Reducibility
Part I
Deciders

- Some Turing machines always halt; they never go into an infinite loop.
- Turing machines of this sort are called **deciders**.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.
Decidable Languages

- A language L is called **decidable** iff there is a decider M such that $\mathcal{L}(M) = L$.

- Given a decider M, you *can* learn whether or not a string $w \in \mathcal{L}(M)$.
 - Run M on w.
 - Although it might take a staggeringly long time, M will eventually accept or reject w.

- The set \mathbb{R} is the set of all decidable languages.
 $$L \in \mathbb{R} \text{ iff } L \text{ is decidable}$$
The Limits of Computability

- Regular Languages
- CFLs
- \(R \)
- RE
- \(\overline{L}_D \)
- \(\overline{A}_{TM} \)
- \(L_D \)
- \(A_{TM} \)

All Languages
\(A_{TM} \) and \(HALT \)

- Both \(A_{TM} \) and \(HALT \) are undecidable.
 - There is no way to decide whether a TM will accept or eventually terminate.
- However, both \(A_{TM} \) and \(HALT \) are recognizable.
 - We can always run a TM on a string \(w \) and accept if that TM accepts or halts.
- **Intuition**: The only general way to learn what a TM will do on a given string is to run it and see what happens.
Resolving an Asymmetry
The Limits of Computability
The Limits of Computability

There is a TM M where M accepts w iff $w \in L$
The Limits of Computability

There is a TM M where M accepts w iff $w \in L$
There is a TM M where M accepts w iff $w \in L$.

The Limits of Computability
There is a TM M where M accepts w iff $w \in L$.
There is a TM M where M accepts w iff $w \in L$.

The Limits of Computability
The Limits of Computability

There is a TM M where M accepts w iff $w \in L$

There is a TM M where M rejects w iff $w \notin L$

There is a TM M where M accepts w iff $w \in L$

There is a TM M where M rejects w iff $w \notin L$
The Limits of Computability

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M rejects w iff $w \notin L$.

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M accepts w iff $w \notin L$.

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M accepts w iff $w \notin L$.

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M accepts w iff $w \notin L$.

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M accepts w iff $w \notin L$.

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M accepts w iff $w \notin L$.

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M accepts w iff $w \notin L$.

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M accepts w iff $w \notin L$.

There is a TM M where M accepts w iff $w \in L$.
A New Complexity Class

- A language L is in RE iff there is a TM M such that
 - if $w \in L$, then M accepts w.
 - if $w \notin L$, then M does not accept w.
- A TM M of this sort is called a \textit{recognizer}, and L is called \textit{recognizable}.

- A language L is in co-RE iff there is a TM M such that
 - if $w \in L$, then M does not reject w.
 - if $w \notin L$, then M rejects w.
- A TM M of this sort is called a \textit{co-recognizer}, and L is called \textit{co-recognizable}.
RE and co-RE

• Intuitively, **RE** consists of all problems where a TM can exhaustively search for **proof** that \(w \in L \).

 • If \(w \in L \), the TM will find the proof.
 • If \(w \notin L \), the TM cannot find a proof.

• Intuitively, **co-RE** consists of all problems where a TM can exhaustively search for a **disproof** that \(w \in L \).

 • If \(w \in L \), the TM cannot find the disproof.
 • If \(w \notin L \), the TM will find the disproof.
RE and co-RE Languages

- A_{TM} is an RE language:
 - Simulate the TM M on the string w.
 - If you find that M accepts w, accept.
 - If you find that M rejects w, reject.
 - (If M loops, we implicitly loop forever)

- \overline{A}_{TM} is a co-RE language:
 - Simulate the TM M on the string w.
 - If you find that M accepts w, reject.
 - If you find that M rejects w, accept.
 - (If M loops, we implicitly loop forever)
RE and co-RE Languages

- $\overline{L_D}$ is an RE language.
 - Simulate M on $\langle M \rangle$.
 - If you find that M accepts $\langle M \rangle$, accept.
 - If you find that M rejects $\langle M \rangle$, reject.
 - (If M loops, we implicitly loop forever)

- L_D is a co-RE language.
 - Simulate M on $\langle M \rangle$.
 - If you find that M accepts $\langle M \rangle$, reject.
 - If you find that M rejects $\langle M \rangle$, accept.
 - (If M loops, we implicitly loop forever)
The Limits of Computability

There is a TM M where M accepts w iff $w \in L$

There is a TM M where M rejects w iff $w \notin L$

There is a TM M where M accepts w iff $w \in L$

There is a TM M where M rejects w iff $w \notin L$

There is a TM M where M accepts w iff $w \in L$

There is a TM M where M rejects w iff $w \notin L$

A_{TM}

\overline{A}_{TM}

L_D

\overline{L}_D

ADD

0^*1^*

$HALT$

The diagram illustrates the relationships between different classes of problems in computability theory.
Theorem: \(L \in \text{RE} \) iff \(\overline{L} \in \text{co-RE} \).
RE and co-RE

Theorem: \(L \in \text{RE} \) iff \(\overline{L} \in \text{co-RE} \).

Proof Sketch: Start with a recognizer \(M \) for \(L \).
RE and co-RE

Theorem: $L \in \text{RE}$ iff $\overline{L} \in \text{co-RE}$.

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then, flip the accept and reject states of a co-recognizer for L. ■
RE and co-RE

Theorem: \(L \in \text{RE} \iff \overline{L} \in \text{co-RE}. \)

Proof Sketch: Start with a recognizer \(M \) for \(L \). Then, flip its accepting and rejecting states to make machine \(M' \). Then

\[M' \text{ rejects } w \iff M \text{ accepts } w \iff w \in L \iff w \notin L. \]
RE and co-RE

Theorem: $L \in \text{RE}$ iff $\overline{L} \in \text{co-RE}$.

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

\[
M' \text{ rejects } w \text{ iff } M \text{ accepts } w
\]
RE and co-RE

Theorem: \(L \in \text{RE} \) iff \(\overline{L} \in \text{co-RE} \).

Proof Sketch: Start with a recognizer \(M \) for \(L \). Then, flip its accepting and rejecting states to make machine \(M' \). Then

\[
M' \text{ rejects } w \quad \iff \quad M \text{ accepts } w \quad \iff \quad w \in L \quad \iff \quad w \not\in L
\]
RE and co-RE

Theorem: \(L \in \text{RE} \) iff \(\overline{L} \in \text{co-RE} \).

Proof Sketch: Start with a recognizer \(M \) for \(L \).

Then, flip its accepting and rejecting states to make machine \(M' \). Then

\[
M' \text{ rejects } w \iff M \text{ accepts } w \iff w \in L \iff w \notin \overline{L}.
\]
RE and co-RE

Theorem: $L \in \text{RE}$ iff $\overline{L} \in \text{co-RE}$.

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in L$.
Theorem: \(L \in \text{RE} \) iff \(\overline{L} \in \text{co-RE} \).

Proof Sketch: Start with a recognizer \(M \) for \(L \). Then, flip its accepting and rejecting states to make machine \(M' \). Then

\[
M' \text{ rejects } w \text{ iff } M \text{ accepts } w \text{ iff } w \in L \text{ iff } w \notin \overline{L}.
\]

\[
M' \text{ does not reject } w \text{ iff } M' \text{ accepts } w \text{ or } M' \text{ loops on } w.
\]
Theorem: $L \in \text{RE}$ iff $\overline{L} \in \text{co-RE}$.

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w. $w \notin L$ iff $w \in L$.

RE and co-RE
RE and co-RE

Theorem: \(L \in \text{RE} \iff \overline{L} \in \text{co-RE}. \)

Proof Sketch: Start with a recognizer \(M \) for \(L \). Then, flip its accepting and rejecting states to make machine \(M' \). Then

\[
\begin{align*}
M' \text{ rejects } w & \iff M \text{ accepts } w \\
& \iff w \in L \\
& \iff w \notin \overline{L}.
\end{align*}
\]

\[
\begin{align*}
M' \text{ does not reject } w & \iff M' \text{ accepts } w \text{ or } M' \text{ loops on } w \\
& \iff M \text{ rejects } w \text{ or } M \text{ loops on } w \\
& \iff w \notin L.
\end{align*}
\]
RE and co-RE

Theorem: $L \in \text{RE}$ iff $\overline{L} \in \text{co-RE}$.

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

- M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

- M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in \overline{L}$.

\blacksquare
RE and co-RE

Theorem: $L \in \text{RE}$ iff $\overline{L} \in \text{co-RE}$.

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

- $M' \text{ rejects } w$ iff $M \text{ accepts } w$ iff $w \in L$ iff $w \notin \overline{L}$.
- $M' \text{ does not reject } w$ iff $M' \text{ accepts } w$ or $M' \text{ loops on } w$ iff $M \text{ rejects } w$ or $M \text{ loops on } w$ iff $w \notin L$ iff $w \in \overline{L}$.
RE and co-RE

Theorem: \(L \in \text{RE} \) iff \(\overline{L} \in \text{co-RE} \).

Proof Sketch: Start with a recognizer \(M \) for \(L \).
Then, flip its accepting and rejecting states to make machine \(M' \). Then

\begin{align*}
M' \text{ rejects } w & \iff M \text{ accepts } w \\
& \iff w \in L \\
& \iff w \notin \overline{L}.
\end{align*}

\begin{align*}
M' \text{ does not reject } w & \iff M' \text{ accepts } w \text{ or } M' \text{ loops on } w \\
& \iff M \text{ rejects } w \text{ or } M \text{ loops on } w \\
& \iff w \notin L \\
& \iff w \in \overline{L}.
\end{align*}
Theorem: \(L \in \text{RE} \) iff \(\overline{L} \in \text{co-RE} \).

Proof Sketch: Start with a recognizer \(M \) for \(L \). Then, flip its accepting and rejecting states to make machine \(M' \). Then

\[
M' \text{ rejects } w \quad \text{iff } M \text{ accepts } w \\
\quad \text{iff } w \in L \\
\quad \text{iff } w \notin \overline{L}.
\]

\[
M' \text{ does not reject } w \\
\quad \text{iff } M' \text{ accepts } w \text{ or } M' \text{ loops on } w \\
\quad \text{iff } M \text{ rejects } w \text{ or } M \text{ loops on } w \\
\quad \text{iff } w \notin L \\
\quad \text{iff } w \in \overline{L}.
\]

The same approach works if we flip the accept and reject states of a co-recognizer for \(\overline{L} \).
RE and co-RE

\textbf{Theorem:} \(L \in \text{RE} \) iff \(\overline{L} \in \text{co-RE} \).

\textbf{Proof Sketch:} Start with a recognizer \(M \) for \(L \). Then, flip its accepting and rejecting states to make machine \(M' \). Then

\begin{align*}
M' & \text{ rejects } w \\
& \text{ iff } M \text{ accepts } w \\
& \text{ iff } w \in L \\
& \text{ iff } w \notin \overline{L}.
\end{align*}

\begin{align*}
M' & \text{ does not reject } w \\
& \text{ iff } M' \text{ accepts } w \text{ or } M' \text{ loops on } w \\
& \text{ iff } M \text{ rejects } w \text{ or } M \text{ loops on } w \\
& \text{ iff } w \notin L \\
& \text{ iff } w \in \overline{L}.
\end{align*}

The same approach works if we flip the accept and reject states of a co-recognizer for \(\overline{L} \). ■
There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M rejects w iff $w \notin L$.

The diagram illustrates the relationships between the classes RE, co-RE, HALT, and $\overline{\text{HALT}}$. The acceptance and rejection of inputs w are marked by stars within the respective classes.
R, RE, and co-RE

• Every language in R is in both RE and co-RE.

• Why?
 • A decider for L accepts all \(w \in L \) and rejects all \(w \notin L \).

• In other words, \(R \subseteq RE \cap co-RE \).

• **Question:** Does \(R = RE \cap co-RE \)?
Which Picture is Correct?

CO-RE
- L_D
- $\overline{\text{HALT}}$
- A_{TM}

There is a TM M where M rejects w iff $w \notin L$

RE
- $\overline{L_D}$
- HALT
- A_{TM}

There is a TM M where M accepts w iff $w \in L$

RE
- ADD
- 0^*1^*

There is a TM M where M accepts w iff $w \in L$
Which Picture is Correct?

CO-RE

- L_D
- A_{TM}
- \overline{HALT}
- There is a TM M where M rejects w iff $w \notin L$

R

- ADD
- 0^*1^*

RE

- L_D
- A_{TM}
- \overline{HALT}
- There is a TM M where M accepts w iff $w \in L$
R, RE, and co-RE

• *Theorem:* If $L \in \text{RE}$ and $L \in \text{co-RE}$, then $L \in \text{R}$.
R, RE, and co-RE

- **Theorem:** If $L \in \text{RE}$ and $L \in \text{co-RE}$, then $L \in \text{R}$.

- **Proof sketch:** Since $L \in \text{RE}$, there is a recognizer M for it.
\textbf{R, RE, and co-RE}

- \textit{Theorem:} If $L \in \text{RE}$ and $L \in \text{co-RE}$, then $L \in \text{R}$.

- \textit{Proof sketch:} Since $L \in \text{RE}$, there is a recognizer M for it. Since $L \in \text{co-RE}$, there is a co-recognizer \overline{M} for it.
Theorem: If $L \in \text{RE}$ and $L \in \text{co-RE}$, then $L \in \text{R}$.

Proof sketch: Since $L \in \text{RE}$, there is a recognizer M for it. Since $L \in \text{co-RE}$, there is a co-recognizer \overline{M} for it.

This TM D is a decider for L:
R, RE, and co-RE

• **Theorem:** If $L \in \text{RE}$ and $L \in \text{co-RE}$, then $L \in \text{R}$.

• **Proof sketch:** Since $L \in \text{RE}$, there is a recognizer M for it. Since $L \in \text{co-RE}$, there is a co-recognizer \overline{M} for it.

This TM D is a decider for L:

$$D = "\text{On input } w:\n\text{Run } M \text{ on } w \text{ and } \overline{M} \text{ on } w \text{ in parallel.}\n\text{If } M \text{ accepts } w, \text{ accept.}\n\text{If } \overline{M} \text{ rejects } w, \text{ reject.}"$$
The Limits of Computability

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M rejects w iff $w \notin L$.

There is a TM M where M accepts w iff $w \in L$.

There is a TM M where M rejects w iff $w \notin L$.

What's out here?
Time-Out For Announcements!
Friday Four Square!
Today at 4:15PM outside Gates
Two Handouts Online

• **24: Additional Proofs on TMs**
 • See alternate proofs of why various languages are or are not \(R \), \(\text{RE} \), or \(\text{co-RE} \).

• **25: Extra Practice Problems**
 • By popular demand, extra questions on topics you'd like some more practice with!
 • Solutions released Monday.
Picking up Problem Sets

• If you pick up problem sets from the filing cabinet,

 please put all other papers back into the filing cabinet when you're done!

• If you don't:
 • they get mixed with problem sets from other classes and lost,
 • it causes a fire hazard, and
 • I get flak from the building managers about making a mess.
Your Questions
“Can you recommend software for designing and / or simulating Turing machines?”

http://www.jflap.org/
“Is there a difference between when a TM “runs” another TM as a subroutine vs. when it “simulates running” another TM?”
“Sometime my brain is stuck and I make silly and stupid mistakes [...]. What [do] you do when you are stuck on a problem?”
Back to CS103!
A Repeating Pattern
$L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \}$

$H = \text{"On input } \langle M \rangle \text{:} $

- Construct the string $\langle M, \varepsilon \rangle$.
- Run R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts $\langle M, \varepsilon \rangle$.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects $\langle M, \varepsilon \rangle$.\"
H = “On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M, \langle M \rangle \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M, \langle M \rangle \rangle$.”
From **HALT** to A_{TM}

$H = "On input \langle M, w \rangle:\n\begin{itemize}
\item Build M into M' so M' loops when M rejects.
\item Run D on $\langle M', w \rangle$.
\item If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
\item If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle."
\end{itemize}$
The General Pattern

Compute f

$f(w)$

Subroutine TM

Machine R

Machine H

w

YES

NO
The General Pattern

$H =$ “On input w:
· Transform the input w into $f(w)$.
· Run machine R on $f(w)$.
· If R accepts $f(w)$, then H accepts w.
· If R rejects $f(w)$, then H rejects w.”
Reductions

- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

\[\mathcal{L}(D) = \Sigma^* \? \]
\[\mathcal{L}(D_1) \text{ equal to } \Sigma^* - \mathcal{L}(D_2) \? \]
Reductions

- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

Is $\mathcal{L}(G) = \emptyset$?

Can be converted to

Can be used to solve

Problem A

Problem B

Is $\mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)$?
Reductions

- Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.
Reductions

• Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

A_{TM}
Problem A

Can be converted to

$HALT$
Problem B

Can be used to solve
Reductions

● Intuitively, problem A reduces to problem B iff a solver for B can be used to solve problem A.

● Reductions can be used to show certain problems are “solvable:”

 If A reduces to B and B is “solvable,” then A is “solvable.”
Formalizing Reductions

- In order to make the previous intuition more rigorous, we need to formally define reductions.
- There are many ways to do this; we'll explore two:
 - **Mapping reducibility** (today / Monday), and
 - **Polynomial-time reducibility** (next week).
Defining Reductions

- A **reduction** from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$
Defining Reductions

- A **reduction** from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

 For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$
Defining Reductions

- A **reduction** from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

 For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$
Defining Reductions

- A reduction from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

 \[
 \text{For any } w \in \Sigma_1^*, w \in A \text{ iff } f(w) \in B
 \]

- Every $w \in A$ maps to some $f(w) \in B$.
- Every $w \not\in A$ maps to some $f(w) \not\in B$.
- f does not have to be injective or surjective.
Why Reductions Matter

• If language A reduces to language B, we can use a recognizer / co-recognizer / decider for B to recognize / co-recognize / decide problem A.
 • (There's a slight catch – we'll talk about this in a second).

• How is this possible?
\(w \in A \quad \text{iff} \quad f(w) \in B \)
\(w \in A \iff f(w) \in B \)
\[w \in A \quad \text{iff} \quad f(w) \in B \]
\(w \in A \iff f(w) \in B \)
$w \in A$ iff $f(w) \in B$
$w \in A \text{ iff } f(w) \in B$

Machine H is used to compute f on input w. The result, $f(w)$, is then given to Machine R to determine if it is in language B. The output of Machine R is used to determine whether w is in language A. If the output is YES, then $w \in A$, otherwise, if the output is NO, then $w \notin A$. This diagram illustrates the relationship between the languages A and B through the function f.

Machine R operates on inputs that are the result of $f(w)$, which is computed by Machine H. The YES or NO output from Machine R decides whether w is a member of language A.

Diagram Components:
- **Compute f**: Computes the function f on input w.
- **TM for language B**: Determines if $f(w)$ is in language B.
- **Machine R**: Determines the output (YES or NO) based on the input from Machine H.
- **Machine H**: Computes $f(w)$ for input w.

The diagram visually represents the process of determining whether an input w belongs to language A by first computing $f(w)$ and then using Machine R to check if $f(w)$ is in language B.

Mathematical Representation:

Given $w \in A$, we have:

$$w \in A \iff f(w) \in B$$
$w \in A$ iff $f(w) \in B$

Machine H

\[w \rightarrow \text{Compute } f \rightarrow f(w) \rightarrow \text{TM for language } B \rightarrow \text{Machine } R \rightarrow \begin{cases} \text{YES} & \text{if } R \text{ accepts } f(w) \\ \text{NO} & \text{if } R \text{ rejects } f(w) \end{cases} \]

$H = \text{“On input } w:\$
- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects $w.”$
$w \in A$ iff $f(w) \in B$

H accepts w

$H = \text{“On input } w: \text{
 \begin{itemize}
 \item Transform the input } w \text{ into } f(w).
 \item Run machine } R \text{ on } f(w).
 \item If } R \text{ accepts } f(w), \text{ then } H \text{ accepts } w.
 \item If } R \text{ rejects } f(w), \text{ then } H \text{ rejects } w.\text{”}$
$w \in A$ \iff $f(w) \in B$

$H = \text{"On input } w:\n\begin{itemize}
 \item Transform the input } w \text{ into } f(w).
 \item Run machine } R \text{ on } f(w).
 \item If } R \text{ accepts } f(w), \text{ then } H \text{ accepts } w.
 \item If } R \text{ rejects } f(w), \text{ then } H \text{ rejects } w.
\end{itemize}$

R accepts $f(w)$ \iff H accepts w
Compute \(f \)

\[w \in A \quad \text{iff} \quad f(w) \in B \]

Machine \(H \) = “On input \(w \):
- Transform the input \(w \) into \(f(w) \).
- Run machine \(R \) on \(f(w) \).
- If \(R \) accepts \(f(w) \), then \(H \) accepts \(w \).
- If \(R \) rejects \(f(w) \), then \(H \) rejects \(w \).”
$w \in A \iff f(w) \in B$

Machine H

$H = \text{“On input } w:\$
\begin{itemize}
 \item Transform the input w into $f(w)$.
 \item Run machine R on $f(w)$.
 \item If R accepts $f(w)$, then H accepts w.
 \item If R rejects $f(w)$, then H rejects w.
\end{itemize}

R accepts $f(w)$ iff $f(w) \in B$ iff $w \in A$
\(w \in A \iff f(w) \in B \)

\[L(H) = A \]

\(H = \) “On input \(w \):

- Transform the input \(w \) into \(f(w) \).
- Run machine \(R \) on \(f(w) \).
- If \(R \) accepts \(f(w) \), then \(H \) accepts \(w \).
- If \(R \) rejects \(f(w) \), then \(H \) rejects \(w \).”
$w \in A \iff f(w) \in B$

$H = \text{"On input w:}
\begin{itemize}
 \item Transform the input w into $f(w)$.
 \item Run machine R on $f(w)$.
 \item If R accepts $f(w)$, then H accepts w.
 \item If R rejects $f(w)$, then H rejects w.
\end{itemize}$

\[\mathcal{L}(H) = A\]
A Problem

• Recall: f is a reduction from A to B iff

$$w \in A \iff f(w) \in B$$

• Under this definition, *any* language A reduces to *any* language B unless $B = \emptyset$ or Σ^*.

• Since $B \neq \emptyset$ and $B \neq \Sigma^*$, there is some $w_{yes} \in B$ and some $w_{no} \notin B$.

• Define $f : \Sigma_1^* \to \Sigma_2^*$ as follows:

$$f(w) = \begin{cases}
 w_{yes} & \text{if } w \in A \\
 w_{no} & \text{if } w \notin A
\end{cases}$$

• Then f is a reduction from A to B.
A Problem

- Example: let's reduce L_D to 0^*1^*.
- Take $w_{yes} = 01$, $w_{no} = 10$.
- Then $f(w)$ is defined as

$$f(w) = \begin{cases}
01 & \text{if } w \in L_D \\
10 & \text{if } w \notin L_D
\end{cases}$$

- There is no TM that can actually evaluate the function $f(w)$ on all inputs, since no TM can decide whether or not $w \in L_D$.
Example: let's reduce L_D to 0.

Take $w_{\text{yes}} = 01$, $w_{\text{no}} = 10$.

Then $f(w)$ is defined as:

$\begin{align*}
01 & \quad \text{if } w \in L_D \\
10 & \quad \text{if } w \notin L_D
\end{align*}$

That's bad!

There is no TM that can actually evaluate the function $f(w)$ on all inputs, since no TM can decide whether or not $w \in L_D$.
Computable Functions

- This general reduction is mathematically well-defined, but might be impossible to actually compute!
- To fix our definition, we need to introduce the idea of a computable function.
- A function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) is called a **computable function** if there is some TM \(M \) with the following behavior:

 “On input \(w \):

 Compute \(f(w) \) and write it on the tape.

 Move the tape head to the start of \(f(w) \).

 Halt.”
Computable Functions

\[f(1^n) = 1^{3n+1} \]
Computable Functions

\[f(1^n) = 1^{3n+1} \]
Computable Functions

\[f(w) = \begin{cases} 1^{mn} & \text{if } w = 1^{n \times 1^m} \\ \varepsilon & \text{otherwise} \end{cases} \]
Computable Functions

\[f(w) = \begin{cases}
1^{mn} & \text{if } w = 1^n \times 1^m \\
\varepsilon & \text{otherwise}
\end{cases} \]
Computable Functions

\[f(\langle M \rangle) = \langle M, \langle M \rangle \rangle \]
Computable Functions

\[f(\langle M \rangle) = \langle M, \langle M \rangle \rangle \]
Mapping Reductions

• A function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ is called a \textbf{mapping reduction} from A to B iff
 • For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 • f is a computable function.
• Intuitively, a mapping reduction from A to B says that a computer can transform any instance of A into an instance of B such that the answer to B is the answer to A.
Mapping Reducibility

• If there is a mapping reduction from language A to language B, we say that language A is **mapping reducible** to language B.

• Notation: $A \leq_{m} B$ iff language A is mapping reducible to language B.

• Note that we reduce **languages**, not **machines**.
$A \leq_M B$

Machine H:

- On input w:
 - Compute $f(w)$.
 - Run machine R on $f(w)$.
 - If R accepts $f(w)$, then H accepts w.
 - If R rejects $f(w)$, then H rejects w.
\(A \leq^M_B \)

Machine \(H \)

- Compute \(f \)
- Run machine \(R \) on \(f(w) \)
- If \(R \) accepts \(f(w) \), then \(H \) accepts \(w \).
- If \(R \) rejects \(f(w) \), then \(H \) rejects \(w \).

If \(R \) is a decider for \(B \), then \(H \) is a decider for \(A \).
$A \leq^M B$

$H = "$On input w:
 - Compute $f(w)$.
 - Run machine R on $f(w)$.
 - If R accepts $f(w)$, then H accepts w.
 - If R rejects $f(w)$, then H rejects w.$"

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.
$A \leq_M B$

Machine H

$H = \text{“On input } w: \!
\begin{align*}
&\cdot \text{ Compute } f(w). \\
&\cdot \text{ Run machine } R \text{ on } f(w). \\
&\cdot \text{ If } R \text{ accepts } f(w), \text{ then } H \text{ accepts } w. \\
&\cdot \text{ If } R \text{ rejects } f(w), \text{ then } H \text{ rejects } w.\!
\end{align*}$

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

If R is a co-recognizer for B, then H is a co-recognizer for A.
H = “On input w:
- Compute $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects w.”

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

If R is a co-recognizer for B, then H is a co-recognizer for A.
Why Mapping Reducibility Matters

- **Theorem**: If $B \in \mathbb{R}$ and $A \leq_{M} B$, then $A \in \mathbb{R}$.

- **Theorem**: If $B \in \text{RE}$ and $A \leq_{M} B$, then $A \in \text{RE}$.

- **Theorem**: If $B \in \text{co-RE}$ and $A \leq_{M} B$, then $A \in \text{co-RE}$.

- *Intuitively*: $A \leq_{M} B$ means “A is not harder than B.”
Why Mapping Reducibility Matters

- **Theorem**: If $A \notin R$ and $A \leq_M B$, then $B \notin R$.

- **Theorem**: If $A \notin \text{RE}$ and $A \leq_M B$, then $B \notin \text{RE}$.

- **Theorem**: If $A \notin \text{co-RE}$ and $A \leq_M B$, then $B \notin \text{co-RE}$.

- **Intuitively**: $A \leq_M B$ means “B is at least as hard as A. “
Why Mapping Reducibility Matters

If this one is "easy" \((R, \text{RE}, \text{co-RE})\)...

\[A \leq_M B \]

... then this one is "easy" \((R, \text{RE}, \text{co-RE})\) too.
Why Mapping Reducibility Matters

$A \leq_M B$

If this one is "hard"
(not R, not RE, or not $co\text{-}RE$)...

... then this one is "hard" (not R, not RE, or not $co\text{-}RE$) too.