Complexity Theory
Part II
Time Complexity

- The **time complexity** of a TM M is a function denoting the **worst-case** number of steps M takes on any input of length n.
 - By convention, n denotes the length of the input.
 - Assume we're only dealing with deciders, so there's no need to handle looping TMs.
- We often use **big-O notation** to describe growth rates of functions (and time complexity in particular).
 - Found by discarding leading coefficients and low-order terms.
Polynomials and Exponentials

- A TM runs in **polynomial time** iff its runtime is some polynomial in n.
 - That is, time $O(n^k)$ for some constant k.
- Polynomial functions “scale well.”
 - Small changes to the size of the input do not typically induce enormous changes to the overall runtime.
- Exponential functions scale terribly.
 - Small changes to the size of the input induce huge changes in the overall runtime.
The Cobham-Edmonds Thesis

A language L can be decided efficiently iff there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff it can be decided in time $O(n^k)$ for some $k \in \mathbb{N}$.

Like the Church-Turing thesis, this is not a theorem! It's an assumption about the nature of efficient computation, and it is somewhat controversial.
The Complexity Class \mathbf{P}

- The **complexity class** \mathbf{P} (for *polynomial* time) contains all problems that can be solved in polynomial time.

- Formally:

 $$\mathbf{P} = \{ L \mid \text{There is a polynomial-time decider for } L \}$$

- Assuming the Cobham-Edmonds thesis, a language is in \mathbf{P} iff it can be decided efficiently.
Undecidable Languages
Problems in P

- **Graph connectivity:**
 Given a graph G and nodes s and t, is there a path from s to t?

- **Primality testing:**
 Given a number p, is p prime? (Best known TM for this takes time $O(n^{72})$.)

- **Maximum matching:**
 Given a set of tasks and workers who can perform those tasks, can all of the tasks be completed in under n hours?
Problems in P

• **Remoteness testing:**
 Given a graph G, are all of the nodes in G within distance at most k of one another?

• **Linear programming:**
 Given a linear set of constraints and linear objective function, is the optimal solution at least n?

• **Edit distance:**
 Given two strings, can the strings be transformed into one another in at most n single-character edits?
Other Models of Computation

- **Theorem**: \(L \in \mathbf{P} \) iff there is a polynomial-time TM or computer program that decides it.

- Essentially – a problem is in \(\mathbf{P} \) iff you could solve it on a normal computer in polynomial time.

- Proof involves simulating a computer with a TM; come talk to me after lecture for details on how to do this.
Proving Languages are in \mathbf{P}

- **Directly prove the language is in \mathbf{P}**.
 - Build a decider for the language L.
 - Prove that the decider runs in time $O(n^k)$.
- **Use closure properties**.
 - Prove that the language can be formed by appropriate transformations of languages in \mathbf{P}.
- **Reduce the language to a language in \mathbf{P}**.
 - Show how a polynomial-time decider for some language L' can be used to decide L.
Proving Languages are in \mathbf{P}

Directly prove the language is in P.

Build a decider for the language L.

Prove that the decider runs in time $O(n^k)$.

Use closure properties.

Prove that the language can be formed by appropriate transformations of languages in \mathbf{P}.

- **Reduce the language to a language in \mathbf{P}.
 - Show how a polynomial-time decider for some language L' can be used to decide L.
If any instance of A can be converted into an instance of B, we say that A reduces to B.

Reductions
Mapping Reductions and \(\mathbf{P} \)

- When studying whether problems were in \(\mathbf{R} \), \(\mathbf{RE} \), or co-\(\mathbf{RE} \), we used mapping reductions.
- The construction we built using mapping reductions
 - computes the function \(f \) on some input string \(w \), then
 - runs another TM on \(f(w) \).
- When talking about class \(\mathbf{P} \), we need to make sure that this entire process doesn't take too much time.
Polynomial-Time Reductions

- Let $A \subseteq \Sigma_1^*$ and $B \subseteq \Sigma_2^*$ be languages.
- A **polynomial-time mapping reduction** is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ with the following properties:
 - $f(w)$ can be computed in polynomial time.
 - $w \in A$ iff $f(w) \in B$.
- Informally:
 - A way of turning inputs to A into inputs to B
 - that can be computed in polynomial time
 - that preserves the correct answer.
- Notation: $A \leq_p B$ iff there is a polynomial-time mapping reduction from A to B.
Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{P}$.
- Suppose that $A \leq_{\mathbf{P}} B$ and that the reduction f can be computed in time $O(n^k)$.
Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{P}$.
- Suppose that $A \leq_p B$ and that the reduction f can be computed in time $O(n^k)$.

Input size: n

- A: Solvable?
- B: Solvable in $O(n^r)$
Polynomial-Time Reductions

- Suppose that we know that \(B \in \mathbf{P} \).
- Suppose that \(A \leq_p B \) and that the reduction \(f \) can be computed in time \(O(n^k) \).

Input size: \(n \)

- \(A \) is solvable?
- \(B \) is solvable in \(O(n^r) \)
Polynomial-Time Reductions

- Suppose that we know that $B \in \mathsf{P}$.
- Suppose that $A \leq_p B$ and that the reduction f can be computed in time $O(n^k)$.

Input size: n \hspace{1cm} Time required: $O(n^k)$

Compute $f(w)$

A \hspace{1cm} B

Solvable? \hspace{1cm} Solvable in $O(n^r)$
Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{P}$.
- Suppose that $A \leq_p B$ and that the reduction f can be computed in time $O(n^k)$.

![Diagram showing the relationship between A and B with input and time complexity](#)
Polynomial-Time Reductions

- Suppose that we know that $B \in \text{P}$.
- Suppose that $A \leq_p B$ and that the reduction f can be computed in time $O(n^k)$.

Input size: n
Time required: $O(n^k)$

Key observation: If it takes time $O(n^k)$ to compute $f(w)$, then the maximum possible length of $f(w)$ is $O(n^k)$.

Input size: $?$

Key observation: If it takes time $O(n^k)$ to compute $f(w)$, then the maximum possible length of $f(w)$ is $O(n^k)$.
Polynomial-Time Reductions

- Suppose that we know that \(B \in \mathbf{P} \).
- Suppose that \(A \leq_p B \) and that the reduction \(f \) can be computed in time \(O(n^k) \).

Diagram:

- **Input size:** \(n \)
- **Time required:** \(O(n^k) \)
- **Input size:** \(O(n^k) \)

Compute \(f(w) \)

- **A**
 - Solvable?

- **B**
 - Solvable in \(O(n^r) \)
Polynomial-Time Reductions

- Suppose that we know that $B \in \mathsf{P}$.
- Suppose that $A \leq_p B$ and that the reduction f can be computed in time $O(n^k)$.

Input size: n \hspace{1cm} \textbf{Time required: } O(n^k) \hspace{1cm} \text{Input size: } O(n^k)

A

Solvable?

B

Solvable in $O(n^r)$

Compute $f(w)$

$f(w) \in B$ iff $w \in A$
 Polynomial-Time Reductions

- Suppose that we know that $B \in \text{P}$.
- Suppose that $A \leq_p B$ and that the reduction f can be computed in time $O(n^k)$.

![Diagram]

Input size: n

A

Solvable?

Time required: $O(n^k)$

Compute $f(w)$

$f(w) \in B$ iff $w \in A$

B

Solvable in $O(n^r)$

Time required: $O(n^{kr})$
Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{P}$.
- Suppose that $A \leq_{\mathbf{P}} B$ and that the reduction f can be computed in time $O(n^k)$.

\[A \quad \text{Solvable in} \quad O(n^{kr}) \]

Input size: n

\[\text{Time required: } O(n^k) \]

\[f(w) \in B \text{ iff } w \in A \]

\[B \quad \text{Solvable in} \quad O(n^r) \]

Input size: $O(n^k)$

\[\text{Time required: } O(n^{kr}) \]
Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{P}$.
- Suppose that $A \leq_p B$ and that the reduction f can be computed in time $O(n^k)$.
- Then $A \in \mathbf{P}$ as well.

Diagram:

- **Input size:** n
- **Time required:** $O(n^k)$
- **Input size:** $O(n^k)$
- **Compute $f(w)$**
- **$f(w) \in B$ iff $w \in A$**
- **Time required:** $O(n^{kr})$

Boxes:

- **A**
 - Solvable in $O(n^{kr})$
- **B**
 - Solvable in $O(n^r)$
Theorem: If $B \in \mathbf{P}$ and $A \leq_p B$, then $A \in \mathbf{P}$.

Proof: Let H be a polynomial-time decider for B. Consider the following TM:

$$M = \text{"On input } w:\n\text{Compute } f(w).$$
$$\text{Run } H \text{ on } f(w).$$
$$\text{If } H \text{ accepts, accept; if } H \text{ rejects, reject."}$$

We claim that M is a polynomial-time decider for A. To see this, we prove that M is a polynomial-time decider, then that $\mathcal{L}(M) = A$. To see that M is a polynomial-time decider, note that because f is a polynomial-time reduction, computing $f(w)$ takes time $O(n^k)$ for some k. Moreover, because computing $f(w)$ takes time $O(n^k)$, we know that $|f(w)| = O(n^k)$. M then runs H on $f(w)$. Since H is a polynomial-time decider, H halts in $O(m^r)$ on an input of size m for some r. Since $|f(w)| = O(n^k)$, H halts after $O(|f(w)|^r) = O(n^{kr})$ steps. Thus M halts after $O(n^k + n^{kr})$ steps, so M is a polynomial-time decider.

To see that $\mathcal{L}(M) = A$, note that M accepts w iff H accepts $f(w)$ iff $f(w) \in B$. Since f is a polynomial-time reduction, $f(w) \in B$ iff $w \in A$. Thus M accepts w iff $w \in A$, so $\mathcal{L}(M) = A$.■
A Sample Reduction
Maximum Matching

- Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint.
- A maximum matching is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph G, a **matching** in G is a set of edges such that no two edges share an endpoint.
- A **maximum matching** is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph G, a **matching** in G is a set of edges such that no two edges share an endpoint.

- A **maximum matching** is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph G, a **matching** in G is a set of edges such that no two edges share an endpoint.

- A **maximum matching** is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph G, a **matching** in G is a set of edges such that no two edges share an endpoint.

- A **maximum matching** is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph G, a **matching** in G is a set of edges such that no two edges share an endpoint.
- A **maximum matching** is a matching with the largest number of edges.
Maximum Matching

• Given an undirected graph G, a **matching** in G is a set of edges such that no two edges share an endpoint.

• A **maximum matching** is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint.
- A maximum matching is a matching with the largest number of edges.

Maximum matchings are not necessarily unique.
Maximum Matching

• Jack Edmonds' paper “Paths, Trees, and Flowers” gives a **polynomial-time algorithm** for finding maximum matchings.

 • (This is the same Edmonds as in “Cobham-Edmonds Thesis.)

• Using this fact, what other problems can we solve?
Domino Tiling
Domino Tiling
Domino Tiling
Domino Tiling
Domino Tiling
A Domino Tiling Reduction

- Let $MATCHING$ be the language defined as follows:

 $MATCHING = \{ \langle G, k \rangle \mid G$ is an undirected graph with a matching of size at least $k \}$

- **Theorem** (Edmonds): $MATCHING \in \mathbf{P}$.

- Let $DOMINO$ be this language:

 $DOMINO = \{ \langle D, k \rangle \mid D$ is a grid and k nonoverlapping dominoes can be placed on $D. \}$

- We'll prove $DOMINO \leq_p MATCHING$ to show that $DOMINO \in \mathbf{P}$.

Solving Domino Tiling
Our Reduction

• Given as input \(\langle D, k \rangle \), construct the graph \(G \) as follows:

 • For each empty cell, construct a node.
 • For each pair of adjacent empty cells, construct an edge between them.

Let \(f(\langle D, k \rangle) = \langle G, k \rangle \).
Lemma: f is computable in polynomial time.

Proof: We show that $f(D, k) = (G, k)$ has size that is a polynomial in the size of (D, k).

For each empty cell x_i in D, we construct a single node v_i in G. Since there are $O(|D|)$ cells, there are $O(|D|)$ nodes in the graph. For each pair of adjacent, empty cells x_i and x_j in D, we add the edge (x_i, x_j). Since each cell in D has four neighbors, the maximum number of edges we could add this way is $O(|D|)$ as well. Thus the total size of the graph G is $O(|D|)$. Consequently, the total size of (G, k) is $O(|D| + |k|)$, which is a polynomial in the size of the input.

Since each part of the graph could be constructed in polynomial time, the overall graph can be constructed in polynomial time. ■
What *can't* you do in polynomial time?
How many simple paths are there from the start node to the end node?
How many subsets of this set are there?
An Interesting Observation

- There are (at least) exponentially many objects of each of the preceding types.
- However, each of those objects is not very large.
 - Each simple path has length no longer than the number of nodes in the graph.
 - Each subset of a set has no more elements than the original set.
- This brings us to our next topic...
What if you could magically guess which element of the search space was the one you wanted?
A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10
A Sample Problem

\begin{itemize}
 \item Nondeterministically guess a subsequence of S.
 \item If it is an ascending subsequence of length at least k, accept.
 \item Otherwise, reject.
\end{itemize}

$M = \text{"On input } \langle S, k \rangle, \text{ where } S \text{ is a sequence of numbers and } k \text{ is a natural number:}
\begin{itemize}
 \item Nondeterministically guess a subsequence of S.
 \item If it is an ascending subsequence of length at least k, accept.
 \item Otherwise, reject."
\end{itemize}
Another Problem
Another Problem

\[M = \text{"On input } (G, u, v, k), \text{ where } G \text{ is a graph, } u \text{ and } v \text{ are nodes in } G, \text{ and } k \in \mathbb{N}: \]

- Nondeterministically guess a permutation of at most \(k \) nodes from \(G \).
- If the permutation is a path from \(u \) to \(v \), accept.
- Otherwise, reject.
How do we measure NTM efficiency?
Analyzing NTMs

- When discussing deterministic TMs, the notion of time complexity is (reasonably) straightforward.

 - **Recall:** One way of thinking about nondeterminism is as a tree.

 - In a **deterministic** computation, the tree is a straight line.

 - The time complexity is the height of that straight line.
Analyzing NTMs

• When discussing deterministic TMs, the notion of time complexity is (reasonably) straightforward.

• **Recall:** One way of thinking about nondeterminism is as a tree.

• The time complexity is the height of the tree (the length of the *longest* possible choice we could make).

• Intuition: If you ran all possible branches in parallel, how long would it take before all branches completed?
The Size of the Tree
From NTMs to TMs

- **Theorem**: For any NTM with time complexity $f(n)$, there is a TM with time complexity $2^{O(f(n))}$.

- **It is unknown whether it is possible to do any better than this in the general case.**

- NTMs are capable of exploring multiple options in parallel; this “seems” inherently faster than deterministic computation.
The Complexity Class **NP**

- The complexity class **NP** *(nondeterministic polynomial time)* contains all problems that can be solved in polynomial time by an NTM.

- Formally:

\[
\text{NP} = \{ L \mid \text{There is a nondeterministic TM that decides } L \text{ in polynomial time.} \}
\]

What types of problems are in **NP**?
A Problem in NP

- Does a Sudoku grid have a solution?

- $M = \text{“On input } \langle S \rangle, \text{ an encoding of a Sudoku puzzle:}$$

 - \text{Nondeterministically} guess how to fill in all the squares.
 - \text{Deterministically} check whether the guess is correct.
 - If so, accept; if not, reject.”
A Problem in NP

• Does a Sudoku grid have a solution?
 • \(M = \) “On input \(\langle S \rangle \), an encoding of a Sudoku puzzle:
 - Nondeterministically guess how to fill in all the squares.
 - Deterministically check whether the guess is correct.
 - If so, accept; if not, reject.”

\[
\begin{array}{cccc|cccc}
2 & 5 & 7 & 9 & 6 & 4 & 1 & 8 & 3 \\
4 & 9 & 1 & 8 & 7 & 3 & 6 & 5 & 2 \\
3 & 8 & 6 & 1 & 2 & 5 & 9 & 4 & 7 \\
6 & 4 & 5 & 7 & 3 & 2 & 8 & 1 & 9 \\
7 & 1 & 9 & 5 & 4 & 8 & 3 & 2 & 6 \\
8 & 3 & 2 & 6 & 1 & 9 & 5 & 7 & 4 \\
1 & 6 & 3 & 2 & 5 & 7 & 4 & 9 & 8 \\
5 & 7 & 8 & 4 & 9 & 6 & 2 & 3 & 1 \\
9 & 2 & 4 & 3 & 8 & 1 & 7 & 6 & 5 \\
\end{array}
\]
A Problem in \textbf{NP}

• Does a Sudoku grid have a solution?

• $M =$ “On input $\langle S \rangle$, an encoding of a Sudoku puzzle:
 - \textbf{Nondeterministically} guess how to fill in all the squares.
 - \textbf{Deterministically} check whether the guess is correct.
 - If so, accept; if not, reject.”

For an arbitrary $n^2 \times n^2$ grid:
A Problem in \textbf{NP}

- Does a Sudoku grid have a solution?
 - $M = \text{“On input } \langle S \rangle, \text{ an encoding of a Sudoku puzzle:}\
 - \textbf{Nondeterministically} guess how to fill in all the squares.\
 - \textbf{Deterministically} check whether the guess is correct.\
 - If so, accept; if not, reject.”$

For an arbitrary $n^2 \times n^2$ grid:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
A Problem in NP

• Does a Sudoku grid have a solution?
 • $M = \text{"On input } \langle S \rangle, \text{ an encoding of a Sudoku puzzle:"
 - Nondeterministically guess how to fill in all the squares.
 - Deterministically check whether the guess is correct.
 - If so, accept; if not, reject."

For an arbitrary $n^2 \times n^2$ grid:
Total number of cells in the grid: n^4
A Problem in \text{NP}

• Does a Sudoku grid have a solution?
 • \(M = \) “On input \(\langle S \rangle \), an encoding of a Sudoku puzzle:
 - \textbf{Nondeterministically} guess how to fill in all the squares.
 - \textbf{Deterministically} check whether the guess is correct.
 - If so, accept; if not, reject.”

For an arbitrary \(n^2 \times n^2 \) grid:

Total number of cells in the grid: \(n^4 \)

Total time to fill in the grid:
A Problem in NP

• Does a Sudoku grid have a solution?
 • \(M = \) "On input \(\langle S \rangle \), an encoding of a Sudoku puzzle:
 - **Nondeterministically** guess how to fill in all the squares.
 - **Deterministically** check whether the guess is correct.
 - If so, accept; if not, reject."

For an arbitrary \(n^2 \times n^2 \) grid:
Total number of cells in the grid: \(n^4 \)
Total time to fill in the grid: \(O(n^4) \)
A Problem in NP

• Does a Sudoku grid have a solution?
 • \(M = \) “On input \(\langle S \rangle \), an encoding of a Sudoku puzzle:
 - Non-deterministically guess how to fill in all the squares.
 - Deterministically check whether the guess is correct.
 - If so, accept; if not, reject.”

For an arbitrary \(n^2 \times n^2 \) grid:
Total number of cells in the grid: \(n^4 \)
Total time to fill in the grid: \(O(n^4) \)
Total number of rows, columns, and boxes to check:
A Problem in \textbf{NP}

- Does a Sudoku grid have a solution?
 - \textbf{M} = “On input \langle S \rangle, an encoding of a Sudoku puzzle:
 - \textbf{Nondeterministically} guess how to fill in all the squares.
 - \textbf{Deterministically} check whether the guess is correct.
 - If so, accept; if not, reject.”

For an arbitrary \(n^2 \times n^2 \) grid:
- Total number of cells in the grid: \(n^4 \)
- Total time to fill in the grid: \(O(n^4) \)
- Total number of rows, columns, and boxes to check: \(O(n^2) \)
A Problem in NP

- Does a Sudoku grid have a solution?

 - $M = \text{“On input } \langle S \rangle, \text{ an encoding of a Sudoku puzzle:} $
 - Nondeterministically guess how to fill in all the squares.
 - Deterministically check whether the guess is correct.
 - If so, accept; if not, reject.”

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

For an arbitrary $n^2 \times n^2$ grid:

- Total number of cells in the grid: n^4
- Total time to fill in the grid: $O(n^4)$
- Total number of rows, columns, and boxes to check: $O(n^2)$
- Total time required to check each row/column/box: $O(n^2)$
A Problem in NP

• Does a Sudoku grid have a solution?

 • $M =$ “On input $\langle S \rangle$, an encoding of a Sudoku puzzle:
 - Nondeterministically guess how to fill in all the squares.
 - Deterministically check whether the guess is correct.
 - If so, accept; if not, reject.”

For an arbitrary $n^2 \times n^2$ grid:

Total number of cells in the grid: n^4

Total time to fill in the grid: $O(n^4)$

Total number of rows, columns, and boxes to check: $O(n^2)$

Total time required to check each row/column/box: $O(n^2)$
A Problem in NP

• Does a Sudoku grid have a solution?
 • \(M = \) “On input \(\langle S \rangle \), an encoding of a Sudoku puzzle:
 - **Nondeterministically** guess how to fill in all the squares.
 - **Deterministically** check whether the guess is correct.
 - If so, accept; if not, reject.”

For an arbitrary \(n^2 \times n^2 \) grid:
Total number of cells in the grid: \(n^4 \)
Total time to fill in the grid: \(O(n^4) \)
Total number of rows, columns, and boxes to check: \(O(n^2) \)
Total time required to check each row/column/box: \(O(n^2) \)
Total runtime: \(O(n^4) \)
A Problem in \textbf{NP}

- Does a Sudoku grid have a solution?
 - $M = \text{“On input } \langle S \rangle, \text{ an encoding of a Sudoku puzzle:\n - Nondeterministically guess how to fill in all the squares.\n - Deterministically check whether the guess is correct.\n - If so, accept; if not, reject.”}\

For an arbitrary $n^2 \times n^2$ grid:
- Total number of cells in the grid: n^4
- Total time to fill in the grid: $O(n^4)$
- Total number of rows, columns, and boxes to check: $O(n^2)$
- Total time required to check each row/column/box: $O(n^2)$
- Total runtime: $O(n^4)$

\begin{tabular}{cccc|cccc}
2 & 5 & 7 & 9 & 6 & 4 & 1 & 8 & 3 \\
4 & 9 & 1 & 8 & 7 & 3 & 6 & 5 & 2 \\
3 & 8 & 6 & 1 & 2 & 5 & 9 & 4 & 7 \\
6 & 4 & 5 & 7 & 3 & 2 & 8 & 1 & 9 \\
7 & 1 & 9 & 5 & 4 & 8 & 3 & 2 & 6 \\
8 & 3 & 2 & 6 & 1 & 9 & 5 & 7 & 4 \\
1 & 6 & 3 & 2 & 5 & 7 & 4 & 9 & 8 \\
5 & 7 & 8 & 4 & 9 & 6 & 2 & 3 & 1 \\
9 & 2 & 4 & 3 & 8 & 1 & 7 & 6 & 5 \\
\end{tabular}
A Problem in \textbf{NP}

- A \textbf{graph coloring} is a way of assigning colors to nodes in an undirected graph such that no two nodes joined by an edge have the same color.
 - Applications in compilers, cell phone towers, etc.
- Question: Can graph G be colored with at most k colors?
A Problem in \textbf{NP}

- A \textbf{graph coloring} is a way of assigning colors to nodes in an undirected graph such that no two nodes joined by an edge have the same color.
 - Applications in compilers, cell phone towers, etc.
- Question: Can graph G be colored with at most k colors?
A Problem in \textbf{NP}

• A \textbf{graph coloring} is a way of assigning colors to nodes in an undirected graph such that no two nodes joined by an edge have the same color.
 • Applications in compilers, cell phone towers, etc.
• Question: Can graph G be colored with at most k colors?
• $M =$ “On input $\langle G, k \rangle$:
 • \textbf{Nondeterministically} guess a k-coloring of the nodes of G.
 • \textbf{Deterministically} check whether it is legal.
 • If so, accept; if not, reject.”

\begin{itemize}
\item \textbf{Nondeterministically} guess a k-coloring of the nodes of G.
\item \textbf{Deterministically} check whether it is legal.
\item If so, accept; if not, reject.”
\end{itemize}
Other Problems in \textbf{NP}

- \textbf{Subset sum:}

 Given a set S of natural numbers and a target number n, is there a subset of S that sums to n?

- \textbf{Longest path:}

 - Given a graph G, a pair of nodes u and v, and a number k, is there a simple path from u to v of length at least k?

- \textbf{Job scheduling:}

 - Given a set of jobs J, a number of workers k, and a time limit t, can the k workers, working in parallel complete all jobs in J within time t?
Problems and Languages

- Abstract question: does a Sudoku grid have a solution?
- Formalized as a language:
 \[\text{SUDOKU} = \{ \langle S \rangle \mid S \text{ is a solvable Sudoku grid.} \} \]
- In other words:
 \[S \text{ is solvable iff } \langle S \rangle \in \text{SUDOKU} \]
Problems and Languages

- Abstract question: can a graph be colored with k colors?
- Formalized as a language:

 \[\text{COLOR} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph, } k \in \mathbb{N}, \text{ and } G \text{ is } k\text{-colorable.} \} \]

- In other words:

 \[G \text{ is } k\text{-colorable iff } \langle G, k \rangle \in \text{COLOR} \]
A General Pattern

• The NTMs we have seen so far always follow this pattern:
 • $M = \text{“On input } w:\text{”}$
 - Nondeterministically guess some object.
 - Deterministically check whether this was the right guess.
 - If so, accept; otherwise, reject.”

• Intuition: The NTM is searching for some proof that w belongs to some language L.
 • If $w \in L$, it can guess the proof.
 • If $w \notin L$, it will never guess the proof.
An Intuition for \textbf{NP}

- Intuitively, a language L is in \textbf{NP} iff there is an easy way of proving strings in L actually belong to L.
- If $w \in L$, there is some information that can easily be used to convince someone that $w \in L$.
A Problem in NP
A Problem in NP
A Problem in **NP**

Is there an ascending subsequence of length at least 7?
A Problem in \textbf{NP}

Is there an ascending subsequence of length at least 7?
A Problem in NP

Is there a simple path that goes through every node exactly once?
A Problem in NP

Is there a simple path that goes through every node exactly once?
Another View of \textbf{NP}

- **Theorem:** $L \in \text{NP}$ iff there is a deterministic TM V with the following properties:
 - $w \in L$ iff there is some $c \in \Sigma^*$ such that V accepts $\langle w, c \rangle$.
 - V runs in time polynomial in $|w|$.
Another View of NP

- **Theorem:** $L \in \textbf{NP}$ iff there is a deterministic TM V with the following properties:
 - $w \in L$ iff there is some $c \in \Sigma^*$ such that V accepts $\langle w, c \rangle$.
 - V runs in time polynomial in $|w|$.

- **Intuition:** Think about how you would convince someone what a string w belongs to an NP language L.
 - If $w \in L$, there is some information you can provide to easily convince someone that $w \in L$.
 - If $w \notin L$, then no information you provide can convince someone that $w \in L$.
Another View of \textbf{NP}

- **Theorem:** $L \in \textbf{NP}$ iff there is a *deterministic* TM V with the following properties:
 - $w \in L$ iff there is some $c \in \Sigma^*$ such that V accepts $\langle w, c \rangle$.
 - V runs in time polynomial in $|w|$.

Some terminology:

- A TM V with the above property is called a **polynomial-time verifier for** L.
- The string c is called a **certificate** for w.
- You can think of V as checking the certificate that proves $w \in L$.
An Efficiently Verifiable Puzzle
An Efficiently Verifiable Puzzle
An Efficiently Verifiable Puzzle

Question: Can this lock be opened?
Another View of NP

• **Theorem:** \(L \in \text{NP} \) iff there is a deterministic TM \(V \) with the following properties:

 • \(w \in L \) iff there is some \(c \in \Sigma^* \) such that \(V \) accepts \(\langle w, c \rangle \).

 • \(V \) runs in time polynomial in \(|w| \).

• Important properties of \(V \):

 • If \(V \) accepts \(\langle w, c \rangle \), then we're guaranteed \(w \in L \).

 • If \(V \) does not accept \(\langle w, c \rangle \), then either

 - \(w \in L \), but you gave the wrong \(c \), or

 - \(w \notin L \), so no possible \(c \) will work.
Another View of NP

- **Theorem:** $L \in \text{NP}$ iff there is a deterministic TM V with the following properties:
 - $w \in L$ iff there is some $c \in \Sigma^*$ such that V accepts $\langle w, c \rangle$.
 - V runs in time polynomial in $|w|$.

- Important observations:
 - $\mathcal{L}(V)$ is **not** the language L.
 - L is the set of strings in the language, while $\mathcal{L}(V)$ is a set of strings in the language paired with certificates.
 - V **must** be deterministic.
Another View of NP

Theorem: $L \in \textbf{NP}$ iff there is a deterministic TM V with the following properties:

- $w \in L$ iff there is some $c \in \Sigma^*$ such that V accepts $\langle w, c \rangle$.
- V runs in time polynomial in $|w|$.

Proof sketch:

- If there is a verifier V for L, we can build a poly-time NTM for L by nondeterministically guessing a certificate c, then running V on w.
- If there is a poly-time NTM for L, we can build a verifier for it. The certificate is the sequence of choices the NTM should make, and V checks that this sequence accepts.
A Problem in NP

• Does a Sudoku grid have a solution?
 • M = “On input \(\langle S, A \rangle \), an encoding of a Sudoku puzzle and an alleged solution to it:
 - **Deterministically** check whether \(A \) is a solution to \(S \).
 - If so, accept; if not, reject.”
A Problem in \textbf{NP}

- A \textbf{graph coloring} is a way of assigning colors to nodes in an undirected graph such that no two nodes joined by an edge have the same color.
 - Applications in compilers, cell phone towers, etc.
- Question: Can G be colored with at most k colors?
- $M = \text{``On input } \langle \langle G, k \rangle, C \rangle, \text{ where } C \text{ is an alleged coloring:}$$\begin{itemize}
 - \textbf{Deterministically} check whether C is a legal k-coloring of G.
 - If so, accept; if not, reject."