Recursive Backtracking

Solving a Maze

A journey of a thousand miles begins with a single step.
—Lao Tzu, 6th century B.C.E.

- The example most often used to illustrate recursive backtracking is the problem of solving a maze, which has a long history in its own right.
- The most famous maze in history is the labyrinth of Daedalus in Greek mythology where Theseus slays the Minotaur.
- There are passing references to this story in Homer, but the best known account comes from Ovid in Metamorphoses.

The Right-Hand Rule

- The most widely known strategy for solving a maze is called the right-hand rule, in which you put your right hand on the wall and keep it there until you find an exit.
- If Theseus applies the right-hand rule in this maze, the solution path looks like this.

Unfortunately, the right-hand rule doesn’t work if there are loops in the maze that surround either the starting position or the goal. In this maze, the right-hand rule sends Theseus into an infinite loop.

A Recursive View of Mazes

- It is also possible to solve a maze recursively. Before you can do so, however, you have to find the right recursive insight.
- Consider the maze shown at the right. How can Theseus transform the problem into one of solving a simpler maze?
- The insight you need is that a maze is solvable only if it is possible to solve one of the simpler mazes that results from shifting the starting location to an adjacent square and taking the current square out of the maze completely.

A Recursive View of Mazes

- Thus, the original maze is solvable only if one of the three mazes at the bottom of this slide is solvable.
- Each of these mazes is “simpler” because it contains fewer squares.
- The simple cases are:
 - Theseus is outside the maze
 - There are no directions left to try
Enumerated Types in C++

- It is often convenient to define new types in which the possible values are chosen from a small set of possibilities. Such types are called **enumerated types**.
- In C++, you define an enumerated type like this:

  ```cpp
  enum name { list of element names };
  ```

- The code for the maze program uses `enum` to define a new type consisting of the four compass points, as follows:

  ```cpp
  enum Direction {
    NORTH, EAST, SOUTH, WEST
  };
  ```

- You can then declare a variable of type `Direction` and use it along with the constants `NORTH`, `EAST`, `SOUTH`, and `WEST`.

The Maze Class

```cpp
class Maze {
public:
  Maze(std::string filename);
  Maze(std::string filename, GWindow & gw);

  Point getStartPosition();
  bool isOutside(Point pt);
  bool wallExists(Point pt, Direction dir);
  void markSquare(Point pt);
  void unmarkSquare(Point pt);
  bool isMarked(Point pt);

private:
};
```

The solveMaze Function

```cpp
bool solveMaze(Maze & maze, Point start) {
  if (maze.isOutside(start)) return true;
  if (maze.isMarked(start)) return false;
  maze.markSquare(start);
  for (Direction dir = NORTH; dir <= WEST; dir++) {
    if (!maze.wallExists(start, dir)) {
      if (solveMaze(maze, adjacentPoint(start, dir))) {
        return true;
      }
    }
  }
  maze.unmarkSquare(start);
  return false;
}
Reflections on the Maze Problem

- The `solveMaze` program is a useful example of how to search all paths that stem from a branching series of choices. At each square, the `solveMaze` program calls itself recursively to find a solution from one step further along the path.
- To give yourself a better sense of why recursion is important in this problem, think for a minute or two about what it buys you and why it would be difficult to solve this problem iteratively.
- In particular, how would you answer the following questions:
  - What information does the algorithm need to remember as it proceeds with the solution, particularly about the options it has already tried?
  - In the recursive solution, where is this information kept?
  - How might you keep track of this information otherwise?

Each Frame Remembers One Choice

Consider a Specific Example

- Suppose that the program has reached the following position:

Recombination and Concurrency

- The recursive decomposition of a maze generates a series of independent submazes; the goal is to solve any one of them.
- If you had a multiprocessor computer, you could try to solve each of these submazes in parallel. This strategy is analogous to cloning yourself at each intersection and sending one clone down each path.

- Is this parallel strategy more efficient?

The P = NP Question

- The question of whether a parallel solution is fundamentally faster than a sequential one is related to the biggest open problem in computer science, for which there is a $1M prize.

Exercise: Keeping Track of the Path

- As described in exercise 3 on page 418, it is possible to build a better version of `solveMaze` so that it keeps track of the solution path as the computation proceeds.
- Write a new function

  ```
 bool findSolutionPath(Maze & maze, Point start, Vector<Point> & path);
  ```

  that records the solution path in a vector of `Point` values passed as a reference parameter. The `findSolutionPath` function should return a Boolean value indicating whether the maze is solvable, just as `solveMaze` does.