Lecture 12

Building an LED Display
By the End of Lecture, You Should Be Able To:

• Use LEDs in simple circuits

• Use time division multiplexing to control LEDs
 – Control n^2 lights using only $2n$ wires
 – By turning n lights on in n different time slices

• Create a 2-D plane of LEDs that can be multiplexed
 – And be able to stack planes to create a cube
LED Cube

- You are building a 4 x 4 x 4 cube of LEDs

- You can choose
 - Red, Green, Blue, White
 - Or can mix it up

- Two challenges
 - How to control 64 lights?
 - How to build something
 - With 64 elements
 - That is a lot of soldering
 - A little planning will go a long way

- Friday’s lecture will discuss building the cube strategies.
The Control Problem

- Our cube has 64 lights
 - We would like to allow any combinations of lights to be on
 - So you can create any light pattern that you would like
 - If every light is independent
 - Need at least one bit per light (on, off)
 - State of lights is 64 bits (4x4x4 array)

- Our computer only has around 20 digital output pins
 - And 20 is less than 64.
 - Need to communicate 64 bits over 20 pins.

- How are we going to do this?
Optical Persistence

- We can take advantage of the fact that our eyes are “slow”

- If we turn an LED ON and OFF faster than our eyes can “see” then we will perceive a constant light intensity.
 - The flicker fusion rate is around 30Hz
 - Your eye averages the signal

- Electronics takes advantage of the fact that your eyes are slow
 - Creates more outputs than wires
 - Creates analog light output values on digital pins
Basic Approach

• If I have many lights, I don’t need to turn them all on at once
 – I can create different slots in each time period
 • Say I created 8 slots
 – Then I only need to light 64 / 8 lights in each slot

• But how do I get the right lights to light up at the right time?
 – Leverage the diode nature of the LED
LED Wiring Diagram
Where To Put The Resistor?
LED Array Wiring Diagram
Testing Our Understanding

- If we use time division multiplexing to drive the LED array
 - How do you light up the red LEDs?
 - How many time slots?
Driving the LED Cube
BUILDING THE LED CUBE

Watch Mark Horowitz build an LED cube: Tutorial 4 on class website
https://www.youtube.com/watch?v=4u4eAnd1yEk&feature=youtu.be
The Numbers

- You have 64 LEDs
 - Each has 2 wires, generally are soldering two wires together
 - End up with 64+ solder joints

- This is not a huge amount
 - But it is larger than a few
 - And there are not to a well defined structure
 - They are not going to be fixed on a printed wiring board

- You should be thinking about
 - How to minimize the work you need to do
 - How to catch your mistakes early
 - When they are easier to fix, and so you don’t repeat them
Making the Soldering Easier

• Since we need to do the same thing multiple times
 – Need to build each plane
 • And each plane consists of a set of rows

• What can we do to make the task easier?
 – Think about how the lights will connect to each other
 • Is there a way to make the connections easier to solder
 – Before building the cube, test out your ideas
 • Try before committing to a method
 • Optimizing your technique might save you time in the long run
 • If things are not working, think about what is going wrong
 – Why isn’t it working, and what can you do to fix that problem
Repetition Is Good

• While doing the same thing multiple times gets boring
 – That is not all bad

• Boring means you don’t need to think very much to do the job
 – At Stanford, that can be relaxing ;-)

• It also means that your design will be modular
 – You are building the same part multiple times
 • So you can use one jig to test all the modules
 – Can even build a jig to help you do the soldering
 • Soldering things hanging in space is hard
 – You don’t have enough hands
For the LED Array

- Want the ‘+’ to run horizontally
 - And the ‘-’ to run vertically

- Bend the leads of each LED 90° to each other
 - And make them different heights!
Building a Row
Adding Next Row
Final Array
Cube is a Little More Complex

• But actually is it not much worse

• Start with the LED plane and build 4, 4x4 planes
 − Each plane would be straight forward to make

• Now the question is how to connect them together?
Currently You Have This

- 4, 4x4 planes

- Would like to create an 8x8 array

- Create 2, 4x8 arrays by connecting the anodes of 1st & 2nd planes together and the 3rd and 4th anodes together
Connecting Anodes of Planes

• To connect the 4 anode wires of the two planes
 – On the top plane bend the 4 LED + leads on the left down
 • But leave a little room to bypass the LED
 – On the 2nd plane, bend the 4 LED + leads on the left up
 • But leave a little room to bypass the LED and miss the – wire
 – Solder these 4 wires to each other

• Your two planes will be floppy
 – Solder two wires on the left, for mechanical support
Place 1st Plane in Pliers to Hold
Add 2nd Plane
2 Plane Module
Now You Have This

- 2, 4x8 planes that are folded around the y axis

- Create an 8x8 array by connecting the – wires of 1st & 2nd planes to the – wires of the 4th and 3rd planes
Final Cube
Completed Cube
By the End of Lecture, You Should Be Able To:

• Use LEDs in simple circuits

• Use time division multiplexing to control LEDs
 – Control n^2 lights using only $2n$ wires
 – By turning n lights on in n different time slices

• Create a 2-D plane of LEDs that can be multiplexed
 – And be able to stack planes to create a cube
LED Cube Driver
So We Soldered Our Cube …

- We have an 8 x 8 array
 - Logically looks like:
 - Physically it is different

- Need to drive it
 - To light up the lights

- For independent light control
 - Either only one + wire high
 - Or only one - wire low
 - Max of 8 LEDs on at once
The LED Driver Current Requirements

• Look at current requirements
 – - wires drive 8 LEDs; + wires drive 8 LEDs
 – But we decided to drive only + wire high at a time

• So each - wire can drive only one LED that is on at any time
 – But each + wire can drive 8 LEDs that are on at on time

• How much current will each LED take?
 – Series resistance is about 100Ω total
 • 82Ω from explicit resistor, 20-30Ω from pin
 – Voltage drop across this resistance is 2-3V
 – Current is approximately 20-30mA (for green/blue or red)
Arduino Current Limitations

- If you read Arduino specs
 - Each pin can drive 40mA
 - Whole chip should drive less than 200mA

- Pin current is limited by MOS devices on the chip
 - Have measured 20 ohm
 - If you measure the current it is less ~60mA
 - This makes sense. If the spec is 40mA
 - That is the guaranteed value. Nominally it will be higher
Max Chip Current

- Why is there a max total chip current?
 - When current flows out of pin
 - It must flow in from somewhere
 - \(\sum i = 0 \)
 - Somewhere is the Gnd pin
 - Or Vdd
- The current must flow through some small wires
 - Called bonding wires, which connect chip to package
 - Too much current and these wires become fuses
 - Poof, and it is gone
 - Very conservatively spec’d. Probably 400mA is ok
 - But remember Poof is possible and permanent
How to Drive Your LEDs

• Arduino can drive the - wires directly
 – Use 82Ω series resistor to limit current
 – Current will be 20mA for blue/green LEDs, 30mA for red

• Total Arduino current will be around 240mA max
 – Above spec, but will be ok

• + wire driver will need to supply 160-240mA
 – Arduino can’t drive that current
 – Will need an external driver for that
 – What type or driver do we need?
Driving the + Wires of the Cube

• Want to build as little as possible
 – Need to build 8 of them

• What do we need?
 – Need to connect to Vdd
 – Need to disconnect from Vdd
 – Don’t need to drive it to Gnd
Where To Put The Resistor and Transistor?