Arrays
A Different Way to Store Data

- On Monday, we saw the `ArrayList` as a way to store lots of data.
 - Lines of text.
 - US cities!
- Java also supports a concept called the `array` that can used to store lots of data.
Recapping **ArrayList**

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>42</td>
<td>314</td>
<td>271</td>
<td>160</td>
<td>178</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

- An **ArrayList** stores a **sequence** of multiple objects.
 - Can access objects by index by calling `get`.
- All stored objects have the same type.
 - You get to choose the type!
- Must store objects; primitive types not allowed.
- Can grow as long as it needs.
Introducing Arrays

• An array stores a **sequence** of multiple objects.
 • Can access objects by index using square brackets (more on that soon).

• All stored objects have the same type.
 • You get to choose the type!

• Can store *any* type, even primitive types.

• Size is fixed; cannot grow once created.
Default Values in Arrays

- Because arrays have a fixed size, when declaring an array, all values in that array will initially be set to a default value:
 - `int`, `double`, etc. default to 0,
 - `boolean` defaults to `false`, and
 - Objects default to `null`.
Basic Array Operations

- To create a new array, specify the type of the array and the size in the call to `new`:

 \[
 \text{Type}[] \ arr = \text{new} \ Type[\text{size}]
 \]

- To access an element of the array, use the square brackets to choose the index:

 \[
 arr[index]
 \]

- To read the length of an array, you can read the `length` field (without parentheses):

 \[
 arr.length
 \]
Arrays as Parameters

- Arrays are objects, so they are passed by reference.
- The elements of an array can be modified inside of a method.

```java
int[] arr = new int[5];
fillArray(arr);
```
Arrays as Parameters

- Arrays are objects, so they are passed by reference.

- The elements of an array can be modified inside of a method.

```java
int[] arr = new int[5];
private void fillArray(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        arr[i] = i;
    }
}
```
Arrays as Parameters

- Arrays are objects, so they are passed by reference.
- The elements of an array can be modified inside of a method.

```java
int[] arr = new int[5];
fillArray(arr);

private void fillArray(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        arr[i] = i;
    }
}
```
Arrays as Parameters

- Arrays are objects, so they are passed by reference.
- The elements of an array can be modified inside of a method.

```java
int[] arr = new int[5];
fillArray(arr);
```
Why Arrays?

- Arrays are excellent for representing a fixed-size list of **buckets**.
- We can store values in the appropriate bucket by looking up the bucket by index.
How many people need to be in a room before two of them will share a birthday?
The Birthday Paradox

• In a room of 23 people, there is a 50% chance that two of them have the same birthday.

• More generally, if you have an n-sided die, you only need to roll it around $\sqrt{2n}$ times before you have a 50% chance of getting the same outcome twice.

Fun programming exercise: How many people do you need, on average, for three people to share a birthday?
Time-Out for Announcements!
Happy Valentine's Day!
Friday Four Square!
Today at 4:15PM, outside Gates
Assignment 4

- Assignment 4 is due next Wednesday at 3:15PM.

- Recommendations:
 - Complete steps 1 and 2 as soon as possible.
 - Try to get steps 3, 4, and 5 completed by Monday.
 - Finish steps 6 and 7 by Wednesday.

- Questions? Feel free to stop by the LaIR (closed Sunday, but open Monday and Tuesday), email your SL, or ask on QuestionHut.
Hemingway: Computational Editing!

http://www.hemingwayapp.com/
Back to CS106A!
Sound Processing
The Physics of Sound

- Sound is a wave that propagates through the air.
- The **frequency** of the wave is how closely packed together the peaks are.
 - Corresponds to **pitch**.
- The **amplitude** of the wave is how tall the peaks are.
 - Corresponds to **loudness**.
Representing Sound

- The computer can represent a sound by storing the sound wave.
Representing Sound

- The computer can represent a sound by storing the sound wave.
Representing Sound

• The computer can represent a sound by storing the sound wave.

• Unfortunately, the wave is continuous, so the computer cannot store it completely.
Representing Sound

- The computer can represent a sound by storing the sound wave.

- Unfortunately, the wave is continuous, so the computer cannot store it completely.

- **Idea:** Sample points from the sound wave and store those instead.
Representing Sound

• The computer can represent a sound by storing the sound wave.

![Sound Wave Diagram]

• Unfortunately, the wave is continuous, so the computer cannot store it completely.

• **Idea:** Sample points from the sound wave and store those instead.
Representing Sound

- The computer can represent a sound by storing the sound wave.

- Unfortunately, the wave is continuous, so the computer cannot store it completely.

- **Idea:** Sample points from the sound wave and store those instead.
Representing Sound

- The computer can represent a sound by storing the sound wave.

- Unfortunately, the wave is continuous, so the computer cannot store it completely.

- **Idea:** Sample points from the sound wave and store those instead.
Representing Sound

- The computer can represent a sound by storing the sound wave.
- Unfortunately, the wave is continuous, so the computer cannot store it completely.
- **Idea:** Sample points from the sound wave and store those instead.
The Sampling Rate

- The **sampling rate** of a sound clip is the frequency at which the wave's intensity is recorded.
 - Measured in hertz (Hz).
- Example: If sampling rate is 44,100Hz, there are 44,100 samples per second.
- High sampling rate makes for better sound.
- Low sampling rate uses less storage space.
Frequency and Wavelength

- Typically, tones are specified as frequencies (number of wavelengths per second).

- When manipulating sound, it is easier to use the **wavelength** (the number of sound samples corresponding to one complete wave).

Conversion formula:

$$ \text{wavelength} = \frac{\text{sampling rate}}{\text{frequency}} $$
Generating Sound

- Today, we'll use Princeton's `StdAudio` class to play sounds.
- Each sound clip is represented as a `double[]`, where each entry is between -1 and +1.
- We can play the sound by calling `StdAudio.play(soundClip)`.
Square Waves

- A **square wave** is a simple wave that alternate between on and off at a predictable rate.

- We can generate a square wave at a given frequency as follows:
 - Compute the wavelength.
 - Fill in the array by writing +1 if we're in the first half of a wave and -1 if we're in the second half.
Sine Waves

- A **sine wave** is a simple wave that humans perceive as a pure tone.

- To generate a sine wave, we can do the following:
 - Compute the wavelength.
 - For each array index, figure out where in the wave we are and compute the sine of that value.