Displacement estimation

- Displacement estimation by block matching
 - Search strategies
 - Subpixel estimation

- Gradient-based displacement estimation ("optical flow")
 - Lukas-Kanade
 - Multi-scale coarse-to-fine
 - Parametric displacement estimation
Where is the defect?

Image $g[x, y]$ (no defect)

Image $f[x, y]$ (w/ defect)
Absolute difference between two images

$|f-g|$ w/o alignment

$|f-g|$ w/ alignment
Displacement estimation by block matching

Measurement window is compared with a shifted array of pixels in the other image, to determine the best match.

Rectangular array of pixels is selected as a measurement window.

Image \(g[x,y] \)

Image \(f[x,y] \)
Displacement estimation by block matching

\[\text{Image } g[x, y] \quad \text{Image } f[x, y] \]

... process repeated for another measurement window position.
Integer pixel shifts

Measurement window is compared with a shifted array of pixels in the other image, to determine the best match.

Rectangular array of pixels is selected as a measurement window.

Image $g[x, y]$

Image $f[x, y]$
Integer pixel shifts

Rectangular array of pixels is selected as a measurement window

Measurement window is compared with a shifted array of pixels in the other image, to determine the best match
Error metric

- **Sum of Squared Differences**

\[
SSD[\Delta_x, \Delta_y] = \sum_{[x,y] \in \text{msmnt window}} \left(f[x,y] - g[x+\Delta_x, y+\Delta_y] \right)^2
\]

- Alternatives: SAD (Sum of Absolute Differences), cross correlation, mutual information . . .
- Robustness against outliers: sum of saturated squared differences, median of squared differences . . .
SSD values resulting from block matching

Estimated displacement
Integer-pixel accuracy

Vertical shift Δ_y
Horizontal shift Δ_x
Block matching: search strategies

Full search

- All possible displacements within the search range are compared.
- Computationally expensive
- Highly regular, parallelizable
Block matching: search strategies

Conjugate direction search

- Alternate search in x and y directions
- Stop when there is no further improvement
Block matching: search strategies

Coarse-to-fine

- Start with coarsely spaced candidate displacements
- Smaller pattern when best match is in the middle
- Stop when desired displacement accuracy is reached
Block matching: search strategies

Diamond search [Li, Zeng, Liou, 1994] [Zhu, Ma, 1997]

- Start with large diamond pattern at [0,0]
- If best match lies in the center of large diamond, proceed with small diamond
- If best match does not lie in the center of large diamond, center large diamond pattern at new best match
Absolute difference between images

w/ integer-pixel alignment w/o alignment
Interpolation of the SSD Minimum

Fit parabola through > 3 points approximately

Sub-pixel Accurate Minimum

Horizontal shift Δx
Paraboloid
- Perfect fit through 6 points
- Approximate fit through > 6 points
Sub-pixel accuracy

- Interpolate pixel raster of the reference image to desired sub-pixel accuracy (e.g., by bi-linear or bi-cubic interpolation)
- Straightforward extension of displacement vector search to fractional accuracy
- Example: half-pixel accurate displacements

\[
\begin{pmatrix}
\Delta_x \\
\Delta_y
\end{pmatrix} = \begin{pmatrix} 4.5 \\ 4.5 \end{pmatrix}
\]
Gradient-based displacement estimation

- Consider a space-time continuous signal $f(x,y,t)$
- **Optical flow**: direction $\begin{bmatrix} \Delta_x(x,y,t) & \Delta_y(x,y,t) & 1 \end{bmatrix}^T$ along which $f(x,y,t)$ is constant
- Derivative in direction of optical flow

$$\begin{pmatrix} \Delta_x(x,y,t) & \Delta_y(x,y,t) & 1 \end{pmatrix} \begin{pmatrix} \frac{\partial f(x,y,t)}{\partial x} & \frac{\partial f(x,y,t)}{\partial y} & \frac{\partial f(x,y,t)}{\partial t} \end{pmatrix}^T = 0$$

$$\frac{\partial f}{\partial x} \Delta_x + \frac{\partial f}{\partial y} \Delta_y = -\frac{\partial f}{\partial t}$$
Illustration of optical flow equation

\[
\frac{\partial f}{\partial x} \Delta_x + \frac{\partial f}{\partial y} \Delta_y = -\frac{\partial f}{\partial t}
\]
Aperture problem

\[\frac{\partial f}{\partial x} \Delta_x + \frac{\partial f}{\partial y} \Delta_y = -\frac{\partial f}{\partial t} \]

- One equation, two unknowns!
- Can only determine component of \(\Delta_x, \Delta_y \) in direction of brightness gradient (normal flow)
- Must combine at least two observations with brightness gradients of different direction
- Consider Barber Pole Illusion
Lukas-Kanade Algorithm

- Assume single displacement within a measurement window W
- Minimize mean-squared error cost function

$$E(\Delta_x, \Delta_y) = \sum_{x,y \in W} \left(f_x(x,y) \Delta_x + f_y(x,y) \Delta_y + f_t(x,y) \right)^2$$

\[
\frac{\partial}{\partial \Delta_x} E(\Delta_x, \Delta_y) = \sum_{x,y \in W} 2 f_x(x,y) \left(f_x \Delta_x + f_y \Delta_y + f_t \right) = 0
\]
\[
\frac{\partial}{\partial \Delta_y} E(\Delta_x, \Delta_y) = \sum_{x,y \in W} 2 f_y(x,y) \left(f_x \Delta_x + f_y \Delta_y + f_t \right) = 0
\]

- Solution

$$
\begin{pmatrix}
\sum_{x,y \in W} f_x^2 & \sum_{x,y \in W} f_x f_y \\
\sum_{x,y \in W} f_x f_y & \sum_{x,y \in W} f_y^2
\end{pmatrix}
\begin{pmatrix}
\Delta_x \\
\Delta_y
\end{pmatrix}
= -
\begin{pmatrix}
\sum_{x,y \in W} f_x f_t \\
\sum_{x,y \in W} f_y f_t
\end{pmatrix}
$$

$f_x(x,y)$ – horizontal image gradient
$f_y(x,y)$ – vertical image gradient
$f_t(x,y)$ – temporal image gradient
Lucas-Kanade Algorithm (cont.)

- Structure matrix M must be inverted to obtain Δ_x, Δ_y
- M can be singular
 - If all gradient vectors are zero (flat area of image)
 - If all gradient vectors point in the same direction (aperture problem)
 - Measurement window W comprises only one pixel
- Not singular for corners, blobs, textured areas …
- Kanade-Lucas-Tomasi (KLT) tracker
 - Compute eigenvalues λ_1, λ_2 of M
 - Only consider windows, where $\min(\lambda_1, \lambda_2) > \theta$
Sampling issues

- Image gradients must be approximated by pixel differences, assuming a linear signal in a small spatiotemporal neighborhood
- Linearization inaccurate for displacements > 0.5 pixel
 \[\Delta_x, \Delta_y \]
 \[\frac{df}{dx} \Delta_x + \frac{df}{dy} \Delta_y = -\frac{df}{dt} \]
 \[\frac{df}{dx} \Delta_x + \frac{df}{dy} \Delta_y = -\frac{df}{dt} \]
 \[\frac{df}{dx} \Delta_x + \frac{df}{dy} \Delta_y = -\frac{df}{dt} \]
Lucas-Kanade optical flow
Lucas-Kanade optical flow
Lucas-Kanade optical flow
Parametric displacement estimation

- Displacement vector field is represented as
 \[
 \Delta_x(x, y) = a_1 \Delta_{x1}(x, y) + a_2 \Delta_{x2}(x, y) + a_3 \Delta_{x3}(x, y)
 \]
 \[
 \Delta_y(x, y) = b_1 \Delta_{y1}(x, y) + b_2 \Delta_{y2}(x, y) + b_3 \Delta_{y3}(x, y)
 \]

- Optical flow constraint
 \[
 \frac{\partial f}{\partial x} \Delta_x + \frac{\partial f}{\partial y} \Delta_y = -\frac{\partial f}{\partial t}
 \]

- Combination
 \[
 \frac{\partial f}{\partial x} (a_1 \Delta_{x1} + a_2 \Delta_{x2} + a_3 \Delta_{x3}) + \frac{\partial f}{\partial y} (b_1 \Delta_{y1} + b_2 \Delta_{y2} + b_3 \Delta_{y3}) = -\frac{\partial f}{\partial t}
 \]
 yields a system of linear equations:
 \[
 \begin{pmatrix}
 \frac{\partial f}{\partial x} \Delta_{x1}, & \frac{\partial f}{\partial x} \Delta_{x2}, & \frac{\partial f}{\partial x} \Delta_{x3}, & \frac{\partial f}{\partial y} \Delta_{y1}, & \frac{\partial f}{\partial y} \Delta_{y2}, & \frac{\partial f}{\partial y} \Delta_{y3}
 \end{pmatrix}
 \begin{pmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 b_1 \\
 b_2 \\
 b_3
 \end{pmatrix}
 = -\frac{\partial f}{\partial t}
 \]
Parametric model of human head

Rigid motion: 6 d.o.f.
Facial expression: 18 d.o.f.
Facial expression tracking

Input video

Avatar
Facial expression tracking

Input video

Avatar
Facial Expression Tracking

Input video

Avatar