Proofs**
 • Proof by contradiction.
 • Proof by contrapositive.