Lecture 9
Time-domain properties of convolution systems

• impulse response
• step response
• fading memory
• DC gain
• peak gain
• stability
Impulse response

if \(u = \delta \) we have

\[
y(t) = \int_{0-}^{t} h(t - \tau)u(\tau) \, d\tau = h(t)
\]

so \(h \) is the output (response) when \(u = \delta \) (hence the name impulse response)

impulse response testing:
- apply impulse input and record resulting output \((h)\)
- now you can predict output for any input signal
- practical problem: linear model often fails for very large input signals
Step response

the (unit) step response is the output when the input is a unit step:

\[s(t) = \int_{0}^{t} h(\tau) \, d\tau \]

(symbol \(s \) clashes with frequency variable, but usually this doesn't cause any harm)

relation with impulse response: \(s(t) \) is the integral of \(h \), so

\[h(t) = s'(t) \]

step response testing:

- apply unit step to input and record output (\(s \))
- the impulse response is \(h(t) = s'(t) \), so now you can predict output for any input signal
- widely used

Time-domain properties of convolution systems
Fading memory

we say the convolution system has *fading memory* if \(h(\tau) \to 0 \) as \(\tau \to \infty \)

• means current output \(y(t) \) depends less and less on \(u(t - \tau) \) as \(\tau \) gets large (\(i.e., \) the remote past input)

• if \(h(\tau) = 0 \) for \(\tau > T \), then system has *finite memory*: \(y(t) \) depends only on \(u(\tau) \) for \(t - T \leq \tau \leq t \)

if \(H \) is rational, fading memory means poles of \(H \) are in left halfplane

(poles in right halfplane or on the imaginary axis give terms in \(h \) that don’t decay to zero)
DC gain

the DC (direct current) or static gain of a convolution system is

$$H(0) = \int_{0}^{\infty} h(\tau) \ d\tau$$

(if finite, i.e., if $s = 0$ is in ROC of H)

in terms of step response:

$$H(0) = \lim_{t \to \infty} s(t)$$

interpretation: if u is constant, then for large t,

$$y(t) = u \int_{0}^{t} h(\tau) \ d\tau \approx H(0)u$$

so $H(0)$ gives the gain for static (constant) signals
Vehicle suspension example

transfer function from road to vehicle height (page 7-7):

\[H(s) = \frac{bs + k}{ms^2 + bs + k} \]

- for \(m > 0, b > 0, k > 0 \) poles are in LHP, hence system has fading memory
- DC gain: \(H(0) = 1 \) (obvious!)

step response gives vehicle height after going over unit high curb at \(t = 0 \)
impulse response and step response for $k = 1$, $b = 0.5$, $m = 1$

- poles are $-0.25 \pm j 0.97$ (underdamped)
- step response ‘overshoots’ about 50%; settles at one in about 20sec
impulse response and step response for $k = 1, b = 2, m = 1$

- repeated pole at -1 (critical damping)
- about 15% overshoot; step response settles in about 5 sec
Example

wire modeled as 3 RC segments:

(Except for values, could model interconnect wire in IC)

(after a lot of algebra) we find

\[H(s) = \frac{1}{s^3 + 5s^2 + 6s + 1} \]

• poles are \(-3.247, -1.555, -0.198\)

• DC gain is \(H(0) = 1\) (again, obvious)
step response gives v_{out} when v_{in} is unit step (as in $0 \rightarrow 1$ logic transition)

wire delays transition about 20sec or so
(Peak) gain

\[y(t) = \int_0^t h(\tau) u(t - \tau) \, d\tau \]

the peak values of the input & output signals as

\[\text{peak}(y) = \max_{t \geq 0} |y(t)|, \quad \text{peak}(u) = \max_{t \geq 0} |u(t)| \]

question: how large can \(\frac{\text{peak}(y)}{\text{peak}(u)} \) be?

answer is given by the *peak gain* of the system, defined as

\[\alpha = \max_{u \neq 0} \frac{\text{peak}(y)}{\text{peak}(u)} = \int_0^\infty |h(\tau)| \, d\tau \]

\(i.e., \) for any signal \(u \) we have \(\text{peak}(y) \leq \alpha \text{ peak}(u) \) and there are signals where equality holds
for any t we have

$$|y(t)| = \left| \int_0^t h(\tau)u(t - \tau) \, d\tau \right|$$

$$\leq \int_0^t |h(\tau)| \, |u(t - \tau)| \, d\tau$$

$$\leq \text{peak}(u) \int_0^t |h(\tau)| \, d\tau$$

$$\leq \text{peak}(u) \int_0^\infty |h(\tau)| \, d\tau$$

which shows that $\text{peak}(y) \leq \alpha \text{peak}(u)$
conversely, we can find an input signal with

$$\frac{\text{peak}(y)}{\text{peak}(u)} \approx \int_0^\infty |h(\tau)| \, d\tau$$

choose T large and define

$$u(t) = \begin{cases} \text{sign}(h(T - t)) & t \leq T \\ 0 & t > T \end{cases}$$

then $\text{peak}(u) = 1$ and

$$y(T) = \int_0^T h(\tau)\text{sign}(h(\tau)) \, d\tau = \int_0^T |h(\tau)| \, d\tau,$$

for large T this signal satisfies

$$\frac{\text{peak}(y)}{\text{peak}(u)} \approx \int_0^\infty |h(\tau)| \, d\tau$$
example: $H(s) = 1/(s + 1)$, so $h(t) = e^{-t}$

- DC gain is one, *i.e.*, constant signals are amplified by one
- peak gain is $\int_{0}^{\infty} |e^{-t}| \, d\tau = 1$ which is the same as the DC gain

so for this system, peak of the output is no more than the peak of the input

more generally,

- peak gain always at least as big as DC gain since

\[
\int_{0}^{\infty} |h(\tau)| \, d\tau \geq \left| \int_{0}^{\infty} h(\tau) \, d\tau \right| = |H(0)|
\]

- they are equal only when impulse response is always nonnegative (or nonpositive), *i.e.*, step response is monotonic
Stability

A system is *stable* if its peak gain is finite.

Interpretation: bounded inputs give bounded outputs

\[\text{peak}(y) \leq \alpha \text{peak}(u) \]

Also called *bounded-input bounded-output stability* (to distinguish from other definitions of stability).

If \(H \) is rational, stability means poles of \(H \) are in left half-plane.