Solutions

Unless otherwise indicated, you can use results covered in lecture or homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

Q.1
Q.2
Q.3
Q.4
T/25

Name (Print Clearly): __________________________

I understand and accept the provisions of the honor code (Signed) ______________________
1(a) (3 points) (i) Give the definition of “U is open” and “C is closed” as applied to subsets $U, C \subset \mathbb{R}^n$, and (ii) give the proof that if C_1, C_2 are closed then $C_1 \cup C_2$ is closed, and if U_1, U_2 are open then $U_1 \cap U_2$ is open.

Note: In (ii), at least one of the two statements should be shown directly from the definition. You may either show the other directly, or by using an appropriate theorem.

Solution: (i) U open means that for each $y \in U$ there is a $\rho > 0$ such that $B_\rho(y) \subset U$. C closed means that C contains all its limit points. That is if $\{x_k\}$ is a convergent sequence in \mathbb{R}^n and $x_k \in C$ for each k, then $\lim x_k \in C$.

(ii) If U_1, U_2 are open and $a \in U_1 \cap U_2$ then $a \in U_j$, $j = 1, 2$, so by the openness of U_j there is $\rho_j > 0$ such that $B_{\rho_j}(a) \subset U_j$. Let $\rho = \min(\rho_1, \rho_2) > 0$, so $B_\rho(a) \subset B_{\rho_j}(a) \subset U_j$ for $j = 1, 2$, and thus $B_\rho(a) \subset U_1 \cap U_2$, proving the openness of $U_1 \cap U_2$.

This implies that if C_1, C_2 are closed then $C_1 \cup C_2$ is closed, since by the theorem in lecture, a set is closed iff its complement is open. Thus, $(C_1 \cup C_2)^c = C_1^c \cap C_2^c$ shows that $(C_1 \cup C_2)^c$ is open by what we have shown, and thus $C_1 \cup C_2$ closed by the just stated theorem from lecture.

Alternatively, suppose $\{x_k\}$ is a sequence in $C_1 \cup C_2$ converging to some $x \in \mathbb{R}^n$. Then for each k, $x_k \in C_1$ or $x_k \in C_2$, so with K_j, $j = 1, 2$, the set of k such that $x_k \in C_j$, $K_1 \cup K_2 = \mathbb{N}^+$, and thus one of K_j is infinite. Let i be such that K_i is infinite, and consider the subsequence $\{x_{k_m}\}_{m=1}^\infty$ of $\{x_k\}$ containing exactly the elements of $\{x_k\}$ with $k \in K_i$. Then $\{x_{k_m}\}_{m=1}^\infty$ is a sequence in C_i, converges to x (being a subsequence of sequence so converging), so by the closedness of C_i, $x \in C_i$, and thus $x \in C_1 \cup C_2$, showing the claimed closedness.

1(b) (3 points) (i) For $U \subset \mathbb{R}^n$ open, give the definition of $f : U \to \mathbb{R}^k$ being continuous, and (ii) show that if $f : U \to V \subset \mathbb{R}^k$ is continuous, $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^k$ are open, $g : V \to \mathbb{R}^m$ is continuous then $g \circ f$ defined by $(g \circ f)(x) = g(f(x))$, is continuous.

Solution: (i) f is continuous if for all $a \in U$ and $\varepsilon > 0$ there exists $\delta > 0$ such that $\|x - a\| < \delta$, $x \in U$ implies $\|f(x) - f(a)\| < \varepsilon$.

(ii) Suppose f, g are as stated, and let $a \in U$, so $f(a) \in V$. Let $\varepsilon > 0$. By the continuity of g there exists $\delta' > 0$ such that $\|y - f(a)\| < \delta'$, $y \in V$ implies $\|g(y) - g(f(a))\| < \varepsilon$. But then by the definition of continuity of f, applied with δ', there exists $\delta > 0$ such that $\|x - a\| < \delta$, $x \in U$ implies $\|f(x) - f(a)\| < \delta'$. Thus, $\|x - a\| < \delta$, $x \in U$ implies $\|f(x) - f(a)\| < \delta'$ which in turn implies $\|g(f(x)) - g(f(a))\| < \varepsilon$, showing the claimed continuity.
2(a) (3 points.) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by \(f(x, y) = \frac{1}{4}(x^7 + y^7) - 64x - y \). Find all the critical points (i.e. points where \(\nabla_{\mathbb{R}^2} f = 0 \)) of \(f \), and discuss whether these points are local max/min for \(f \). Justify all claims either by proof or by using a theorem from lecture.

Solution: \(Df(x, y) = (x^6 - 64, y^6 - 1) \), so there are 4 critical points \((2, 1), (-2, -1), (2, -1), (-2, 1)\). The Hessian matrix at \((x, y)\) is \[\begin{pmatrix} 6x^5 & 0 \\ 0 & 6y^5 \end{pmatrix} \] which gives positive definite quadratic form \(6 \cdot 32 \lambda^2 + 6 \mu^2 \) at \((2, 1)\) and negative definite quadratic form \(-6 \cdot 32 \lambda^2 - 6 \mu^2 \) at \((-2, -1)\). Hence by the Second Derivative test from lecture (applicable because \(f \) is \(C^2 \), in fact \(C^\infty \)), we see that \(f \) has a local minimum at \((2, 1)\) and a local maximum at \((-2, -1)\). At the point \((-2, 1)\) the Hessian quadratic form is \(-6 \cdot 32 \lambda^2 + 6 \mu^2 \) which changes sign (has positive max on \(S^1 \) and a negative min on \(S^1 \)), and hence, as we proved in lecture/section, it is neither a local max nor a local min for \(f \). (Concretely, \(f(x, 1) \) has a local max at \(-2\), \(f(-2, y) \) has a local min at \(y = 1 \).) Similarly the point \((2, -1)\) is neither a local max nor a local min for \(f \).

2(b) (3 points.) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by \(f(x, y) = 1 + 3x^2 + y^6 + 4(x - 1)^4 \). Show that \(f \) is bounded below and it attains its minimum.

Note: you do not need to find where the minimum is attained. Hint: show first that if \(|x| \geq 3\) or \(|y| \geq 2\) then \(f(x, y) \geq 65 \). What is \(f(0, 0) \)?

Solution: Since all terms in the expression for \(f \) are squares of real numbers, we have \(f(x, y) \geq 1 \), so \(f \) is bounded below. Moreover, if \(|x| \geq 3\) then \(|x - 1| \geq |x| - 1 \geq 2\) (since \(|x| \leq |x - 1| + 1\) by the triangle inequality) so \(f(x, y) \geq 1 + 4 \cdot 16 = 65 \) (using that all other terms are \(\geq 0 \)). If \(|y| \geq 2\) then \(f(x, y) \geq 1 + 64 = 65 \) (again using that all other terms are \(\geq 0 \)). Thus, if \(|x| \geq 3\) or \(|y| \geq 2\) then \(f(x, y) \geq 65 \). On the other hand \(R = \{(x, y) : |x| \leq 3, |y| \leq 2\} \) is a closed and bounded subset of \(\mathbb{R}^2 \); it is bounded directly from the definition and closed because it is the intersection of the inverse images of the closed intervals \([-3, 3]\) resp. \([-2, 2]\) under the continuous maps \(g(x, y) = x \) and \(h(x, y) = y \), i.e. it is the intersection of two closed sets, thus closed. Correspondingly, by the theorem in lecture, \(R = \{(x, y) : |x| \leq 3, |y| \leq 2\} \) is compact, and as \(f \) is continuous, \(f|_R \) attains its minimum there, say at the point \((x_0, y_0)\). Note that as \(f(0, 0) = 1 + 4 = 5 \) and \((0, 0) \in R \), the minimum value \(f(x_0, y_0) \leq 5 < 65 \). Since \(f(x, y) \geq 65 \) when \((x, y) \notin R \), we conclude that the minimum of \(f \) over \(\mathbb{R}^2 \) (and not just \(R! \)) is indeed attained at \((x_0, y_0)\).
3(a) (3 points) Consider the power series $\sum_{n=1}^\infty \frac{x^n}{n}$. (i) Find its radius of convergence ρ. (ii) Let $f(x) = \sum_{n=1}^\infty \frac{x^n}{n}$, $|x| < \rho$. Show that $f'(x) = \frac{1}{1-x}$ for $|x| < \rho$.

Solution: (i) First, recall that the series $\sum_{n=1}^\infty \frac{1}{n}$ diverges, and this is just the power series evaluated at 1, so as a power series converges absolutely in $(-\rho, \rho)$, if ρ is its radius of convergence, we must have $\rho \leq 1$. On the other hand, $|x^n/n| \leq |x^n|$, and $\sum_{n=1}^\infty |x^n|$ converges for x with $|x| < 1$ (this being a geometric series with common ratio $|x|$), by the comparison theorem for series with non-negative terms (i.e. the convergence theorem for increasing sequences which are bounded above), $\sum_{n=1}^\infty |x^n/n|$ converges for $|x| < 1$, thus (absolute convergence implies convergence) $\sum_{n=1}^\infty \frac{x^n}{n}$ converges for $|x| < 1$. Hence the radius of convergence is ≥ 1, so in summary $\rho = 1$.

(ii) By the theorem from class, a power series is infinitely differentiable within its radius of convergence with derivatives given by term-by-term differentiation. Hence, for $|x| < 1$, $f'(x)$ exists and is $f'(x) = \sum_{n=1}^\infty \frac{x^{n-1}}{n} = \sum_{n=0}^\infty x^n = \frac{1}{1-x}$, where the last equality comes from the sum of a convergent geometric series.

3(b) (3 points): (i) A sequence of functions $f_n : [a, b] \to \mathbb{R}$ converges uniformly to a function $f : [a, b] \to \mathbb{R}$ if for all $\varepsilon > 0$ there is $N \in \mathbb{N}^+$ such that $n \geq N$ implies that $\sup \{|f_n(x) - f(x)| : x \in [a, b]\} < \varepsilon$. Show that if f_n are continuous and $f_n \to f$ uniformly then f is continuous.

Hint: continuity of f at x requires given $x \in [a, b]$ and $\varepsilon > 0$ finding $\delta > 0$ with certain properties. Express $|f(y) - f(x)|$ in terms of $|f_n(y) - f_n(x)|$ and other expressions, and choose n well.

Solution: Suppose f_n continuous for all n, f_n converges to f uniformly. We need to show that f is continuous. So let $x \in [a, b]$ and $\varepsilon > 0$. For any $y \in [a, b]$ and any n we have

$$|f(y) - f(x)| \leq |f(y) - f_n(y)| + |f_n(y) - f_n(x)| + |f_n(x) - f(x)|$$

by the triangle inequality. So first choose n such that the first and the last terms are guaranteed to be small, namely choose n such that $\sup \{|f_n(x) - f(x)| : x \in [a, b]\} < \varepsilon/3$, we can do this due to the uniform convergence of f_n to f. Then the first and last terms are $< \varepsilon/3$. Now for this n, using the continuity of f_n at x, we get $\delta > 0$ such that $|y - x| < \delta$, $y \in [a, b]$ implies $|f_n(y) - f_n(x)| < \varepsilon/3$. Thus, $|y - x| < \delta$, $y \in [a, b]$ implies $|f(y) - f(x)| < \varepsilon$, which proves that f is continuous, completing the proof.
4(a) (3 points.) (i) Give the definition of a curve \(\gamma : [a, b] \to \mathbb{R}^n \) having finite length, and for curves of finite length state the definition of the “length of a curve \(\gamma : [a, b] \to \mathbb{R}^n \),” (ii) Show that if \(\gamma : [a, b] \to \mathbb{R}^n \) has the property that there is a constant \(K > 0 \) such that \(\|\gamma(t) - \gamma(t')\| \leq K|t - t'| \) for \(t, t' \in [a, b] \) (one says \(\gamma \) is Lipschitz) then \(\gamma \) has finite length.

Solution: (i) A curve (a continuous map) \(\gamma : [a, b] \to \mathbb{R}^n \) has finite length if the set \(\{\ell(\gamma, \mathcal{P}) : \mathcal{P} \text{ partition of } [a, b]\} \) is bounded above, in which case \(\ell(\gamma) \) is the supremum of this set. Here \(\ell(\gamma, \mathcal{P}) = \sum_{j=1}^{N} \|\gamma(j) - \gamma(j-1)\| \), where \(\mathcal{P} \) is the partition \(a = t_0 < t_1 < \ldots < t_N = b \).

(ii) Suppose \(\gamma \) is as above. For any partition \(\mathcal{P} \) of \([a, b]\), say \(a = t_0 < t_1 < \ldots < t_N = b \), we have

\[
\ell(\gamma, \mathcal{P}) = \sum_{j=1}^{N} \|\gamma(j) - \gamma(j-1)\| \leq \sum_{j=1}^{N} K|t_j - t_{j-1}| = \sum_{j=1}^{N} K(t_j - t_{j-1}) = K(t_N - t_0) = K(b - a).
\]

Thus \(\{\ell(\gamma, \mathcal{P}) : \mathcal{P} \text{ partition of } [a, b]\} \) is bounded above, with \(K(b - a) \) being an upper bound, and correspondingly \(\gamma \) has finite length; in fact \(\ell(\gamma) \leq K(b - a) \).

4(b) (4 points.) (i) Show directly (without using the corollary of the implicit function theorem that we have not proved) that the set \(M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2 + 1 \} \) is a 2-dimensional \(C^1 \) manifold of \(\mathbb{R}^3 \), (ii) Find the tangent space of \(M \) at the point \((1, 1, 1)\), and give a basis for it.

Note: in fact, \(M \) is a \(C^\infty \) submanifold. You may use that \(\sqrt{t} : (0, \infty) \to (0, \infty) \) is \(C^\infty \).

Solution: (i) It is often convenient to use the notation \((x_1, x_2, x_3)\) below. By the equivalent statement to the definition discussed in section, for each point \(a \in M \), we need to find an open set \(V \subset \mathbb{R}^3 \) containing it, a permutation map \(P \), an open subset \(U \) of \(\mathbb{R}^2 \) and a \(C^1 \) map \(g \) such that \(V \cap M = P(G(U)) \), where \(G(x_1, x_2) = (x_1, x_2, g(x_1, x_2)) \). This is equivalent to saying that one of the coordinates \(x, y, z \) has to be expressed as a graph over an open subset \(U \) of the remaining coordinates’ plane. We can write \(M = M_{1,+} \cup M_{1,-} \cup M_{2,+} \cup M_{2,-} = \cup_{j=1,2} \cup \pm M_{j,\pm} \), where \(M_{j,\pm} = \{(x_1, x_2, x_3) \in M : \pm x_j > 0\} \). Indeed, certainly \(M_{j,\pm} \subset M \) for all \(j \) and \(\pm \), and conversely if \((x_1, x_2, x_3) \in M \) then \(x_1^2 + x_2^2 \geq 1 \), so at least one of \(x_1 \) and \(x_2 \) is nonzero, thus either positive or negative, so the point is in one of \(M_{j,\pm} \). Let \(V_{j,\pm} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : \pm x_j > 0\} \); this is open being the inverse image of the open set \((0, \infty)\) under the map \(h_{j,\pm}(x_1, x_2, x_3) = \pm x_j \); then \(M \cap V_{j,\pm} = M_{j,\pm} \). Thus, it suffices to show that \(M_{j,\pm} \) is the image of a permuted graph map. For the sake of definiteness, consider \(M_{1,+} \); all others are similar. Points in \(M_{1,+} \) satisfy \(x_1 > 0 \) and \(x_1^2 + x_2^2 = x_3^2 + 1 \), thus \(x_2^2 < x_3^2 + 1 \), i.e. \(x_2 < \sqrt{x_3^2 + 1} \), and \(x_1 = \sqrt{x_3^2 + 1 - x_2^2} \), with all square roots being the non-negative square roots of non-negative reals. Now the set \(U_{1,+} = \{(x_2, x_3) : x_2^2 < x_3^2 + 1 \} \subset \mathbb{R}^2 \) is open, being the inverse image of \((0, \infty)\) under the continuous map \(h_{1,+}(x_2, x_3) = x_2^2 + 1 - x_2^2 \), and \(M_{1,+} \) is the permuted graph of the \(C^\infty \) function \(g_{1,+}(x_2, x_3) = \sqrt{x_3^2 + 1 - x_2^2} \) over \(U_{1,+} \), with the \(C^\infty \) statement due to being the composition of \(C^\infty \) functions, \(\sqrt{\cdot} \) defined over \((0, \infty)\), and a polynomial. This, together with completely analogous considerations for the other \(M_{j,\pm} \) proves that \(M \) is a 2-dimensional \(C^\infty \) submanifold of \(\mathbb{R}^3 \).

(ii) Notice that \((1, 1, 1) \in M_{1,+} \), so by the theorem in lecture the tangent space to \(M \) at \((1, 1, 1)\) is the span of the partial derivatives of the graph map, with the latter being linearly independent and thus forming a basis. Concretely, the permuted graph map is \(G(x_2, x_3) = (\sqrt{x_3^2 + 1 - x_2^2}, x_2, x_3) \), \((x_2, x_3) \in U_{1,+} \), so a basis of the tangent space at \(G(x_2, x_3) \) is given by

\[
(-x_2/\sqrt{x_3^2 + 1 - x_2^2}, 1, 0)^T, (x_3/\sqrt{x_3^2 + 1 - x_2^2}, 0, 1)^T,
\]

i.e. at \((1, 1, 1)\) (corresponding to \(G(1, 1) \)) by \((-1, 1, 0)^T, (1, 0, 1)^T\). Note that these vectors are indeed orthogonal to the gradient of \(f(x_1, x_2, x_3) = x_1^2 + x_2^2 - x_3^2 - 1 \), which is \(\nabla f = (2x_1, 2x_2, -2x_3)^T \), i.e. is \((1, 1, -1)^T\) at \((1, 1, 1)\), thus their span (being 2-dimensional) is exactly the orthocomplement of the span of \(\nabla f \).