Reducibility
Part II

Problem Set 7 due in the box up front.
The General Pattern

$H = \text{“On input } w:\text{ “}$

- Transform the input w into $f(w)$.
- Run machine R on $f(w)$.
- If R accepts $f(w)$, then H accepts w.
- If R rejects $f(w)$, then H rejects w."

Machine H

Machine R

Compute f

w
Defining Reductions

A reduction from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$
Defining Reductions

• A **reduction** from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

 For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$
Defining Reductions

- A **reduction** from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

\[
\text{For any } w \in \Sigma_1^*, \; w \in A \text{ iff } f(w) \in B
\]
Defining Reductions

- A **reduction** from A to B is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that

 For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$

- Every $w \in A$ maps to some $f(w) \in B$.
- Every $w \notin A$ maps to some $f(w) \notin B$.
- f does not have to be injective or surjective.
$w \in A \iff f(w) \in B$

Machine H

- On input w:
 - Transform the input w into $f(w)$.
 - Run machine R on $f(w)$.
 - If R accepts $f(w)$, then H accepts w.
 - If R rejects $f(w)$, then H rejects w.

Machine R

- Accepts $f(w)$ if $f(w) \in B$.

H accepts w iff R accepts $f(w)$ iff $f(w) \in B$ iff $w \in A$
Mapping Reductions

- A function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ is called a **mapping reduction** from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - f is a computable function.
- Intuitively, a mapping reduction from A to B says that a computer can transform any instance of A into an instance of B such that the answer to B is the answer to A.
Mapping Reducibility

• If there is a mapping reduction from language A to language B, we say that language A is **mapping reducible** to language B.

• Notation: $A \leq_m B$ iff language A is mapping reducible to language B.

• Note that we reduce *languages*, not *machines*.
Why Mapping Reducibility Matters

- **Theorem**: If \(B \in R \) and \(A \leq_{M} B \), then \(A \in R \).
- **Theorem**: If \(B \in \text{RE} \) and \(A \leq_{M} B \), then \(A \in \text{RE} \).
- **Theorem**: If \(B \in \text{co-RE} \) and \(A \leq_{M} B \), then \(A \in \text{co-RE} \).
- **Intuitively**: \(A \leq_{M} B \) means “\(A \) is not harder than \(B \).”
Why Mapping Reducibility Matters

- **Theorem**: If $A \notin R$ and $A \leq^M B$, then $B \notin R$.

- **Theorem**: If $A \notin RE$ and $A \leq^M B$, then $B \notin RE$.

- **Theorem**: If $A \notin co\text{-}RE$ and $A \leq^M B$, then $B \notin co\text{-}RE$.

- *Intuitively*: $A \leq^M B$ means “B is at least as hard as A.”
Why Mapping Reducibility Matters

If this one is "easy" $(R, RE, co-RE)$...

$A \leq_M B$

... then this one is "easy" $(R, RE, co-RE)$ too.
Why Mapping Reducibility Matters

If this one is “hard”
(not R, not RE, or not co–RE)...

\[A \leq_M B \]

... then this one is “hard” (not R, not RE, or not co–RE) too.
Using Mapping Reductions
Revisiting our Proofs

• Consider the language

\[L = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ accepts } \varepsilon \} \]

• We have already proven that this language is in \(\text{RE} \) by building a TM for it.

• Let's repeat this proof using mapping reductions.

• Specifically, we will prove

\[L \leq_{M} A_{\text{TM}} \]
$L = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ accepts } \varepsilon \} \$

- To prove $L \leq_A^{TM} A_{TM}$, we will need to find a computable function f such that
 \[\langle M \rangle \in L \iff f(\langle M \rangle) \in A_{TM} \]

- Since A_{TM} is a language of TM/string pairs, let's assume $f(\langle M \rangle) = \langle N, w \rangle$ for some TM N and string w (which we'll pick later):
 \[\langle M \rangle \in L \iff \langle N, w \rangle \in A_{TM} \]

- Substituting definitions:
 \[M \text{ accepts } \varepsilon \iff N \text{ accepts } w \]

- Choose $N = M$, $w = \varepsilon$. So $f(\langle M \rangle) = \langle M, \varepsilon \rangle$.

One Interpretation of the Reduction

\[\langle M \rangle \xrightarrow{\text{Compute } f} \langle M, \varepsilon \rangle \xrightarrow{\text{Recognizer for } A_{TM}} \]

Machine \(H \)

Machine \(R \)

YES

NO
One Interpretation of the Reduction

\[f(\langle M, \varepsilon \rangle) = \text{Accept} \]

Machine \(H \)

\[H = \text{"On input } \langle M \rangle \text{:} \]
\[\text{\quad \bullet \text{ Run machine } R \text{ on } } \langle M, \varepsilon \rangle. \]
\[\text{\quad \bullet \text{ If } R \text{ accepts } \langle M, \varepsilon \rangle, \text{ then } H \text{ accepts } w.} \]
\[\text{\quad \bullet \text{ If } R \text{ rejects } \langle M, \varepsilon \rangle, \text{ then } H \text{ rejects } w."} \]
Compute \(f \langle M \rangle \) and \(f \langle M, \varepsilon \rangle \) for machine \(R \).

Machine \(H \) accepts \(\langle M \rangle \) if:

- Run machine \(R \) on \(\langle M, \varepsilon \rangle \).
- If \(R \) accepts \(\langle M, \varepsilon \rangle \), then \(H \) accepts \(w \).
- If \(R \) rejects \(\langle M, \varepsilon \rangle \), then \(H \) rejects \(w \).
One Interpretation of the Reduction

\[H = \text{"On input } \langle M \rangle \text{:} \]

\[\begin{align*}
\cdot & \text{ Run machine } R \text{ on } \langle M, \varepsilon \rangle. \\
\cdot & \text{ If } R \text{ accepts } \langle M, \varepsilon \rangle, \text{ then } H \text{ accepts } w. \\
\cdot & \text{ If } R \text{ rejects } \langle M, \varepsilon \rangle, \text{ then } H \text{ rejects } w.
\end{align*} \]

\[H \text{ accepts } \langle M \rangle \iff R \text{ accepts } \langle M, \varepsilon \rangle \]
One Interpretation of the Reduction

Machine H

$H =$ “On input $\langle M \rangle$:

- Run machine R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects w.”

H accepts $\langle M \rangle$ iff R accepts $\langle M, \varepsilon \rangle$ iff M accepts ε
One Interpretation of the Reduction

\[\langle M \rangle \rightarrow \text{Compute } f \rightarrow \langle M, \varepsilon \rangle \rightarrow \text{Recognizer for } A_{TM} \]

Machine \(H \)

\[H = \text{“On input } \langle M \rangle: \]

\[\quad \cdot \text{Run machine } R \text{ on } \langle M, \varepsilon \rangle. \]

\[\quad \cdot \text{If } R \text{ accepts } \langle M, \varepsilon \rangle, \text{ then } H \text{ accepts } w. \]

\[\quad \cdot \text{If } R \text{ rejects } \langle M, \varepsilon \rangle, \text{ then } H \text{ rejects } w. \]

\[\]

\[H \text{ accepts } \langle M \rangle \]

\[\iff \]

\[R \text{ accepts } \langle M, \varepsilon \rangle \]

\[\iff \]

\[M \text{ accepts } \varepsilon \]

\[\iff \]

\[\langle M \rangle \in L \]
One Interpretation of the Reduction

Machine H

$H = \text{"On input } \langle M \rangle: \text{"

\cdot Run machine R on $\langle M, \varepsilon \rangle$.

\cdot If R accepts $\langle M, \varepsilon \rangle$, then H accepts w.

\cdot If R rejects $\langle M, \varepsilon \rangle$, then H rejects w.”

H accepts $\langle M \rangle$ iff R accepts $\langle M, \varepsilon \rangle$ iff M accepts ε iff $\langle M \rangle \in L$
\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \} \]

Theorem: \(L \in \text{RE} \).
\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \} \]

Theorem: \(L \in \text{RE}. \)

Proof: We will prove that \(L \leq_{\text{M}} A_{\text{TM}}. \)
\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \} \]

Theorem: \(L \in \text{RE} \).

Proof: We will prove that \(L \leq^m A_{\text{TM}} \). Since \(A_{\text{TM}} \in \text{RE} \), this proves \(L \in \text{RE} \) as well.
\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \} \]

Theorem: \(L \in \text{RE} \).

Proof: We will prove that \(L \leq_{m} A_{TM} \). Since \(A_{TM} \in \text{RE} \), this proves \(L \in \text{RE} \) as well.

To prove this, we will give a mapping reduction from \(L \) to \(A_{TM} \).
\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \} \]

Theorem: \(L \in \text{RE}. \)

Proof: We will prove that \(L \leq_M A_{\text{TM}}. \) Since \(A_{\text{TM}} \in \text{RE}, \) this proves \(L \in \text{RE} \) as well.

To prove this, we will give a mapping reduction from \(L \) to \(A_{\text{TM}}. \) For any TM \(M, \) let \(f(\langle M \rangle) = \langle M, \varepsilon \rangle. \) This function can be computed by a Turing machine.
$L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \}$

Theorem: $L \in \text{RE}$.

Proof: We will prove that $L \leq_M A_{\text{TM}}$. Since $A_{\text{TM}} \in \text{RE}$, this proves $L \in \text{RE}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. This function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M \rangle \in L$ iff $\langle M, \varepsilon \rangle \in A_{\text{TM}}$.

\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \} \]

Theorem: \(L \in \text{RE} \).

Proof: We will prove that \(L \leq_{M} A_{\text{TM}} \). Since \(A_{\text{TM}} \in \text{RE} \), this proves \(L \in \text{RE} \) as well.

To prove this, we will give a mapping reduction from \(L \) to \(A_{\text{TM}} \). For any TM \(M \), let \(f(\langle M \rangle) = \langle M, \varepsilon \rangle \). This function can be computed by a Turing machine.

Now, we will prove that \(f \) is a mapping reduction by proving for all TMs \(M \) that \(\langle M \rangle \in L \) iff \(\langle M, \varepsilon \rangle \in A_{\text{TM}} \).

To do this, consider any TM \(M \).
\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \} \]

Theorem: \(L \in \text{RE} \).

Proof: We will prove that \(L \leq_M A_{TM} \). Since \(A_{TM} \in \text{RE} \), this proves \(L \in \text{RE} \) as well.

To prove this, we will give a mapping reduction from \(L \) to \(A_{TM} \). For any TM \(M \), let \(f(\langle M \rangle) = \langle M, \varepsilon \rangle \). This function can be computed by a Turing machine.

Now, we will prove that \(f \) is a mapping reduction by proving for all TMs \(M \) that \(\langle M \rangle \in L \) iff \(\langle M, \varepsilon \rangle \in A_{TM} \).

To do this, consider any TM \(M \). Note that by the definition of \(L \), we see \(\langle M \rangle \in L \) iff \(M \) accepts \(\varepsilon \).
Theorem: $L \in \text{RE}$.
Proof: We will prove that $L \leq_{\text{M}} A_{\text{TM}}$. Since $A_{\text{TM}} \in \text{RE}$, this proves $L \in \text{RE}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. This function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M \rangle \in L$ iff $\langle M, \varepsilon \rangle \in A_{\text{TM}}$. To do this, consider any TM M. Note that by the definition of L, we see $\langle M \rangle \in L$ iff M accepts ε. By the definition of A_{TM}, we know that M accepts ε iff $\langle M, \varepsilon \rangle \in A_{\text{TM}}$.

$L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \}$
Theorem: $L \in \text{RE}$.

Proof: We will prove that $L \leq_A A_{\text{TM}}$. Since $A_{\text{TM}} \in \text{RE}$, this proves $L \in \text{RE}$ as well.

To prove this, we will give a mapping reduction from L to A_{TM}. For any TM M, let $f(\langle M \rangle) = \langle M, \varepsilon \rangle$. This function can be computed by a Turing machine.

Now, we will prove that f is a mapping reduction by proving for all TMs M that $\langle M \rangle \in L$ iff $\langle M, \varepsilon \rangle \in A_{\text{TM}}$. To do this, consider any TM M. Note that by the definition of L, we see $\langle M \rangle \in L$ iff M accepts ε. By the definition of A_{TM}, we know that M accepts ε iff $\langle M, \varepsilon \rangle \in A_{\text{TM}}$. Combining these statements together, we have that $\langle M \rangle \in L$ iff $\langle M, \varepsilon \rangle \in A_{\text{TM}}$.

$L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \}$
\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \} \]

Theorem: \(L \in \text{RE} \).

Proof: We will prove that \(L \leq_{M} A_{TM} \). Since \(A_{TM} \in \text{RE} \), this proves \(L \in \text{RE} \) as well.

To prove this, we will give a mapping reduction from \(L \) to \(A_{TM} \). For any TM \(M \), let \(f(\langle M \rangle) = \langle M, \varepsilon \rangle \). This function can be computed by a Turing machine.

Now, we will prove that \(f \) is a mapping reduction by proving for all TMs \(M \) that \(\langle M \rangle \in L \) iff \(\langle M, \varepsilon \rangle \in A_{TM} \).

To do this, consider any TM \(M \). Note that by the definition of \(L \), we see \(\langle M \rangle \in L \) iff \(M \) accepts \(\varepsilon \). By the definition of \(A_{TM} \), we know that \(M \) accepts \(\varepsilon \) iff \(\langle M, \varepsilon \rangle \in A_{TM} \). Combining these statements together, we have that \(\langle M \rangle \in L \) iff \(\langle M, \varepsilon \rangle \in A_{TM} \).

This means that \(f \) is a mapping reduction from \(L \) to \(A_{TM} \), so \(L \leq_{M} A_{TM} \), as required.
\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \} \]

Theorem: \(L \in \text{RE} \).

Proof: We will prove that \(L \leq_M A_{\text{TM}} \). Since \(A_{\text{TM}} \in \text{RE} \), this proves \(L \in \text{RE} \) as well.

To prove this, we will give a mapping reduction from \(L \) to \(A_{\text{TM}} \). For any TM \(M \), let \(f(\langle M \rangle) = \langle M, \varepsilon \rangle \). This function can be computed by a Turing machine.

Now, we will prove that \(f \) is a mapping reduction by proving for all TMs \(M \) that \(\langle M \rangle \in L \) iff \(\langle M, \varepsilon \rangle \in A_{\text{TM}} \). To do this, consider any TM \(M \). Note that by the definition of \(L \), we see \(\langle M \rangle \in L \) iff \(M \) accepts \(\varepsilon \). By the definition of \(A_{\text{TM}} \), we know that \(M \) accepts \(\varepsilon \) iff \(\langle M, \varepsilon \rangle \in A_{\text{TM}} \). Combining these statements together, we have that \(\langle M \rangle \in L \) iff \(\langle M, \varepsilon \rangle \in A_{\text{TM}} \).

This means that \(f \) is a mapping reduction from \(L \) to \(A_{\text{TM}} \), so \(L \leq_M A_{\text{TM}} \), as required. ■
What Did We Prove?

\[H = \text{"On input } \langle M \rangle:\]
\begin{itemize}
 \item Run machine \(R \) on \(\langle M, \varepsilon \rangle \).
 \item If \(R \) accepts \(\langle M, \varepsilon \rangle \), then \(H \) accepts \(w \).
 \item If \(R \) rejects \(\langle M, \varepsilon \rangle \), then \(H \) rejects \(w \)."
\end{itemize}

\[H \text{ accepts } \langle M \rangle \iff R \text{ accepts } \langle M, \varepsilon \rangle \iff M \text{ accepts } \varepsilon \iff \langle M \rangle \in L \]
What Did We Prove?

Machine H

$H = \text{“On input } \langle M \rangle:$$$
\begin{align*}
\cdot \text{ Run machine } R \text{ on } \langle M, \varepsilon \rangle. \\
\cdot \text{ If } R \text{ accepts } \langle M, \varepsilon \rangle, \text{ then } H \text{ accepts } w. \\
\cdot \text{ If } R \text{ rejects } \langle M, \varepsilon \rangle, \text{ then } H \text{ rejects } w."
\end{align*}$
Interpreting Mapping Reductions

• If $A \leq^M B$, there is a known construction to turn a TM for B into a TM for A.

• When doing proofs with mapping reductions, you do not need to show the overall construction.

• You just need to prove that
 • f is a computable function, and
 • $w \in A$ iff $f(w) \in B$.
Another Mapping Reduction
L_D and \overline{A}_{TM}

- Earlier, we proved $\overline{A}_{TM} \not\in \text{RE}$ by proving that

 If $\overline{A}_{TM} \in \text{RE}$, then $L_D \in \text{RE}$.

- The proof constructed this TM, assuming R was a recognizer for \overline{A}_{TM}.

\[
H = "\text{On input } \langle M \rangle:\n\text{• Construct the string } \langle M, \langle M \rangle \rangle.\n\text{• Run } R \text{ on } \langle M, \langle M \rangle \rangle.\n\text{• If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ accepts } \langle M \rangle.\n\text{• If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ rejects } \langle M \rangle."\n\]

- Let's do another proof using mapping reductions.
\[L_D \leq_M \overline{A}_{\text{TM}} \]

- To prove that \(\overline{A}_{\text{TM}} \notin \text{RE} \), we will prove \(L_D \leq_M \overline{A}_{\text{TM}} \).

- By our earlier theorem, since \(L_D \notin \text{RE} \), we have that \(\overline{A}_{\text{TM}} \notin \text{RE} \).

- Intuitively: \(\overline{A}_{\text{TM}} \) is “at least as hard” as \(L_D \), and since \(L_D \notin \text{RE} \), this means \(\overline{A}_{\text{TM}} \notin \text{RE} \).
\[L_D \leq_M \overline{A}_{TM} \]

- Goal: Find a computable function \(f \) such that
 \[\langle M \rangle \in L_D \iff f(\langle M \rangle) \in \overline{A}_{TM} \]

- Simplifying this using the definition of \(L_D \)
 \[M \text{ does not accept } \langle M \rangle \iff f(\langle M \rangle) \in \overline{A}_{TM} \]

- Let's assume that \(f(\langle M \rangle) \) has the form \(\langle N, w \rangle \) for some TM \(N \) and string \(w \). This means that
 \[M \text{ does not accept } \langle M \rangle \iff \langle N, w \rangle \in \overline{A}_{TM} \]
 \[M \text{ does not accept } \langle M \rangle \iff N \text{ does not accept } w \]

- If we can choose \(w \) and \(N \) such that the above is true, we will have our reduction from \(L_D \) to \(\overline{A}_{TM} \).

- Choose \(N = M \) and \(w = \langle M \rangle \).
One Interpretation of the Reduction

Compute f for $\langle M, \langle M \rangle \rangle$ on Machine H

Recognizer for \overline{A}_{TM} on Machine R
One Interpretation of the Reduction

Compute f in $\langle M, \langle M \rangle \rangle$ and pass it to the recognizer for $\overline{A_{TM}}$.

Machine H

- On input $\langle M \rangle$:
 - Run machine R on $\langle M, \langle M \rangle \rangle$.
 - If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts w.
 - If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects w.

$H = \text{"On input } \langle M \rangle:\$

- Run machine R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts w.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects w.\"
One Interpretation of the Reduction

\[H = \text{"On input } \langle M \rangle \text{:} \]
\[\quad \text{• Run machine } R \text{ on } \langle M, \langle M \rangle \rangle. \]
\[\quad \text{• If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ accepts } w. \]
\[\quad \text{• If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ rejects } w." \]
One Interpretation of the Reduction

Compute f for $\langle M \rangle$

Recognizer for $\overline{A_{TM}}$

Machine R

Machine H

$H = \text{"On input } \langle M \rangle :$
- Run machine R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts w.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects w.

H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$
One Interpretation of the Reduction

Machine H

\[H = \text{“On input } \langle M \rangle \text{:} \]
- Run machine \(R \) on \(\langle M, \langle M \rangle \rangle \).
- If \(R \) accepts \(\langle M, \langle M \rangle \rangle \), then \(H \) accepts \(w \).
- If \(R \) rejects \(\langle M, \langle M \rangle \rangle \), then \(H \) rejects \(w \).\]

Recognizer for \(\overline{A_{TM}} \)

\[H \text{ accepts } \langle M \rangle \text{ iff } R \text{ accepts } \langle M, \langle M \rangle \rangle \text{ iff } M \text{ does not accept } \langle M \rangle \]
One Interpretation of the Reduction

\[H = \text{"On input } \langle M \rangle \text{:} \]
\[\quad \text{• Run machine } R \text{ on } \langle M, \langle M \rangle \rangle. \]
\[\quad \text{• If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ then } \]
\[\quad \quad H \text{ accepts } w. \]
\[\quad \text{• If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ then } \]
\[\quad \quad H \text{ rejects } w. \]
One Interpretation of the Reduction

\[H = \text{"On input } \langle M \rangle: \]
\[\quad \text{Run machine } R \text{ on } \langle M, \langle M \rangle \rangle. \]
\[\quad \text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ accepts } w. \]
\[\quad \text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ then } H \text{ rejects } w. \]
Theorem: $\overline{A_{TM}} \notin \text{RE}.$

Proof: We will prove that $L_D \leq_M \overline{A_{TM}}$. Since $L_D \notin \text{RE}$, this proves that $\overline{A_{TM}} \notin \text{RE}$.

To show that $L_D \leq_M \overline{A_{TM}}$, we will give a mapping reduction from L_D to $\overline{A_{TM}}$. For any TM M, let $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$. This function f is computable.

To prove that f is a mapping reduction from L_D to $\overline{A_{TM}}$, we will prove for all TMs M that $\langle M \rangle \in L_D$ iff $\langle M, \langle M \rangle \rangle \in \overline{A_{TM}}$. By the definition of L_D, we know $\langle M \rangle \in L_D$ iff M does not accept $\langle M \rangle$. Similarly, by definition of $\overline{A_{TM}}$, we know that M does not accept $\langle M \rangle$ iff $\langle M, \langle M \rangle \rangle \in \overline{A_{TM}}$. Combining these statements together, we see $\langle M \rangle \in L_D$ iff $\langle M, \langle M \rangle \rangle \in \overline{A_{TM}}$. Thus f is a mapping reduction from L_D to $\overline{A_{TM}}$, so $L_D \leq \overline{A_{TM}}$, as required. ■
The Amplifier Machine
As we've seen, Turing machines can run other Turing machines as subroutines.
In order to reduce certain problems to one another, it is useful / necessary to embed Turing machines inside of one another.
 - We'll see an example in a second.
One construction, in particular, is useful for reductions like these.
For any TM M and string w, let $\text{Amp}(M, w)$ be this TM:

\begin{align*}
\text{Amp}(M, w) &= \text{“On input } x: \\
& \quad \text{Ignore } x. \\
& \quad \text{Run } M \text{ on } w. \\
& \quad \text{If } M \text{ accepts } w, \text{ then } \text{Amp}(M, w) \text{ accepts } x. \\
& \quad \text{If } M \text{ rejects } w, \text{ then } \text{Amp}(M, w) \text{ rejects } x. \\
\end{align*}

Theorem 1: If M accepts w, then $\text{Amp}(\mathcal{L} M, w) = \Sigma^*$. If M does not accept w, then $\text{Amp}(\mathcal{L} M, w) = \emptyset$.

Corollary 1: M accepts w iff $\text{Amp}(\mathcal{L} M, w) = \Sigma^*$.

Corollary 2: M does not accept w iff $\text{Amp}(\mathcal{L} M, w) = \emptyset$.

Theorem 2: The function $f(\langle M, w \rangle) = \langle \text{Amp}(M, w) \rangle$ is computable.
The Amplifier Machine

For any TM M and string w, let $\text{Amp}(M, w)$ be this TM:

$\text{Amp}(M, w) = \text{“On input } x: \text{ Ignore } x. \text{ Run } M \text{ on } w. \text{ If } M \text{ accepts } w, \text{ then } \text{Amp}(M, w) \text{ accepts } x. \text{ If } M \text{ rejects } w, \text{ then } \text{Amp}(M, w) \text{ rejects } x.”$
For any TM M and string w, let $\text{Amp}(M, w)$ be this TM:

$\text{Amp}(M, w) = \text{“On input } x:\text{ Ignore } x.\text{ Run } M \text{ on } w.\text{ If } M \text{ accepts } w, \text{ then } \text{Amp}(M, w) \text{ accepts } x.\text{ If } M \text{ rejects } w, \text{ then } \text{Amp}(M, w) \text{ rejects } x.”$

Theorem 1: If M accepts w, then $\mathcal{L}(\text{Amp}(M, w)) = \Sigma^*$. If M does not accept w, then $\mathcal{L}(\text{Amp}(M, w)) = \emptyset$.

Corollary 1: M accepts w iff $\mathcal{L}(\text{Amp}(M, w)) = \Sigma^*$

Corollary 2: M does not accept w iff $\mathcal{L}(\text{Amp}(M, w)) = \emptyset$.

The Amplifier Machine
For any TM M and string w, let $\text{Amp}(M, w)$ be the following TM:

$\text{Amp}(M, w) = "\text{On input } x:\n\text{Ignore } x.\n\text{Run } M \text{ on } w.\n\text{If } M \text{ accepts } w, \text{ then } \text{Amp}(M, w) \text{ accepts } x.\n\text{If } M \text{ rejects } w, \text{ then } \text{Amp}(M, w) \text{ rejects } x." "$

Theorem: If M accepts w, then $\mathcal{L}(\text{Amp}(M, w)) = \Sigma^*$. If M does not accept w, then $\mathcal{L}(\text{Amp}(M, w)) = \emptyset$.

Proof: First, we consider what happens if M accepts w. In this case, consider what happens when we run $\text{Amp}(M, w)$ on an arbitrary input string x. $\text{Amp}(M, w)$ will run M on w, and since M accepts w, $\text{Amp}(M, w)$ accepts x. Since our choice of x was arbitrary, we see that $\text{Amp}(M, w)$ accepts any input, so $\mathcal{L}(\text{Amp}(M, w)) = \Sigma^*$.

Otherwise, M does not accept w, so M rejects w or M loops on w. Consider the result of running $\text{Amp}(M, w)$ on an arbitrary string x. If M rejects w, then $\text{Amp}(M, w)$ rejects x. Otherwise, $\text{Amp}(M, w)$ loops on x. In both cases, $\text{Amp}(M, w)$ doesn't accept x. Since our choice of x was arbitrary, we see that $\text{Amp}(M, w)$ never accepts any input, so $\mathcal{L}(\text{Amp}(M, w)) = \emptyset$. ■
The Amplifier Machine

For any TM M and string w, let $\text{Amp}(M, w)$ be this TM:

$$\text{Amp}(M, w) = \text{"On input } x:\n\text{Ignore } x.\n\text{Run } M \text{ on } w.\n\text{If } M \text{ accepts } w, \text{ then Amp}(M, w) \text{ accepts } x.\n\text{If } M \text{ rejects } w, \text{ then Amp}(M, w) \text{ rejects } x."
$$

Theorem 1: If M accepts w, then $\mathcal{L}(\text{Amp}(M, w)) = \Sigma^*$. If M does not accept w, then $\mathcal{L}(\text{Amp}(M, w)) = \emptyset$.

Corollary 1: M accepts w iff $\mathcal{L}(\text{Amp}(M, w)) = \Sigma^*$

Corollary 2: M does not accept w iff $\mathcal{L}(\text{Amp}(M, w)) = \emptyset$.

Theorem 2: The function $f(\langle M, w \rangle) = \langle \text{Amp}(M, w) \rangle$ is computable.
\begin{center}
\begin{tikzpicture}

\node[shape=circle,draw=black,thick] (start) at (0,0) {q_{start}};
\node[shape=circle,draw=red,thick] (rej) at (2,0) {q_{rej}};
\node[shape=circle,draw=green,thick] (acc) at (2,1) {q_{acc}};
\node at (2.5,0) {M};

\draw[->,dashed] (start) -- (rej);
\draw[->,dashed] (rej) -- (acc);
\draw[->,dashed] (start) -- (acc);

\draw[->,thick] (start) -- (start) node[midway,above] {start};

\end{tikzpicture}
\end{center}
“On input x:
 · Ignore x.
 · Run M on w.
 · If M accepts w, we accept x.
 · If M rejects w, we reject x.\)
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.

![Diagram of a Turing machine]
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.

```
... 1 0 1 0 ...
```
“On input \(x \):
- Ignore \(x \).
- Run \(M \) on \(w \).
- If \(M \) accepts \(w \), we accept \(x \).
- If \(M \) rejects \(w \), we reject \(x \).”

Hypothetically, assume that \(w \) is the string 1101.
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.

```
... 1 0 1 0 ...
```
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

![Diagram](image)
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string **1101**.
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.

```
... 0 1 0 ...
```
“On input x:
• Ignore x.
• Run M on w.
• If M accepts w, we accept x.
• If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>1</th>
<th>0</th>
<th></th>
</tr>
</thead>
</table>

$0 \rightarrow \square, R$
$1 \rightarrow \square, R$

M

q_{start} q_{acc} q_{rej}
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.

\[\begin{array}{c}
\ldots & \ldots & 0 & \ldots \\
\end{array} \]
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.

...

M

q_{start} q_{acc} q_{rej}

$0 \rightarrow \square, R$
$1 \rightarrow \square, R$

Erase
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x."

Hypothetically, assume that w is the string 1101.
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.
“On input x:
 - Ignore x.
 - Run M on w.
 - If M accepts w, we accept x.
 - If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.

```

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... 1 ...</td>
</tr>
</tbody>
</table>
```

Diagram of M:
- q_{start} (start state)
- q_{acc} (accept state)
- q_{rej} (reject state)

Transitions:
- $0 \rightarrow \square, R$
- $1 \rightarrow \square, R$
- $\square \rightarrow 1, R$
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101. ❄️

```
... 1   ... 
```
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.

Hypothesized accepting run:

q_{start} -> q_{1101} -> q_{110} -> q_{acc}

Hypothesized rejecting run:

q_{start} -> q_{1101} -> q_{110} -> q_{rej}
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.
"On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.

Hypothetically, assume that w is the string 1101.\[\begin{array}{cccccc}
\ldots & 1 & 1 & 0 & 1 & \ldots \\
\end{array}\]
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.

Diagram Explanation

- **Start State**: q_{start}
- **Accept State**: q_{acc}
- **Reject State**: q_{rej}

- **Transitions**:
 - $0 \rightarrow \square, R$
 - $1 \rightarrow \square, R$
 - $0 \rightarrow 0, L$
 - $1 \rightarrow 1, L$
 - $\square \rightarrow 1, R$
 - $\square \rightarrow 0, R$
 - $\square \rightarrow \square, L$

- **Input String**: 1101

Transition Table

<table>
<thead>
<tr>
<th>Input</th>
<th>Action</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\rightarrow</td>
<td>R</td>
</tr>
<tr>
<td>1</td>
<td>\rightarrow</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>\rightarrow</td>
<td>L</td>
</tr>
<tr>
<td>1</td>
<td>\rightarrow</td>
<td>L</td>
</tr>
<tr>
<td>\square</td>
<td>\rightarrow</td>
<td>R</td>
</tr>
<tr>
<td>\square</td>
<td>\rightarrow</td>
<td>L</td>
</tr>
</tbody>
</table>

State Diagram

- **States**: q_{start}, q_{acc}, q_{rej}
- **Transitions**:
 - From q_{start} to 1 on 0
 - From 1 to 11 on 0
 - From 11 to 1101 on 1
 - From 1101 back to 1 on 1
 - From 1 to \square on 0
 - From \square to \square on 1
 - From \square to \square on \square

Hypothetically, assume that w is the string 1101.

Input String Visualization

- **Input String**: 1101

The machine M processes the input string 1101 starting from the start state q_{start} and ends in the accept state q_{acc}.
“On input x:
- Ignore x.
- Run M on w.
- If M accepts w, we accept x.
- If M rejects w, we reject x.”

Hypothetically, assume that w is the string 1101.
Using the Amplifier
A More Elaborate Reduction

• Since $\overline{A_{TM}} \notin \text{RE}$, there is no algorithm for determining whether a TM will not accept a given string.

• Could we check instead whether a TM never accepts a string?

• Consider the language

 $$L_e = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

• How “hard” is L_e? Is it R, RE, co-RE, or none of these?
Building an Intuition

- Before we even try to prove how “hard” this language is, we should build an intuition for its difficulty.

- L_e is *probably* not in RE, since if we were convinced a TM never accepted, it would be hard to find positive evidence of this.

- L_e is *probably* in co-RE, since if we were convinced that a TM *did* accept some string, we could exhaustively search over all strings and try to find the string it accepts.

- Best guess: $L_e \in \text{co-RE} - \text{R}$.
We will prove that $L_e \notin \text{RE}$ by showing that $\overline{A_{TM}} \leq_M L_e$. (This also proves $L_e \notin \text{R}$).

We want to find a function f such that

$$\langle M, w \rangle \in \overline{A_{TM}} \iff f(\langle M, w \rangle) \in L_e$$

Since L_e is a language of TM descriptions, let's assume $f(\langle M, w \rangle) = \langle N \rangle$ for some TM N. Then

$$\langle M, w \rangle \in \overline{A_{TM}} \iff \langle N \rangle \in L_e$$

Expanding out definitions, we get

M doesn't accept w iff $\mathcal{L}(N) = \emptyset$

How do we pick the machine N?
The Reduction

• Choose \(N \) such that this holds:

\[M \text{ doesn't accept } w \text{ iff } \mathcal{L}(N) = \emptyset \]

• We can pick \(N = \text{Amp}(M, w) \).

• \textbf{Recall:} \(\mathcal{L}(\text{Amp}(M, w)) = \emptyset \) iff \(M \) doesn't accept \(w \).

• Since \(f(\langle M, w \rangle) = \langle \text{Amp}(M, w) \rangle \) is computable, this is the mapping reduction we need!
The Reduction

Machine for L_e
The Reduction

\[\langle M, w \rangle \]

Construct $\text{Amp}(M, w)$

Machine for L_e
The Reduction

\[\langle M, w \rangle \]

Construct Amp\((M, w)\)

Machine for \(L_e\)

Simulate \(M\) on \(w\) (Ignored)

\(x\)

\(\text{Amp}(M, w)\)
The Reduction

\(\langle M, w \rangle \) → Construct \(\text{Amp}(M, w) \) → Machine for \(L_e \)

\(\mathcal{L}(\text{Amp}(M, w)) = \Sigma^* \) if \(M \) accepts \(w \).

\(\mathcal{L}(\text{Amp}(M, w)) = \emptyset \) if \(M \) does not accept \(w \).

\(\chi \) → Simulate \(M \) on \(w \) → (Ignored) → \(\text{Amp}(M, w) \)
The Reduction

\[\langle M, w \rangle \rightarrow \text{Construct Amp}(M, w) \rightarrow \langle \text{Amp}(M, w) \rangle \rightarrow \text{Machine for } L_e \]

\[\langle M, w \rangle \rightarrow \text{Simulate } M \text{ on } w \rightarrow \text{Amp}(M, w) \]

(Ignored)
The Reduction

\[\langle M, w \rangle \rightarrow \text{Construct Amp}(M, w) \rightarrow \langle \text{Amp}(M, w) \rangle \rightarrow \text{Machine for } L_e \]

Machine \(H \)

\[\chi \rightarrow \text{Simulate } M \text{ on } w \rightarrow \text{(Ignored)} \rightarrow \text{Amp}(M, w) \]
The Reduction

What does H do if M does not accept w?

Simulate M on w

(Ignored)

$\langle M, w \rangle$ \rightarrow Construct $\text{Amp}(M, w)$ \rightarrow $\langle \text{Amp}(M, w) \rangle$ \rightarrow Machine for L_e

Machine H
The Reduction

Construct $\text{Amp}(M, w)$

(Amp $\langle M, w \rangle$)

Machine for L_e

(Never accepts)

Machine H

Simulate M on w

(Ignored)

$\langle M, w \rangle$

What does H do if M does not accept w?
The Reduction

\[\langle M, w \rangle \xrightarrow{\text{Construct Amp}(M, w)} \langle \text{Amp}(M, w) \rangle \xrightarrow{\text{(Never accepts)}} \text{Machine for } L_e \]

Machine \(H \)

Simulate \(M \) on \(w \)

(ignored)

What does \(H \) do if \(M \) does not accept \(w \)?
The Reduction

\[\langle M, w \rangle \xrightarrow{\text{Construct} \ \operatorname{Amp}(M, w)} \langle \operatorname{Amp}(M, w) \rangle \xrightarrow{\text{Machine for } L_e} \]

\[\text{Machine } H \]

\[\langle M, w \rangle \xrightarrow{\text{Simulate } M \text{ on } w} (\text{Ignored}) \]

\[\text{Amp}(M, w) \xrightarrow{\text{Simulate } M \text{ on } w} (\text{Ignored}) \]
The Reduction

What does H do if M accepts w?

Simulate M on w

(Amp(M, w))

Machine for L_e

Machine H

What does H do if M accepts w?
The Reduction

\[\langle M, w \rangle \]

Construct \(\text{Amp}(M, w) \)

\(\langle \text{Amp}(M, w) \rangle \)

Machine for \(L_e \)

(Always accepts)

Machine \(H \)

Simulate \(M \) on \(w \)

\(x \)

(Ignored)

What does \(H \) do if \(M \) accepts \(w \)?
The Reduction

\(\langle M, w \rangle \) → Construct \(\text{Amp}(M, w) \) \(\langle \text{Amp}(M, w) \rangle \) → Machine for \(L_e \)

(Always accepts)

Machine \(H \)

Simulate \(M \) on \(w \)

(Ignored)

\(x \)

What does \(H \) do if \(M \) accepts \(w \)?

(or loop infinitely)
The Reduction

\[\langle M, w \rangle \xrightarrow{\text{Construct}} \text{Amp}(M, w) \xrightarrow{\langle \text{Amp}(M, w) \rangle} \text{Machine for } L_e \]

\[\chi \xrightarrow{\text{(Ignored)}} \text{Simulate } M \text{ on } w \]

Machine \(H \)
The Reduction

\(\langle M, w \rangle \)

Machine \(H \)

Simulate \(M \) on \(w \) (Ignored)

\(\text{Amp}(M, w) \)
The Reduction

What does H do if M does not accept w?

Machine H

Simulate M on w

(Ignored)

What does H do if M does not accept w?

$\langle M, w \rangle$
The Reduction

What does H do if M does not accept w?

Simulate M on w

$\langle M, w \rangle$

$Ignored$

Machine H

$\text{Amp}(M, w)$

What does H do if M does not accept w?
The Reduction

\[\langle M, w \rangle \]

Machine \(H \)

Simulate \(M \) on \(w \)

(Ignored)

\(x \)

\(\text{Amp}(M, w) \)
The Reduction

What does H do if M accepts w?

Simulate M on w

$\langle M, w \rangle$

Machine H

What does H do if M accepts w?

$Ignored$
The Reduction

What does H do if M accepts w?

Simulate M on w

(Ignored)

What does H do if M accepts w?

(or loop infinitely)

Machine H

$\langle M, w \rangle$

$\text{Amp}(M, w)$

x
The Reduction

\[\langle M, w \rangle \xrightarrow{\text{Construct Amp}(M, w)} \langle \text{Amp}(M, w) \rangle \xrightarrow{\text{Machine for } L_e} \]

Machine \(H \)

\[x \xrightarrow{\text{Simulate M on } w} \xrightarrow{\text{Amp}(M, w)} \]

(Ignored)
The Reduction

\[\langle M, w \rangle \]

Construct \(\text{Amp}(M, w) \)

\[\langle \text{Amp}(M, w) \rangle \]

Machine for \(L_e \)

Machine \(H \)

Simulate \(M \) on \(w \)

(ignored)

\[x \]

This is a recognizer for \(\overline{A_{TM}} \)!
Theorem: \(L_e \notin \text{RE} \)

Proof: We will prove \(\overline{A_{TM}} \leq_M L_e \). Since \(\overline{A_{TM}} \notin \text{RE} \), this proves that \(L_e \notin \text{RE} \), as required. To do so, we will exhibit a mapping reduction from \(\overline{A_{TM}} \) to \(L_e \). For any TM/string pair \(\langle M, w \rangle \), let \(f(\langle M, w \rangle) = \langle \text{Amp}(M, w) \rangle \). By our earlier theorem, this function is computable.

We claim this is a mapping reduction from \(\overline{A_{TM}} \) to \(L_e \). To prove this, we will prove that \(\langle M, w \rangle \in \overline{A_{TM}} \) iff \(\langle \text{Amp}(M, w) \rangle \in L_e \). By definition of \(\overline{A_{TM}} \), we see \(\langle M, w \rangle \) iff \(M \) does not accept \(w \). By our earlier theorem, \(M \) does not accept \(w \) iff \(\mathcal{L}(\text{Amp}(M, w)) = \emptyset \). Finally, by definition of \(L_e \), we see \(\mathcal{L}(\text{Amp}(M, w)) = \emptyset \) iff \(\langle \text{Amp}(M, w) \rangle \in L_e \). Taken together, we see that \(\langle M, w \rangle \in \overline{A_{TM}} \) iff \(\langle \text{Amp}(M, w) \rangle \in L_e \), so \(f \) is a mapping reduction from \(\overline{A_{TM}} \) to \(L_e \). Therefore, we see \(\overline{A_{TM}} \leq_M L_e \), as required. \(\square \)
A Math Joke
Time-Out For Announcements
Problem Set 6 Graded

• On-time Problem Set 6's have all been graded and should be returned after lecture today.
 • Online submissions: contact us if you don't hear back soon.
• Late Problem Set 6's will be returned this Wednesday.
Problem Set 8 Out

● Problem Set 8 goes out right now. It's due the Monday after Thanksgiving break (December 2).

● Some contradictory information:
 ● This is the last problem set on which you can use a late period.
 ● We *strongly* recommend that you don't, since you'll be pinched trying to finish Problem Set 9 if you do.

● TAs and I will figure out an OH schedule during Thanksgiving week.
Your Questions
“The fact we can't create a TM for $\overline{A_{TM}}$ and L_D is very cool. But it is tough to see why we would want to solve those problems in the first place – what are problems that we actually want to solve but can't, because of limits of computability?”
“Aren't there some cases where we can know a TM is infinite looping? Couldn't we modify the U so it keeps a record of IDs and then if it sees the same one twice know it was in a loop? This doesn't guarantee to find all loops, but would it be useful?”
“What's the difference between a language being decidable and having a decider for a language?”
“The generalized hailstone sequence terminating is proven to be undecidable (http://link.springer.com/chapter/10.1007%2F978-3-540-72504-6_49). What purpose is there to prove something as undecidable? Is undecidable better than not solvable?”
Back to CS103
The Limits of Computability

What's out here?
RE ∪ co-RE is Not Everything

- Using the same reasoning as the first day of lecture, we can show that there must be problems that are neither RE nor co-RE.
- There are more sets of strings than TMs.
- There are more sets of strings than twice the number of TMs.
- What do these languages look like?
There are infinitely many pairs of Turing machines with the same language as one another.

Good exercise: think about why this is.

Consider the following language:

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Questions:

- Is \(EQ_{TM} \in \text{co-RE} \)?
- Is \(EQ_{TM} \in \text{RE} \)?
Is $EQ_{TM} \in \text{co-RE}$?

- Intuitively, would we expect EQ_{TM} to be a co-RE language?

- Suppose TM M_1 accepts a string w. We'd need to know whether M_2 accepts w as well.

- Co-recognizing this would require us to have a corecognizer that detects whether $\langle M_2, w \rangle \in A_{TM}$, but that's not an co-$\text{RE}$ language!

- Our guess: EQ_{TM} is probably not co-RE.
Proving $\text{EQ}_{TM} \notin \text{co-RE}$

- To prove that $\text{EQ}_{TM} \notin \text{co-RE}$, we can try to find a language L where
 - $L \notin \text{co-RE}$, and
 - $L \leq_{M} \text{EQ}_{TM}$

- A good candidate would be something like A_{TM}, which is a “canonical” non-co-RE languages.

- **Goal:** Prove $\text{A}_{TM} \leq_{M} \text{EQ}_{TM}$.
Proving $A_{TM} \leq_M EQ_{TM}$

- Goal: Find a computable function f where
 \[
 \langle M, w \rangle \in A_{TM} \iff f(\langle M, w \rangle) \in EQ_{TM}
 \]

- Since EQ_{TM} is a language of pairs of TMs, let's assume $f(\langle M \rangle) = \langle M_1, M_2 \rangle$. Then we want to pick M_1 and M_2 such that
 \[
 \langle M, w \rangle \in A_{TM} \iff \langle M_1, M_2 \rangle \in EQ_{TM}
 \]

- Substituting definitions, we want
 \[
 M \text{ accepts } w \iff \mathcal{L}(M_1) = \mathcal{L}(M_2)
 \]

- What do we do now?
Using the Amplifier

- We want

\[
M \text{ accepts } w \text{ iff } \mathcal{L}(M_1) = \mathcal{L}(M_2)
\]

- What happens if we pick \(M_1 \) to be \(\text{Amp}(M, w) \)?
 - If \(M \) accepts \(w \), then \(\mathcal{L}(M_1) = \Sigma^* \).
 - If \(M \) does not accept \(w \), then \(\mathcal{L}(M_1) = \emptyset \).

- Choose \(M_1 \) to be the amplifier machine and \(M_2 \) to be any TM with language \(\Sigma^* \).
 Then the above statement is true!
What's Going On?

- Suppose we have an oracle for EQ_{TM}.
- We want to know whether M accepts w.
- To do this:
 - Find a TM S we know has language Σ^*.
 - Ask the oracle “does TM $\text{Amp}(M, w)$ have the same language as TM S?”
 - If so, then M accepts w.
 - If not, then M does not accept w.
Theorem: \(EQ_{TM} \not\in \text{co-RE}. \)

Proof: We will prove \(A_{TM} \leq_{M} EQ_{TM}. \) Since \(A_{TM} \not\in \text{co-RE}, \) this proves that \(EQ_{TM} \not\in \text{co-RE}. \) To show \(A_{TM} \leq_{M} EQ_{TM}, \) we will exhibit a mapping reduction from \(A_{TM} \) to \(EQ_{TM}. \)

For any TM/string pair \(\langle M, w \rangle, \) define \(f(\langle M, w \rangle) \) to be the pair of TMs \(\langle \text{Amp}(M, w), S \rangle, \) where \(S \) is the TM “On input x, accept x.” This function is computable, and note that \(\mathcal{L}(S) = \Sigma^*. \)

We claim that \(\langle M, w \rangle \in A_{TM} \) iff \(\langle \text{Amp}(M, w), E \rangle \in EQ_{TM}. \) To see this, note by definition of \(A_{TM} \) that \(\langle M, w \rangle \in A_{TM} \) iff \(M \) accepts \(w. \) By our earlier theorem, \(M \) accepts \(w \) iff \(\mathcal{L}(\text{Amp}(M, w)) = \Sigma^*. \) Since \(\mathcal{L}(S) = \Sigma^*, \) we see \(M \) accepts \(w \) iff \(\mathcal{L}(\text{Amp}(M, w)) = \mathcal{L}(S). \) Finally, by definition of \(EQ_{TM}, \(\mathcal{L}(\text{Amp}(M, w)) = \mathcal{L}(S) \) iff \(\langle \text{Amp}(M, w), S \rangle \in EQ_{TM}. \)

Collectively, we see \(\langle M, w \rangle \in A_{TM} \) iff \(\langle \text{Amp}(M, w), S \rangle \in EQ_{TM}. \)

Thus \(f \) is a mapping reduction from \(A_{TM} \) to \(EQ_{TM}, \) so \(A_{TM} \leq_{M} EQ_{TM}, \) as required. ■
Is $EQ_{TM} \in RE$?

- Intuitively, would we expect EQ_{TM} to be a RE language?
- Suppose TM M_1 doesn't accept a string w. We'd need to know whether M_2 also doesn't accept w.
- Recognizing this would require us to have a recognizer that detects whether $\langle M_2, w \rangle \in \overline{A}_{TM}$, but that's not an RE language!
- Our guess: EQ_{TM} is probably not RE.
Proving $\overline{A}_{TM} \leq_M EQ_{TM}$

- Goal: Find a computable function f where
 \[\langle M, w \rangle \in \overline{A}_{TM} \iff f(\langle M, w \rangle) \in EQ_{TM} \]

- Since EQ_{TM} is a language of pairs of TMs, let's assume $f(\langle M \rangle) = \langle M_1, M_2 \rangle$. Then we want to pick M_1 and M_2 such that
 \[\langle M, w \rangle \in \overline{A}_{TM} \iff \langle M_1, M_2 \rangle \in EQ_{TM} \]

- Substituting definitions, we want
 \[M \text{ does not accept } w \iff \mathcal{L}(M_1) = \mathcal{L}(M_2) \]

- What do we do now?
Using the Amplifier

- We want

 \(M \) does not accept \(w \) iff \(\mathcal{L}(M_1) = \mathcal{L}(M_2) \)

- What happens if we pick \(M_1 \) to be \(\text{Amp}(M, w) \)?
 - If \(M \) accepts \(w \), then \(\mathcal{L}(M_1) = \Sigma^* \).
 - If \(M \) does not accept \(w \), then \(\mathcal{L}(M_1) = \emptyset \).

- Choose \(M_1 \) to be the amplifier machine and \(M_2 \) to be any TM with language \(\emptyset \). Then the above statement is true!
What's Going On?

- Suppose we have an oracle for EQ_{TM}.
- We want to know whether M accepts w.
- To do this:
 - Find a TM E we know has language \emptyset.
 - Ask the oracle “does TM $\text{Amp}(M, w)$ have the same language as TM E?”
 - If so, then M does not accept w.
 - If not, then M accepts w.
Theorem: $\text{EQ}_{\text{TM}} \notin \text{RE}$.

Proof: We will prove $\overline{A}_{\text{TM}} \leq_{M} \text{EQ}_{\text{TM}}$. Since $\overline{A}_{\text{TM}} \notin \text{RE}$, this proves that $\text{EQ}_{\text{TM}} \notin \text{RE}$. To show $\overline{A}_{\text{TM}} \leq_{M} \text{EQ}_{\text{TM}}$, we will exhibit a mapping reduction from \overline{A}_{TM} to EQ_{TM}.

For any TM/string pair $\langle M, w \rangle$, define $f(\langle M, w \rangle)$ to be the pair of TMs $\langle \text{Amp}(M, w), E \rangle$, where E is the TM “On input x, reject x.” This function is computable, and note that $\mathcal{L}(E) = \emptyset$.

We claim that $\langle M, w \rangle \in \overline{A}_{\text{TM}}$ iff $\langle \text{Amp}(M, w), E \rangle \in \text{EQ}_{\text{TM}}$. To see this, note by definition of \overline{A}_{TM} that $\langle M, w \rangle \in \overline{A}_{\text{TM}}$ iff M does not accept w. By our theorem, M does not accept w iff $\mathcal{L}(\text{Amp}(M, w)) = \emptyset$. Since $\mathcal{L}(E) = \emptyset$, we see M does not accept w iff $\mathcal{L}(\text{Amp}(M, w)) = \mathcal{L}(E)$. Finally, by definition of EQ_{TM}, $\mathcal{L}(\text{Amp}(M, w)) = \mathcal{L}(E)$ iff $\langle \text{Amp}(M, w), E \rangle \in \text{EQ}_{\text{TM}}$.

Collectively, we see $\langle M, w \rangle \in \overline{A}_{\text{TM}}$ iff $\langle \text{Amp}(M, w), E \rangle \in \text{EQ}_{\text{TM}}$. Thus f is a mapping reduction from \overline{A}_{TM} to EQ_{TM}, so $\overline{A}_{\text{TM}} \leq_{M} \text{EQ}_{\text{TM}}$, as required. ■
The Limits of Computability