1 A high-priority maxim

In ‘Logic and conversation’, Grice suggests that one of the maxims falling under the Cooperative Principle might be more important (more “urgent”) than the others. Which maxim is this, and why might it have this status? (2–3 sentence response.)

2 Needlessly wordy

Suppose two sentences S_1 and S_2 each have precisely the same meaning ($[[S_1]] = [[S_2]]$, in our notation), but S_1 is significantly longer than S_2. A speaker who uses S_1 is therefore guaranteed to violate one of the maxims. Which maxim, and why? (1–2 sentence response.)

3 Pragmatically enriching indirect answers

In the following small dialogue, there is uncertainty about the extent to which the answer is intended to resolve the question posed:

A: Is Deirdre in her office?
B: Deirdre is sick today.

Identify a piece of contextual information, shared between A and B, that would lead A to conclude that B intended a “yes” answer, and identify another piece of such contextual information that would lead A to conclude that B intended a “no” answer. I’m assuming these pieces of contextual information can be described in a sentence or two each.

4 The pragmatics of universal quantification

On the theory of determiners we’ve developed so far, sentences involving the universal quantifier every (e.g., every student danced) do not entail the corresponding some statements (e.g., some student danced). First, articulate why this entailment fails to hold in general, using our semantics for every and some. Second, use the Gricean maxim of quantity to explain why saying a sentence like every A B would be disfavored where some A B was known to be false.
5 Quantifiers, entailments, and implicatures [2 points]

A classic Gricean argument is that few is semantically consistent with no but tends to exclude it pragmatically because of a quality–quantity interaction. (If the speaker of few knew that the corresponding no statement was true [quality], she would have said so, because it is more informative [quantity].)

This argument depends on the semantic claim that no entails few. Your task is to support this claim, assuming the following set-theoretic meanings (your argument will carry over immediately to the functional view):

- \([\text{few}] = \{ (A, B) : \frac{|A \cap B|}{|A|} < k \}\) (where 0 < k < 1; k is a pragmatic free variable)
- \([\text{no}] = \{ (A, B) : A \cap B = \emptyset \}\)

In this context, a determiner meaning \(D_1\) entails another determiner \(D_2\) if and only if \([D_1] \subseteq [D_2]\). Thus, your task is simply to show that \([\text{no}] \subseteq [\text{few}]\).