
Reading Assignments for This Week

Scan
Levich Chaps 3-5 Pages
Luenberger Chap Pages
Solnik Chaps 1-2 Pages
Blanchard Chap 18 Pages
Eun Chap 4 Pages

Openness in Goods and Financial Markets

CERTIFICATES OF DEPOSIT AS OF JULY 7, 2008

<table>
<thead>
<tr>
<th>Term</th>
<th>Minimum Balance*</th>
<th>Percentage Yield*</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 years</td>
<td>$5,000+</td>
<td>5.00%</td>
<td>4.88%</td>
</tr>
<tr>
<td>4 years</td>
<td>$5,000+</td>
<td>4.25%</td>
<td>4.16%</td>
</tr>
<tr>
<td>3 years</td>
<td>$5,000+</td>
<td>3.50%</td>
<td>3.44%</td>
</tr>
<tr>
<td>2 years</td>
<td>$5,000+</td>
<td>3.40%</td>
<td>3.34%</td>
</tr>
<tr>
<td>18 months</td>
<td>$5,000+</td>
<td>3.75%</td>
<td>3.68%</td>
</tr>
<tr>
<td>12 months</td>
<td>$5,000+</td>
<td>2.75%</td>
<td>2.71%</td>
</tr>
<tr>
<td>9 months Special</td>
<td>$5,000+</td>
<td>3.50%</td>
<td>3.44%</td>
</tr>
<tr>
<td>8 month Liquid</td>
<td>$10,000+</td>
<td>3.25%</td>
<td>3.20%</td>
</tr>
<tr>
<td>6 months</td>
<td>$5,000+</td>
<td>2.65%</td>
<td>2.62%</td>
</tr>
<tr>
<td>3 months</td>
<td>$5,000+</td>
<td>2.60%</td>
<td>2.57%</td>
</tr>
<tr>
<td>30 day Special*</td>
<td>$25,000+</td>
<td>2.50%</td>
<td>2.47%</td>
</tr>
</tbody>
</table>

*The 30-day CD has a minimum opening balance of $25,000.
The 8 month Liquid CD maintains a minimum balance of $10,000 and a maximum opening balance of $500,000.

http://www.fxstreet.com/fundamental/interest-rates-table/

World Interest Rates Table

<table>
<thead>
<tr>
<th>Central Bank</th>
<th>Next Meeting</th>
<th>Last Change</th>
<th>Current Interest Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank of Canada</td>
<td>Jul 15 2008</td>
<td>Apr 22 2008</td>
<td>3%</td>
</tr>
<tr>
<td>Bank of England</td>
<td>Jul 10 2008</td>
<td>Apr 10 2008</td>
<td>9%</td>
</tr>
<tr>
<td>Bank of Japan</td>
<td>Jul 15 2008</td>
<td>Feb 21 2007</td>
<td>0.5%</td>
</tr>
<tr>
<td>European Central Bank</td>
<td>Aug 07 2008</td>
<td>Jul 03 2008</td>
<td>4.25%</td>
</tr>
<tr>
<td>Federal Reserve</td>
<td>Aug 05 2008</td>
<td>Apr 30 2008</td>
<td>2%</td>
</tr>
<tr>
<td>Swiss National Bank</td>
<td>Sep 18 2007</td>
<td>Sep 13 2007</td>
<td>2.75%</td>
</tr>
<tr>
<td>Reserve Bank of Australia</td>
<td>Aug 05 2008</td>
<td>Mar 04 2008</td>
<td>7.25%</td>
</tr>
</tbody>
</table>

http://www.fxstreet.com/fundamental/interest-rates-table/

Exchange Rates Table

<table>
<thead>
<tr>
<th>USD</th>
<th>GBP</th>
<th>CAD</th>
<th>EUR</th>
<th>AUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.98249</td>
<td>0.960007</td>
<td>1.5708</td>
<td>0.966042</td>
</tr>
<tr>
<td>0.504414</td>
<td>1</td>
<td>0.494329</td>
<td>0.792333</td>
<td>0.49444</td>
</tr>
<tr>
<td>1.6204</td>
<td>2.02394</td>
<td>1</td>
<td>1.60284</td>
<td>0.979994</td>
</tr>
<tr>
<td>0.636618</td>
<td>1.26209</td>
<td>0.62389</td>
<td>1</td>
<td>0.611409</td>
</tr>
<tr>
<td>1.06123</td>
<td>2.06423</td>
<td>1.02041</td>
<td>1.63556</td>
<td>1</td>
</tr>
</tbody>
</table>

http://www.x-rates.com/
It takes three to five years to see a significant \((+/-)\) valuation to be cut in half.

To investigate this possibility, Niso Abua and Philippe Jorion (1990) examined 80 years of S/E and S/FR exchange rates. The time series graphs of these two exchange rates (see Figure 4.5) show clearly that the nominal exchange rate has no tendency to return to any particular level over the entire sample period.\(^{26}\) The real exchange rate, however, demonstrates a clear tendency to revert back to its central value. Abua and Jorion computed that the rate of reversion toward the mean is such that a 50 percent overvaluation relative to PPP would take three to five years to be cut in half, and that the real exchange rate requires about three years on average to cross the PPP line. It is important to stress that while Abua and Jorion analyze 80 years of data, this does not imply that it takes 80 years for PPP to hold! Rather, it takes a large amount of data to have the real

Source: Page 129 of Levich 2E
Why does the foreign exchange market exist?

- **Trade and investment**
 - Companies who import or export goods are buying them in one currency and selling them in another. They therefore need to convert some of the money they receive into the currency in which they pay for goods.
 - Similarly, a company that buys an asset in a foreign country has to pay for it in the local currency, and so will need to convert its home currency into the local foreign currency.

- **Hedging**
 - Companies who have assets in foreign countries are exposed to the risk of those assets varying in value in their home currency due to fluctuations in the exchange rate.
 - While the foreign assets may retain the same value over time in the foreign currency, they produce a profit or loss in the company’s domestic currency if the rate changes.
 - Companies can eliminate these potential profits or losses by hedging. This involves executing a transaction that will exactly offset the profit or loss of the foreign asset caused by changes in the exchange rate.

- **Speculation**
 - The foreign exchange rate between two currencies varies in line with the relative supply and demand for the two currencies.
 - Traders can make profits buying a currency at one rate and selling it at a more favorable rate.
 - Speculation makes up by far the largest proportion of trading in the foreign exchange market.

For most of this century ...

- The list of market participants was static, consisting of commercial banks in the U.S. and universal banks elsewhere.
- The product list was also static, consisting of spot and forward contracts with fixed, short-term maturities.
- Competition from exchange-traded products was nonexistent, and the market structure was well-defined and static as well.

Over the last 20 years ...

- Financial innovation and competitive pressures have forced massive changes.
- Banks now offer longer-term forward contracts.
- Currency options are the fastest-growing segment of the market.
- Other products that combine characteristics of options and forwards have also been introduced.
Over the last 20 years …

- New centralized markets for exchange-traded currency and interest rate futures and options have developed in countries around the world. These often offer deep and liquid markets, and stiff competition to traditional bank products.
- New players like investment banking firms in the U.S. and securities firms worldwide support trading activities in foreign exchange and interest rate products.

Overview

Over the last 20 years …

- Many corporate customers have well-developed subsidiaries that seek a more direct role in the market.
- New communications technology that link market participants and automate transactions threaten the traditional role of foreign exchange brokers.
Geographical Distribution of Global Traditional Foreign Exchange Market Activity

Average Daily Turnover in billions of US dollars

<table>
<thead>
<tr>
<th>Country</th>
<th>US dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switzerland</td>
<td>18%</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>4%</td>
</tr>
<tr>
<td>France</td>
<td>4%</td>
</tr>
<tr>
<td>Germany</td>
<td>5%</td>
</tr>
<tr>
<td>Singapore</td>
<td>7%</td>
</tr>
<tr>
<td>Others</td>
<td>13%</td>
</tr>
<tr>
<td>United States</td>
<td>18%</td>
</tr>
<tr>
<td>Japan</td>
<td>12%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>32%</td>
</tr>
</tbody>
</table>

Geographical Distribution of Global Over-the-Counter Derivatives Market Activity

Average Daily Turnover of Notional Amounts in billions of US dollars

<table>
<thead>
<tr>
<th>Country</th>
<th>US dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singapore</td>
<td>2%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>3%</td>
</tr>
<tr>
<td>Germany</td>
<td>7%</td>
</tr>
<tr>
<td>Japan</td>
<td>9%</td>
</tr>
<tr>
<td>France</td>
<td>10%</td>
</tr>
<tr>
<td>United States</td>
<td>19%</td>
</tr>
<tr>
<td>Others</td>
<td>12%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>36%</td>
</tr>
</tbody>
</table>

Source: Bank for International Settlements Central Bank Survey 2001

Source: Bank for International Settlements Central Bank Survey 2001

Source: Bank for International Settlements Central Bank Survey 2001

Source: Bank for International Settlements Central Bank Survey 2001
Daily Trading Statistics for an Actual Spot DM Interbank Dealer

<table>
<thead>
<tr>
<th></th>
<th>Direct Transactions</th>
<th>Brokered Transactions</th>
<th>Total Transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Transactions</td>
<td>190</td>
<td>77</td>
<td>267</td>
</tr>
<tr>
<td>Value of Transactions</td>
<td>$0.8 billion</td>
<td>$0.4 billion</td>
<td>$1.2 billion</td>
</tr>
<tr>
<td>Median Transaction Size</td>
<td>$3.0 million</td>
<td>$4.0 million</td>
<td>na</td>
</tr>
<tr>
<td>Median Spread Size</td>
<td>DM 0.0003</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

Note: The above figures are daily averages for a single trader in the spot DM interbank market for the period Monday, August 3, 1992 - Friday, August 7, 1992.

3-31

What will be the impact on Europe’s foreign exchange market share, given the euro?

- Global foreign trade and investment exchange turnover = 15% trade and investment exchange turnover = 85% hedging and speculation
- Trade and investment:
 - Because of lower transaction costs in the foreign exchange markets and/or higher degrees of acceptability, the currencies of big exporters are used disproportionately to invoice trade. Around 13% of world exports originate from the US but as much as 48% of world exports are invoiced in dollars.
 - After EMU day, 25% of world exports will originate from the Euroland. Assuming the ratio to be the same as in the case of the Deutschemark (1:1.5), there may be an increase in the proportion of exports invoiced in European core currencies from 21% to 38% (25% x 1.5).

3-32

Vehicle currencies

Exporters and importers choose a currency for invoicing and settlement which can be bought or sold at low transaction costs in the foreign exchange market, or has a high degree of acceptability for other transactions. Exporters or importers have a preference for invoicing in their home-currency, but if there is no home currency preference or agreement between importers and exporters, an already important international currency with a deep and broad foreign exchange market and a high degree of international acceptability is chosen.

As a result, there are “thick externalities” or concentration in the choice of invoicing currencies: the more a currency is used for trade and invoicing the more it will continue to be used.

3-33

24-hour Foreign Exchange Market

- Singapore
- Tokyo
- Frankfurt
- London
- New York

3-34

Time Zone Difference and Delivery Risk

Another example of credit risk is delivery risk, which is associated with default on a contract in the process of settlement across time zones. For example, assume that American bank A has sold DM 1.6 million to German firm G in exchange for $1 million for spot delivery on Tuesday, August 6, 1996. Bank A may deliver DM to firm G in Frankfurt during the morning before New York opens. Since US$ funds are officially cleared and settled in New York, firm G is unable to effect delivery of its $1 million obligation until 9:00 A.M. New York time, which normally is 3:00 P.M. in Frankfurt. If firm G declares bankruptcy before 3:00 P.M. Frankfurt time, bank A may suffer a total loss because the DM have already been paid out, and bank A stands as an unsecured creditor in a bankruptcy proceeding, hoping to receive all or part of its $1 million. One way to control delivery risk is to spread delivery time dates. For example, a customer with a $10 million foreign exchange limit might have a limit of $2 million on any day. In this case, a default would lead to a maximum of $2 million subject to delivery risk, with the remaining $8 million subject to rate risk where the right-of-offset might apply.

Source: Page 106 of Levich, Second Edition

3-35

3-36
Foreign Exchange Instruments

• **spot contract**
 - Quoting conventions:
 - Direct terms (American terms): US$/foreign currency
 - Indirect terms (European terms): foreign currency/US$

Foreign Exchange Instruments

• **forward contract / outright forward**
 - The forward contract is an agreement made today for an obligatory exchange of funds at some specific time in the future.
 - The forward market for currencies is used mainly by firms in managing their exchange rate risks, since it enables them to lock in the rate (called the forward rate) at which they will buy or sell currencies.
 - The price of a forward is derived from the spot price and the borrowing and lending rates.

Foreign Exchange Instruments

• **forward contract / outright forward**
 - Agreement made today for obligatory exchange at specified time in future: 1, 2, 3, 6, 12 months from today.
 - No exchange of funds on agreement day, or at any time until settlement date.
 - Quoting conventions:
 - Outright
 - % premium or discount relative to spot.

Foreign Exchange Instruments

• **foreign exchange swap**
 - A foreign exchange swap is the simultaneous sale of a currency for spot delivery and the purchase of that currency for forward delivery.
 - This transaction can be described as the simultaneous borrowing of one currency and the lending of another currency.
 - Foreign exchange swaps are used by commercial banks to manage the maturity structures of their currency positions.
Foreign Exchange Instruments

• **foreign exchange swap**
 - Simultaneous borrowing and lending of short-term bank balances in two currencies, for example
 - Bank A borrows $10 million from Bank B for 1-month
 - Bank B borrows $10 million worth of £ from Bank A for 1-month.
 - Used to construct forward contracts and manage risks

Foreign Exchange Instruments

• **foreign exchange swap**
 - Because each foreign exchange transaction involves two currencies and two “legs” -- a sale of Euro is a purchase of dollars and a sale of dollars is a purchase of Euro -- a foreign exchange swap can also be described as a simultaneous borrowing of one currency and lending of another currency.
 - A dealer who owns spot Euro and then enters into a foreign exchange swap -- selling Euro spot and buying it back for forward delivery -- is managing the maturity structure of his or her currency position.

Foreign Exchange Instruments

• **foreign exchange swap**
 - Three types of swap are commonly used.
 - Spot against forward
 - In this case the first exchange - first leg - takes place on the spot date, two business days following the transaction, and the reverse of that exchange - second leg - takes place on the forward date, for example, 3 months from the spot date.

Foreign Exchange Instruments

• **foreign exchange swap**
 - Forward against forward
 - In this case, the first exchange - first leg - takes place on the forward date and the transaction is reversed - second leg - on a later forward date, known as the forward forward date.
 - For example, a forward against forward swap may begin in 3 months time from spot - first leg - and end in 6 months time from spot - second leg. This is known as a 3 x 6 forward/forward swap.

Foreign Exchange Instruments

• **foreign exchange swap**
 - Short dates
 - These are swaps which run for less than a month. For example, the first leg could be spot, and the second leg 7 days later (1 week).
 - Some short dates are even earlier than spot value, for example, the first leg could be today, and the second leg tomorrow.

Foreign Exchange Instruments

• **foreign exchange swap**
 - To summarize, foreign exchange swaps are transactions involving:
 - a single OTC transaction involving two value dates
 - two legs to the trade: the second leg is the reverse of the first leg
 - two exchanges of funds: one at each leg
 - value dates one day to 12 months
 - base currency amounts usually identical on both legs
 - quotations in forward points
FX Terminology: Appreciation and Depreciation

- Because every exchange rate involves two currencies
- Appreciation of the US$ against £ ⇔ Depreciation of £ against US$
- Depreciation of the US$ against £ ⇔ Appreciation of £ against US$
- Examples
 - Change from 1.50 $/£ to 1.75 $/£ ⇒ Appreciation of £ against US$
 - Change from 1.50 $/£ to 1.25 $/£ ⇒ Depreciation of £ against US$

FX Terminology: Appreciation and Depreciation

- Exact percentage measures depend on the base rate
 - x% depreciation of the Mexican peso ⇔ x% more pesos to buy $1
 - from 4 MP/$ to 8 MP/$ ⇒ 50% depreciation of the peso \([1/8 - 1/4)/(1/4) = -1/2]\)
 - y% appreciation of the US$ ⇔ y% fewer dollar to buy 1 peso
 - from $0.25/MP to $0.125/MP ⇒ 100% appreciation of the US$ \([(1/0.125 - 1/0.25)/(1/0.25) = +1]\)

Foreign Exchange Instruments

- In many cases, a new financial product can be replicated by some combination of more elementary contracts.
- This has implications for the pricing of a product, the arbitraging of a new product against other contracts, and the laying off of risks in a new product.

The Exchange Rate

- The exchange rate is the price of one currency as measured in the units of another currency.
- It is marked by two characteristics:
 - Convertibility refers to the ability to convert between the domestic currency and a foreign currency for current account transactions (current account convertibility) and capital account transactions (capital account convertibility).
 - Flexibility. The rate may be fixed or floating.

Openness in Financial Markets

The Relation Between Trade and Financial Flows
The U.S. Balance of Payments, 1998

<table>
<thead>
<tr>
<th>Current Account</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exports</td>
<td>931</td>
</tr>
<tr>
<td>Imports</td>
<td>1100</td>
</tr>
<tr>
<td>Trade balance (deficit = -)</td>
<td>-169</td>
</tr>
<tr>
<td>Investment income received</td>
<td>242</td>
</tr>
<tr>
<td>Net investment income paid</td>
<td>265</td>
</tr>
<tr>
<td>Net transfers received (3)</td>
<td>-23</td>
</tr>
<tr>
<td>Current account balance (deficit = -)</td>
<td>-41</td>
</tr>
<tr>
<td>Import Account</td>
<td>-233</td>
</tr>
<tr>
<td>Increase in foreign holdings of U.S. assets</td>
<td>542</td>
</tr>
<tr>
<td>Increase in U.S. holdings of foreign assets</td>
<td>305</td>
</tr>
<tr>
<td>Net increase in foreign holdings/net capital flow to the U.S</td>
<td>237</td>
</tr>
<tr>
<td>Statistical discrepancy</td>
<td>4</td>
</tr>
</tbody>
</table>

The Balance of Payments

The Current Account (Above the Line)
All recorded payments to and from the rest of the world
1. Trade in Goods and Services
 - Exports: Payments from the rest of the world ($931 Billion)
 - Imports: Payments to the rest of the world ($1,100 Billion)
2. Investment Income
 - U.S. residents receive income on their holdings of foreign assets ($242 Billion)
 - Foreign residents receive income on their holdings of U.S. assets ($265 Billion)
Openness in Financial Markets

The Balance of Payments (Continued)

The Current Account (Above the Line)
All recorded payments to and from the rest of the world

3. Foreign Aid (-$41 Billion)
 * Net transfers received
 The difference between foreign aid received and given

Openness in Financial Markets

The Balance of Payments

The Capital Account

1. Increase in foreign holdings of U.S. assets ($542 Billion)
2. Increase in U.S. holdings of foreign assets ($305 Billion)
3. Net capital flows = 1-2
 ($542 Billion - $305 Billion = -237 Billion)
Statistical discrepancy: Accounts for differences in data sources.

Balance of Payment Accounts

Originally,
- The current account measures the difference between the demand for and the supply of dollars arising from transactions that affect the current level of income here and abroad - including exports, imports, investment income payments (e.g., interest and dividend payments), and transfers (e.g., gifts and foreign aid).
- The capital account measures the difference arising from sales or purchases of assets to or from foreigners. It measures capital flows between a country and the rest of the world.

Balance of Payment Accounts

What was called the capital account (purchases and sales of assets, direct investment, etc.), is now called the financial account.
- The former current account has been split in two, the current account and the capital account, to better separate current income from changes in the stock of assets.
- The current account is still used for purchases and sales of goods and services and current income. The new capital account is primarily used for one time changes in the stock of assets.
Balance of Payment Accounts

- The new capital account includes unilateral current transfers which were in the current account but are really shifts in assets, not current income.
- The most significant item is debt forgiveness, which if kept in the current account could generate misleading swings in the current account. Also included are migrant transfers - those assets which are brought with a migrant when they move, as well as the sale or purchase of rights to natural resources or patents.

The Exchange Rate

- The system for establishing exchange rates has changed over time:
 - 1879-1913: International Gold Standard
 - WWI & Great Depression: period of instability
 - 1945: Bretton Woods Agreement
 - 1950-1970: fixed-rate dollar standard
 - 1973-1984: floating-rate dollar standard
 - 1985-1996: Plaza-Louvre Intervention Accords
 - 1979: European Monetary System
 - 1999: launch of the Euro

Exchange Rate Quotations

Assuming that the US$ is the domestic currency (d.c.) and that the British pound £ is the foreign currency (f.c.):

American terms: $’s per unit of f.c. $2.00/£
European terms: units of f.c. per $ £0.50/$
Direct quote: units of d.c. per f.c. $2.00/£
Indirect quote: units of f.c. per d.c. £0.50/$

Bid / Ask Spread

- bid price
 - This is the price at which a market-maker is willing to buy a currency.
- ask price / offer price
 - This is the price at which a market-maker is willing to sell a currency.

\[
\text{bid/ask(offer) spread} = | \text{ask price} - \text{bid price} |
\]
\[
\text{percent spread} = \frac{| \text{ask price} - \text{bid price} |}{\text{ask price}} \times 100
\]
Given $1.7019-36, what is the percent spread?

Answer:
percent spread = \frac{|1.7036 - 1.7019|}{1.7036} \times 100 = 0.1\%

The spread for widely traded currencies, such as the £, € and ¥, is smaller than those that are traded less heavily.

Cross Rates

Given $1.5561/£, $0.7293/C$, and ¥110.36/$, what are the exchange rates between the £ and the Canadian $ (C$), and between the £ and the ¥?

Answer:

Canadian dollars per British pound
= \frac{1.5561}{£} \times \frac{C\$}{0.7293} = C\$2.1337/£

Japanese yen per British pound
= \frac{1.5561}{£} \times \frac{¥110.36}{\$} = ¥171.73/£

Example:
New York: $1.9809/£
Sidney: $0.6251/A$
London: A$3.1650/£

Using the direct quotes:
A$ per £ = $1.9809/$0.6251 = A$3.1689/£

Since the price of £ in London is lower, a risk-free profit can be earned by:
- buying £ with A$ in London;
- selling £ in New York for $; and
- selling $ in Sidney for A$.

Arbitrage

Arbitrage is the simultaneous, or nearly simultaneous, purchase of securities in one market for sale in another market with the expectation of a risk-free profit.

A triangular arbitrage opportunity exists if a cross rate is inconsistent with the exchange rates between the two currencies and the dollar.

example:
C$/€ > C$/US$ x US$/€

Example:

Spatial arbitrage implies an arbitrage of the same financial instrument between two different geographic places, such as arbitrage between two different banks, between two different cities, or between two different markets that trade the same instrument.

Covered interest arbitrage implies an arbitrage between an interest bearing security in one currency (say €) and an interest bearing security in another currency (say £).
Arbitrage

- Spatial arbitrage ensures that quoted exchange rates are similar across banks in different locations.
- Triangular arbitrage ensures that cross exchange rates are set properly.
- Covered interest arbitrage ensures that forward exchange rates are set properly.
- Any discrepancy will trigger arbitrage, which will then eliminate the discrepancy. Arbitrage thus makes the foreign exchange market more orderly.

Risks

- **Liquidity risk** is the risk of having to take a significant discount from the current market value in liquidating an investment position.
 - Liquidity risk can be a significant problem with lightly traded securities.
- **Counterparty risk** is the risk of default by a counterparty, such that the original terms for delivery and settlement cannot be met.
 - Rate risk applies to the case of default on an outstanding contract, while delivery risk is associated with default on a contract in the process of settlement across time zones.

Cross Rates with Bid/Ask Spread

The trader (market maker) will choose the advantageous price in each transaction, so each time, the customer (market taker) will have to accept the unfavorable price.

Example:

Given $1.7019-36 per £, and $0.6250-67 per A$, what is the number of A$ per £?

Rule

The trader (market maker) will choose the advantageous price in each transaction, so each time, the customer (market taker) will have to accept the unfavorable price.

Cross Rates with Bid/Ask Spread

$1.7019-36/E, $0.6250-67/A$, ¿A$/E

bid rate: (the trader’s buying price of E)

- customer sells £ for $ / trader buys £ with $ at $1.7019/E
- customer sells $ for A$ / trader buys $ with A$ at $0.6267/A$

\[
\frac{1.7019}{E} \times \frac{A$}{0.6267} = A$2.7157/E
\]

ask rate: (the trader’s selling price of E)

- customer sells A$ for $ / trader buys A$ with $ at $0.6250/A$
- customer sells $ for £ / trader buys $ with £ at $1.7036/E

\[
\frac{1.7036}{E} \times \frac{A$}{0.6250} = A$2.7258/E
\]

Regarding foreign exchange market transactions

(1) "The customer is always swimming against the tide", meaning that when the customer buys, he/she buys at the dealer’s “ASK” price, and when the customer sells, he/she receives the “BID” price. By definition, the ASK price is higher than the BID price. A customer who buys (at the ASK price, 1.6020 $/GBP) and then immediately sells (at the BID price, 1.6010 $/GBP), in effect pays the bid-ask spread ($0.0010 or about 0.06%) for executing two transactions, one buy and one sell.

(2) In the FX market, like in engineering, be sure to write down the units in any calculation you make to be sure you are making the right calculation. In engineering, if I drive 100 miles on 4 gallons of gas, I am getting 100 miles / 4 gallons = 25 miles per gallon.

Tips -- Intuition Check from Professor Levich
In FX, that means
(2a) if I buy GBP500,000 at a price of $1.60/GBP, then I expect to get a bill for GBP500,000 x $1.60/GBP = $800,000. Or
(2b) if I win JPY420,000,000 in a lawsuit, and I can convert it back to dollars at a rate of 105 JPY/$, then I expect to receive JPY420,000,000 / JPY105/$ = $4,000,000.

So always write down the units associated with the numbers in a problem, and you'll be less likely to make a mistake when multiplying or dividing FX rates.

Tips -- Intuition Check from Professor Levich

Example:

- **Spot yen sold at $0.006879**
- **90-day forward at $0.006902**
 - **Then swap rate** = $0.006902 - $0.006879 = 23-point premium

- **Spot £ sold at $1.7015**
- **90-day forward at $1.6745**
 - **Then swap rate** = $1.6745 - $1.7015 = 270-point discount

Swapping Rates withBid/Ask Spread

<table>
<thead>
<tr>
<th>Rule</th>
<th>The bid/ask spread will always widen as we go forward.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>spot rate</td>
</tr>
<tr>
<td></td>
<td>swap rate</td>
</tr>
<tr>
<td></td>
<td>forward</td>
</tr>
<tr>
<td></td>
<td>spot rate</td>
</tr>
<tr>
<td></td>
<td>swap rate</td>
</tr>
<tr>
<td></td>
<td>forward</td>
</tr>
</tbody>
</table>

Forward Market

Forwards are quoted in two ways:
- **outright rate** - this is the actual price
- **swap rate** - this is the forward discount/premium points to be subtracted from/added to the spot rate

Example: spot yen sold at $0.006879

- 90-day forward at $0.006902
 - Then swap rate = $0.006902-$0.006879 = 23-point premium

- **Spot £ sold at $1.7015**
- 90-day forward at $1.6745
 - Then swap rate = $1.6745-$1.7015 = 270-point discount

Spot v.s. Forward

Suppose you need A$ in 180 days.

- **Option 1**
 - buy A$ in the spot market
 - and earn interest in A$ (money market hedging)

- **Option 2**
 - buy A$ in the forward market (hedging with forward)
 - will have to pay 1.3022% more than the spot price

- **Option 3**
 - buy A$ in the spot market 180 days later
 - but is exposed to foreign exchange rate risk
3-85

Foreign Exchange Market Products and Activities

The Relationship between Spot and Forward Contracts

Jan 1 time dimension Jul 1

currency dimension

US$ A$

Option 2

sell A$ forward at F

A manager wishes to own $ on July 1.

3-86

Foreign Exchange Market Products and Activities

The Relationship between Spot and Forward Contracts

Jan 1 time dimension Jul 1

currency dimension

US$ A$

A manager wishes to own $ on July 1.

3-87

Foreign Exchange Market Products and Activities

The Relationship between Spot and Forward Contracts

Jan 1 time dimension Jul 1

currency dimension

US$ A$

A manager wishes to own A$ on July 1.

3-88

Foreign Exchange Market Products and Activities

The Relationship between Spot and Forward Contracts

Jan 1 time dimension Jul 1

currency dimension

US$ A$

A manager wishes to own A$ on July 1.

3-89

Spots v.s. Forward

time dimension

US$ A$

Jan 1 Jul 1

buy A$ spot at S

sell A$ forward at F

3-90

Wasn't it the Rolling Stones who sang - "I can't get no ... intuition."

Well, if you're in the same boat, and you try and you try ... but you can't get any intuition about international finance, here are some ideas that may help you.

Tips -- Intuition Check from Professor Levich
Regarding the "Box" Diagram

1. An arrow from A$ to US$, can be thought of as SELLING A$ or BUYING US$.
2. The reverse arrow from US$ to A$ represents the reverse transaction, SELLING US$ or BUYING A$.
3. An arrow from right to left (from the future to the present), can be thought of as borrowing - taking cash from the future and bringing it to the present.
4. The reverse arrow from left to right (from the present to the future), can be thought of as investing - taking cash that you have now and putting it away until the future.

Tips -- Intuition Check from Professor Levich

- A forward purchase of A$ (equivalent to a forward sale of US$) is shown by the arrow AD. This outright forward contract can be replicated by borrowing US$ (arrow AB), buying A$ in the spot market (arrow BC), and lending the A$ (arrow CD). The maturity of the forward contracts is identical to the maturity of the borrowing and lending contracts.
- A forward sale of the A$ can be described by reversing the direction of the arrows.

Spot v.s. Forward

- **Given spot $S/€, forward $F/€, $ interest rate r, € interest rate r€**
- **Beginning with 1 €,**
 - **Buy $ in the spot market** ⇒ final $ = S x (1 + r)
 - **Buy $ in the forward market** ⇒ final $ = (1 + r€) x F
- **Leaving no room for arbitrage, the final $ obtained should be the same.**
 - S x (1 + r) = (1 + r€) x F
 - S x \(\frac{(1 + r)}{(1 + r€)}\) = F

Annualized Forward Premium / Discount

- **Previously, we adjusted the interest rates to be consistent with the forward premium.**
- **Very often, the practice is to adjust the forward premium to match interest rates. Interest rates are almost always quoted on an annual basis.**

\[
\text{annualized forward premium} = \frac{\text{forward - spot}}{\text{spot}} \times \frac{360 \times 100}{N}
\]
Synthetic Forward and Arbitrage

Given: £ interest rate 12%
$ interest rate 7%
spot rate $1.75/£
1 year forward rate $1.68/£

synthetic forward = $1.75 \times \frac{1 + 0.07}{1 + 0.12} = 1.6719 < 1.68

£ is overvalued in the forward market
arbitrage opportunity exists:
- buy £ in spot market
- earn £ interest in money market
- then sell £ forward

Spot, Forward and Interest Rates

As derived earlier, at equilibrium:

\[
S \times \frac{1 + r_d}{1 + r_f} = F \Rightarrow \frac{F}{S} = \frac{1 + r_d}{1 + r_f}
\]

Subtracting 1 from both sides:

forward - spot = \frac{domestic r - foreign r}{spot}

where r = interest rate
domestic = domestic currency
foreign = foreign currency

This is known as the interest rate parity condition.

Interest Rate Parity

- When market forces cause interest rates and exchange rates to be such that covered interest arbitrage is no longer feasible, the equilibrium state achieved is referred to as interest rate parity (IRP).
- When IRP exists, the rate of return achieved from covered interest arbitrage should equal the rate available in the home country.

Symbols Used

- \(S_t \) - the spot rate at time t
- \(F_{t,n} \) - the forward rate at time t for delivery in n periods
- \$/FC - the number of dollars per foreign currency
- t - current time

Assignment For Chapter 3: Exercises 1, 2, 6, 7, 10.