Regular Expressions

Problem Set Four is due using a late period in the box up front.
Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

 $$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$

- Intuitively, the set of all strings formed by concatenating some string from L_1 and some string from L_2.

- Conceptually similar to the Cartesian product of two sets, only with strings.
Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:
 - $L^0 = \{ \varepsilon \}$
 - The set containing just the empty string.
 - Idea: Any string formed by concatenating zero strings together is the empty string.
 - $L^{n+1} = LL^n$
 - Idea: Concatenating $(n+1)$ strings together works by concatenating n strings, then concatenating one more.
The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as

 \[L^* = \bigcup_{i=0}^{\infty} L^i \]

- Mathematically:

 \[w \in L^* \text{ iff } \exists n \in \mathbb{N}. w \in L^n \]

- Intuitively, all possible ways of concatenating any number of copies of strings in \(L \) together.
Closure Properties

- The regular languages are closed under the following operations:
 - Complementation
 - Union
 - Intersection
 - Concatenation
 - Kleene closure
Another View of Regular Languages
Rethinking Regular Languages

- We currently have several tools for showing a language is regular.
 - Construct a DFA for it.
 - Construct an NFA for it.
 - Apply closure properties to existing languages.
- We have not spoken much of this last idea.
Constructing Regular Languages

- **Idea**: Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- A *bottom-up approach to the regular languages*.
Regular Expressions

- **Regular expressions** are a family of descriptions that can be used to capture the regular languages.
- Often provide a compact and human-readable description of the language.
- Used as the basis for numerous software systems (Perl, **flex**, **grep**, etc.)
Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \emptyset is a regular expression that represents the empty language \emptyset.
- The symbol ε is a regular expression that represents the language $\{ \varepsilon \}$.
 - This is not the same as \emptyset!
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{ a \}$.
Compound Regular Expressions

- We can combine together existing regular expressions in four ways.
- If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression for the concatenation of the languages of R_1 and R_2.
- If R_1 and R_2 are regular expressions, $R_1 | R_2$ is a regular expression for the union of the languages of R_1 and R_2.
- If R is a regular expression, R^* is a regular expression for the Kleene closure of the language of R.
- If R is a regular expression, (R) is a regular expression with the same meaning as R.
Operator Precedence

- Regular expression operator precedence:
 \((R) \)
 \(R^* \)
 \(R_1R_2 \)
 \(R_1 | R_2 \)

- So \(ab^*c|d \) is parsed as \(((a(b^*))c)|d \)
Regular Expression Examples

- The regular expression `trick|treat` represents the regular language \{ `trick`, `treat` \}
- The regular expression `booo*` represents the regular language \{ `boo`, `booo`, `boooo`, ... \}
- The regular expression `candy!(candy!)*` represents the regular language \{ `candy!`, `candy!candy!`, `candy!candy!candy!`, ... \}
Regular Expressions, Formally

- The **language of a regular expression** is the language described by that regular expression.

Formally:

- $\mathcal{L}(\varepsilon) = \{\varepsilon\}$
- $\mathcal{L}(\emptyset) = \emptyset$
- $\mathcal{L}(a) = \{a\}$
- $\mathcal{L}(R_1 R_2) = \mathcal{L}(R_1) \mathcal{L}(R_2)$
- $\mathcal{L}(R_1 | R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)$
- $\mathcal{L}(R^*) = \mathcal{L}(R)^*$
- $\mathcal{L}((R)) = \mathcal{L}(R)$

Worthwhile activity: Apply this recursive definition to $a(b|c)((d))$ and see what you get.
Regular Expressions are Awesome

• Let $\Sigma = \{0, 1\}$
• Let $L = \{ w \in \Sigma^* \mid w$ contains 00 as a substring $\}$
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w$ contains 00 as a substring $\}$

 $$(0 \mid 1)^*00(0 \mid 1)^*$$
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w$ contains 00 as a substring $\}$

$$(0 \mid 1)^*00(0 \mid 1)^*$$
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid \text{w contains } 00 \text{ as a substring} \}$

$$(0 \mid 1)^*00(0 \mid 1)^*$$

11011100101
0000
0000
11111011110011111
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring} \}$

$$((0 \mid 1)*00(0 \mid 1)^*)$$

```
11011100101
0000
1111101111001111
```
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w$ contains 00 as a substring $\}$

$\Sigma^*00\Sigma^*$

11011100101
0000
111110111100111111
Regular Expressions are Awesome

• Let $\Sigma = \{0, 1\}$
• Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$
Let $\Sigma = \{0, 1\}$

Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$
Regular Expressions are Awesome

Let \(\Sigma = \{0, 1\} \)

Let \(L = \{ w \in \Sigma^* \mid |w| = 4 \} \)

The length of a string \(w \) is denoted \(|w| \).
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

$\Sigma \Sigma \Sigma \Sigma$
Regular Expressions are Awesome

• Let \(\Sigma = \{0, 1\} \)
• Let \(L = \{ w \in \Sigma^* | |w| = 4 \} \)
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{w \in \Sigma^* \mid |w| = 4\}$

\[
\Sigma\Sigma\Sigma\Sigma
\]

0000
1010
1111
1000
Regular Expressions are Awesome

• Let $\Sigma = \{0, 1\}$

• Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

\[
\Sigma^4
\]

0000
1010
1111
1000
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{w \in \Sigma^* \mid |w| = 4\}$

Σ^4

0000
1010
1111
1000
Regular Expressions are Awesome

• Let $\Sigma = \{0, 1\}$

• Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1^*(0 \mid \epsilon)1^*$$
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* | w$ contains at most one 0 $\}$

$$1^*(0 \mid \varepsilon)1^*$$
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* | w$ contains at most one 0 $\}$

$1^*(0 \mid \varepsilon)1^*$

11110111
111111
0111
0
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1^*(0 \mid \varepsilon)1^*$$

11110111
111111
0111
0
Regular Expressions are Awesome

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* | w$ contains at most one $0 \}$
Regular Expressions are Awesome

- Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”
- Regular expression for email addresses:
Regular Expressions are Awesome

- Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”

- Regular expression for email addresses:

 $$aa*(.aa*)*@aa*.aa*(.aa*)*$$
Regular Expressions are Awesome

• Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”

• Regular expression for email addresses:

 \[aa*.(aa*)*@aa*.aa*(aa*)* \]

 cs103@cs.stanford.edu
cs103@cs.stanford.edu
first.middle.last@mail.site.org
barack.obama@whitehouse.gov
Regular Expressions are Awesome

- Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”

- Regular expression for email addresses:

 $$aa*(.aa*)*@aa*.aa*(.aa*)*$$

 cs103@cs.stanford.edu
 first.middle.last@mail.site.org
 barack.obama@whitehouse.gov
Regular Expressions are Awesome

- Let $\Sigma = \{ \text{a}, \text{.}, \text{@} \}$, where a represents “some letter.”

- Regular expression for email addresses:

 $aa^*.(aa^*)*@aa^*.aa^*(aa^*)*$

- Examples:
 - cs103@cs.stanford.edu
 - first.middle.last@mail.site.org
 - barack.obama@whitehouse.gov
Regular Expressions are Awesome

• Let $\Sigma = \{ \texttt{a, ., @} \}$, where \texttt{a} represents “some letter.”

• Regular expression for email addresses:

$$\texttt{aa*\.aa*>(\texttt{aa*})*@aa*\.aa*(\texttt{aa*})*}$$

 \begin{align*}
 \texttt{cs103@cs.stanford.edu} \\
 \texttt{first.middle.last@mail.site.org} \\
 \texttt{barack.obama@whitehouse.gov}
 \end{align*}
Regular Expressions are Awesome

- Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”

- Regular expression for email addresses:

 \[
a^+ (.a^*)^*@a^*.a^*(@(.a^*)^*)
 \]

 - `cs103@cs.stanford.edu`
 - `first.middle.last@mail.site.org`
 - `barack.obama@whitehouse.gov`
Regular Expressions are Awesome

- Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”

- Regular expression for email addresses:

 $$a^+ (.a^+)* @ a^+.a^+ (.a^+)*$$

 * cs103@cs.stanford.edu
 * first.middle.last@mail.site.org
 * barack.obama@whitehouse.gov
Regular Expressions are Awesome

- Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”
- Regular expression for email addresses:

 $a^+ (.a^+)* @ a^+.a^+ (.a^+)*$

 cs103@cs.stanford.edu
 first.middle.last@mail.site.org
 barack.obama@whitehouse.gov
Regular Expressions are Awesome

• Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”

• Regular expression for email addresses:

$$a^+ (.a^+)^* @ a^+ (.a^+)^+$$

cs103@cs.stanford.edu
first.middle.last@mail.site.org
barack.obama@whitehouse.gov
Regular Expressions are Awesome

• Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”

• Regular expression for email addresses:

$$a^+(.a^+)*@a^+(.a^+)^+$$

cs103@cs.stanford.edu
first.middle.last@mail.site.org
barack.obama@whitehouse.gov
Regular Expressions are Awesome

\[a^+ (.a^+) *@ a^+ (.a^+) + @, . \]
Shorthand Summary

- \(R^n \) is shorthand for \(RR \ldots R \) (\(n \) times).
- \(\Sigma \) is shorthand for “any character in \(\Sigma \).”
- \(R? \) is shorthand for \((R | \varepsilon) \), meaning “zero or one copies of \(R \).”
- \(R^+ \) is shorthand for \(RR^* \), meaning “one or more copies of \(R \).”
Break for Announcements!
Midterm Logistics

- Midterm is tomorrow, October 29, from 7PM - 10PM

- Room determined by last name:
 - A – G: Go to Gates B01
 - H – K: Go to Gates B03
 - L – P: Go to 200-002
 - Q – V: Go to 420-041
 - W – Z: Go to Herrin T175
Your Questions
If you find that the function $f: A \rightarrow B$ is not surjective, have you proven that $|A| < |B|$? Or do you still need to do additional proof steps?

Problem Set 4 is due at 2:15 PM with a late period. Please submit it ASAP!
When writing a logic statement, do you have to include the universal or existential quantifier for every variable that you state? I thought you had to do, but this one from lecture doesn't:

\[Tallest(x) \rightarrow \forall y. (x \neq y \rightarrow IsShorterThan(y, x)) \]

This example is a "sentence fragment" in first-order logic; without a definition of \(x \), this isn't a valid statement. All variables need to be quantified.
"When writing first-order logic statements with quantifiers, which one out of the following would be correct?

\[\forall x \ P(x). \ \exists y. \ R(y) \]

or

\[\forall x. \ (P(x) \rightarrow \exists y. \ R(y)) \]
If you find that the function $f: A \rightarrow B$ is not surjective, have you proven that $|A| < |B|$? Or do you still need to do additional proof steps?

$f : \mathbb{N} \rightarrow \mathbb{N}$

$f(n) = 137$
“What is the best thing to do to prepare for the exam between now and 7PM tomorrow?”
“Is there some mathematical automaton that can determine whether or not two first-order logical statements are equivalent?”

More on that later in the quarter...
Back to Regular Expressions!
The Power of Regular Expressions

Theorem: If R is a regular expression, then $\mathcal{L}(R)$ is regular.

Proof idea: Show how to convert a regular expression into an NFA.
The following theorem proves the language of any regular expression is regular:

Theorem: For any regular expression R, there is an NFA N such that

$$\mathcal{L}(R) = \mathcal{L}(N)$$

- N has exactly one accepting state.
- N has no transitions into its start state.
- N has no transitions out of its accepting state.
A Marvelous Construction

The following theorem proves the language of any regular expression is regular:

Theorem: For any regular expression R, there is an NFA N such that

\[\mathcal{L}(R) = \mathcal{L}(N) \]

- N has exactly one accepting state.
- N has no transitions into its start state.
- N has no transitions out of its accepting state.
The following theorem proves the language of any regular expression is regular:

Theorem: For any regular expression R, there is an NFA N such that $\mathcal{L}(R) = \mathcal{L}(N)$

- N has exactly one accepting state.
- N has no transitions into its start state.
- N has no transitions out of its accepting state.

These are stronger requirements than are necessary for a normal NFA. We enforce these rules to simplify the construction.
Base Cases

Automaton for ε

Automaton for \emptyset

Automaton for single character a
Construction for $R_1 R_2$
Construction for $R_1 R_2$

Machine for R_1

Machine for R_2
Construction for R_1R_2

Machine for R_1

Machine for R_2
Construction for $R_1 R_2$
Construction for $R_1 R_2$
Construction for $R_1 \mid R_2$
Construction for $R_1 | R_2$

Machine for R_1

Machine for R_2
Construction for $R_1 \mid R_2$

Machine for R_1

Machine for R_2
Construction for $R_1 \mid R_2$

Machine for R_1

Machine for R_2
Construction for $R_1 \mid R_2$

Machine for R_1

Machine for R_2
Construction for $R_1 \mid R_2$

Machine for R_1

Machine for R_2
Construction for $R_1 \mid R_2$

Machine for R_1

Machine for R_2

Start
Construction for R^*
Construction for R^*

Machine for R
Construction for R^*

Machine for R
Construction for R^*

Machine for R

\[\varepsilon \]
Construction for R^*
Construction for R^*

Machine for R
Construction for R^*
Why This Matters

- Many software tools work by matching regular expressions against text.
- One possible algorithm for doing so:
 - Convert the regular expression to an NFA.
 - (Optionally) Convert the NFA to a DFA using the subset construction.
 - Run the text through the finite automaton and look for matches.
- Runs extremely quickly!
The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an arbitrary NFA into a regular expression.
From NFAs to Regular Expressions

\[s_1, s_2, \ldots, s_n \]
From NFAs to Regular Expressions

Regular expression: \((s_1 \mid s_2 \mid \ldots \mid s_n)^*\)
From NFAs to Regular Expressions

Regular expression: \((s_1 \mid s_2 \mid \ldots \mid s_n)^*\)
From NFAs to Regular Expressions

Regular expression: \((s_1 \mid s_2 \mid \ldots \mid s_n)^*\)

Key idea: Label transitions with arbitrary regular expressions.
From NFAs to Regular Expressions
From NFAs to Regular Expressions

Regular expression: \(R \)
From NFAs to Regular Expressions

Regular expression: R

Key idea: If we can convert any NFA into something that looks like this, we can easily read off the regular expression.
From NFAs to Regular Expressions

Regular expression: R

Regular expression: $s_1 | s_2 | ... | s_n$
From NFAs to Regular Expressions

Regular expression: R

Regular expression: $(s_1|s_2|...|s_n)^*$
From NFAs to Regular Expressions

Regular expression: \(R \)

Regular expression: \((s_1 | s_2 | \ldots | s_n)^* \)
From NFAs to Regular Expressions

Regular expression: R

Diagram:

- Start state
- Path labeled R
- Accept state
From NFAs to Regular Expressions

Regular expression: R

Regular expression: $s_1 | s_2 | \ldots | s_n$
From NFAs to Regular Expressions

Regular expression: R

Regular expression: \emptyset
From NFAs to Regular Expressions

Regular expression: R

Regular expression: \emptyset
From NFAs to Regular Expressions

Regular expression: R
From NFAs to Regular Expressions

Regular expression: \(R \)

Regular expression: \(R_{11} \), \(R_{12} \), \(R_{22} \), \(R_{21} \)
From NFAs to Regular Expressions

Regular expression: R

Regular expression: $R_{11}^* R_{12} (R_{22} \mid R_{21} R_{11}^* R_{12})^*$
From NFAs to Regular Expressions

Regular expression: \(R \)

\[
R_{11}^* R_{12} \ (R_{22} \mid R_{21} R_{11}^* R_{12})^*
\]
From NFAs to Regular Expressions
Could we eliminate this state from the NFA?
From NFAs to Regular Expressions

\[
\begin{align*}
&\text{start} \quad \epsilon \quad q_s \\
&\quad \quad \quad R_{11} \quad R_{12} \\
&\quad \quad \quad R_{21} \quad R_{22} \\
&\epsilon \quad q_f
\end{align*}
\]
From NFAs to Regular Expressions
From NFAs to Regular Expressions

Note: We're using concatenation and Kleene closure in order to skip this state.
From NFAs to Regular Expressions

\[\varepsilon R_{11}^* R_{12} \]
From NFAs to Regular Expressions

\[\varepsilon R_{11} \ast R_{12} \]

start \(q_s \) \(\varepsilon \) \(q_1 \) \(R_{11} \) \(R_{12} \) \(R_{21} \) \(R_{22} \) \(\varepsilon \) \(q_2 \) \(q_f \)
From NFAs to Regular Expressions

\[\varepsilon R_{11} \ast R_{12} \]
From NFAs to Regular Expressions
From NFAs to Regular Expressions

\[\varepsilon R_{11}^* R_{12} \]

\[\varepsilon R_{11} \]

\[R_{12} \]

\[R_{21} R_{11}^* R_{12} \]
From NFAs to Regular Expressions

\[\varepsilon R_{11} * R_{12} \]

\[R_{22} \]

\[R_{21} \]

\[R_{11} * R_{12} \]
From NFAs to Regular Expressions

\[R_{11} \ast R_{12} \]

\[q_s \rightarrow^{\text{start}} \]

\[q_2 \xrightarrow{R_{22}} \xrightarrow{\varepsilon} q_f \]

\[R_{21} R_{11} \ast R_{12} \]
From NFAs to Regular Expressions

\[R_{11} \ast R_{12} \]

Note: We’re using union to combine these transitions together.
From NFAs to Regular Expressions

\[
\begin{align*}
q_s & \xrightarrow{R_{11} \ast R_{12}} q_2 \\
q_2 & \xrightarrow{\varepsilon} q_f
\end{align*}
\]

\[
R_{22} \mid R_{21} R_{11} \ast R_{12}
\]
From NFAs to Regular Expressions

\[\text{start} \rightarrow q_s \overset{R_{11} \ast R_{12}}{\longrightarrow} q_2 \overset{\varepsilon}{\longrightarrow} q_f \]

\[R_{22} \mid R_{21} R_{11} \ast R_{12} \]
From NFAs to Regular Expressions

\[
\begin{align*}
q_s & \xrightarrow{R_{11} \ast R_{12}} q_2 \\
& \xrightarrow{\varepsilon} q_f
\end{align*}
\]

\[
R_{22} \mid R_{21} R_{11} \ast R_{12}
\]
From NFAs to Regular Expressions

\[
\begin{align*}
\text{start} & \quad q_s & \text{R}_{11} \ast \text{R}_{12} & \quad q_2 & \varepsilon & \quad q_f \\
\end{align*}
\]

\[
\text{R}_{22} \mid \text{R}_{21} \text{R}_{11} \ast \text{R}_{12}
\]
From NFAs to Regular Expressions

$R_{11}^* R_{12} \ (R_{22} \mid R_{21} R_{11}^* R_{12})^* \ \varepsilon$
From NFAs to Regular Expressions

\[R_{11} \ast R_{12} \ (R_{22} \mid R_{21} R_{11} \ast R_{12})^* \varepsilon \]
From NFAs to Regular Expressions

\[R_{11} \ast R_{12} (R_{22} \mid R_{21} R_{11} \ast R_{12}) \ast \varepsilon \]
From NFAs to Regular Expressions

\[
R_{11}^* R_{12} (R_{22} \mid R_{21} R_{11}^* R_{12})^*
\]
From NFAs to Regular Expressions

\[R_{11}^* R_{12} (R_{22} \mid R_{21} R_{11}^* R_{12})^* \]
From NFAs to Regular Expressions

\[R_{11}^* R_{12} (R_{22} \mid R_{21} R_{11}^* R_{12})^* \]
The Construction at a Glance

- Start with an NFA for the language \(L \).
- Add a new start state \(q_s \) and accept state \(q_f \) to the NFA.
 - Add \(\varepsilon \)-transitions from each original accepting state to \(q_f \), then mark them as not accepting.
- Repeatedly remove states other than \(q_s \) and \(q_f \) from the NFA by “shortcutting” them until only two states remain: \(q_s \) and \(q_f \).
- The transition from \(q_s \) to \(q_f \) is then a regular expression for the NFA.
Our Transformations

- DFA
- NFA
- Regexp

Transformations:
- Direct conversion
- Subset construction
- State elimination
- Recursive transform
Theorem: The following are all equivalent:

- L is a regular language.
- There is a DFA D such that $\mathcal{L}(D) = L$.
- There is an NFA N such that $\mathcal{L}(N) = L$.
- There is a regular expression R such that $\mathcal{L}(R) = L$.
Next Time

- **Applications of Regular Languages**
 - Answering “so what?”
- **Intuiting Regular Languages**
 - What makes a language regular?
- **The Pumping Lemma**
 - Proving languages aren't regular.