The bias variance decomposition

The inputs, x_1, \ldots, x_n are fixed, a test point x_0 is also fixed.

$$y_i = f(x_i) + \varepsilon_i \quad \varepsilon_i \text{ i.i.d, mean 0.}$$

A regression method fit to $(x_1, y_1), \ldots, (x_n, y_n)$ produces the estimate \hat{f}. Then, the Mean Squared Error at x_0 satisfies:

$$MSE(x_0) = E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\varepsilon).$$
The bias variance decomposition

The inputs, \(x_1, \ldots, x_n \) are fixed, a test point \(x_0 \) is also fixed.

\[y_i = f(x_i) + \varepsilon_i \quad \varepsilon_i \text{ i.i.d, mean } 0. \]

A regression method fit to \((x_1, y_1), \ldots, (x_n, y_n)\) produces the estimate \(\hat{f} \). Then, the Mean Squared Error at \(x_0 \) satisfies:

\[\text{MSE}(x_0) = E(y_0 - \hat{f}(x_0))^2 = \text{Var}(\hat{f}(x_0)) + [\text{Bias}(\hat{f}(x_0))]^2 + \text{Var}(\varepsilon). \]

Both variance and squared bias are always positive, so to minimize the MSE, you must reach a tradeoff between bias and variance.
Figure 2.12

Squiggly f, high noise
Linear f, high noise
Squiggly f, low noise

Figure 2.12
In a classification setting, the output takes values in a discrete set. For example, if we are predicting the brand of a car based on a number of variables, the function f takes values in the set \{Ford, Toyota, Mercedes-Benz, ... \}.
Classification problems

In a classification setting, the output takes values in a discrete set. For example, if we are predicting the brand of a car based on a number of variables, the function f takes values in the set \{Ford, Toyota, Mercedes-Benz,\ldots\}.

The model:

$$Y = f(X) + \varepsilon$$

becomes insufficient, as X is not necessarily real-valued.
In a classification setting, the output takes values in a discrete set.

For example, if we are predicting the brand of a car based on a number of variables, the function f takes values in the set \{Ford, Toyota, Mercedes-Benz, ... \}.

The model:

$$Y = f(X) + \varepsilon$$

becomes insufficient, as X is not necessarily real-valued.
Classification problems

In a classification setting, the output takes values in a discrete set.

For example, if we are predicting the brand of a car based on a number of variables, the function f takes values in the set \{Ford, Toyota, Mercedes-Benz, \ldots \}.

We will use slightly different notation:

\[
P(X, Y) : \text{joint distribution of } (X, Y),
\]

\[
P(Y \mid X) : \text{conditional distribution of } Y \text{ given } X,
\]

\[
\hat{y}_i : \text{prediction for } x_i.
\]
Loss function for classification

There are many ways to measure the error of a classification prediction. One of the most common is the 0-1 loss:

$$E(\mathbf{1}(y_0 \neq \hat{y}_0))$$
Loss function for classification

There are many ways to measure the error of a classification prediction. One of the most common is the 0-1 loss:

$$E(1(y_0 \neq \hat{y}_0))$$

Like the MSE, this quantity can be estimated from training and test data by taking a sample average:

$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq \hat{y}_i)$$
Figure 2.13

In practice, we never know the joint probability P. However, we can assume that it exists.
Bayes classifier

In practice, we never know the joint probability P. However, we can assume that it exists.

The **Bayes classifier** assigns:

$$\hat{y}_i = \arg\max_j P(Y = j \mid X = x_i)$$

It can be shown that this is the best classifier under the 0-1 loss.
Principal Components Analysis

- This is the most popular unsupervised procedure ever.
- Invented by Karl Pearson (1901).
- Developed by Harold Hotelling (1933).
Principal Components Analysis

- This is the most popular unsupervised procedure ever.
- Invented by Karl Pearson (1901).
- Developed by Harold Hotelling (1933). ← Stanford pride!
Principal Components Analysis

- This is the most popular unsupervised procedure ever.
- Invented by Karl Pearson (1901).
- Developed by Harold Hotelling (1933).
- **What does it do?** It provides a way to visualize high dimensional data, summarizing the most important information.
What is PCA good for?
What is PCA good for?

Figure 10.1
What is the first principal component?

It is the vector which passes the closest to a cloud of samples, in terms of squared Euclidean distance.
i.e. The green direction minimizes the average squared length of the dotted lines.

Figure 6.15
What does this look like with 3 variables?

The first two principal components span a plane which is closest to the data.

Figure 10.2
A second interpretation

The projection onto the first principal component is the one with the **highest variance**.

![Figure 6.15](image-url)
How do we say this in math?

Let \mathbf{X} be a data matrix with n samples, and p variables.
How do we say this in math?

Let \(\mathbf{X} \) be a data matrix with \(n \) samples, and \(p \) variables. From each variable, we subtract the mean of the column; i.e. we \texttt{center} the variables.
How do we say this in math?

Let X be a data matrix with n samples, and p variables. From each variable, we subtract the mean of the column; i.e. we center the variables.

To find the first principal component $\phi_1 = (\phi_{11}, \ldots, \phi_{p1})$, we solve the following optimization
How do we say this in math?

Let X be a data matrix with n samples, and p variables. From each variable, we subtract the mean of the column; i.e. we center the variables.

To find the first principal component $\phi_1 = (\phi_{11}, \ldots, \phi_{p1})$, we solve the following optimization:

$$
\max_{\phi_{11}, \ldots, \phi_{p1}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^2 \right\}
$$

subject to $\sum_{j=1}^{p} \phi_{j1}^2 = 1$.

How do we say this in math?

Let X be a data matrix with n samples, and p variables. From each variable, we subtract the mean of the column; i.e. we center the variables.

To find the first principal component $\phi_1 = (\phi_{11}, \ldots, \phi_{p1})$, we solve the following optimization

$$
\max_{\phi_{11}, \ldots, \phi_{p1}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^2 \right\}
$$

subject to $\sum_{j=1}^{p} \phi_{j1}^2 = 1$.

Projection of the ith sample onto ϕ_1. Also known as the score z_{i1}
How do we say this in math?

Let \mathbf{X} be a data matrix with n samples, and p variables. From each variable, we subtract the mean of the column; i.e. we center the variables.

To find the first principal component $\phi_1 = (\phi_{11}, \ldots, \phi_{p1})$, we solve the following optimization

$$
\max_{\phi_{11}, \ldots, \phi_{p1}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^2 \right\}
$$

subject to $\sum_{j=1}^{p} \phi_{j1}^2 = 1$.

Variance of the n samples projected onto ϕ_1.
How do we say this in math?

To find the second principal component $\phi_2 = (\phi_{12}, \ldots, \phi_{p2})$, we solve the following optimization

$$\max_{\phi_{12}, \ldots, \phi_{p2}} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j}^2 x_{ij} \right)^2$$
subject to

$$\sum_{j=1}^{p} \phi_{j}^2 = 1$$
and

$$\sum_{j=1}^{p} \phi_{j} \phi_{2j} = 0.$$
How do we say this in math?

To find the second principal component $\phi_2 = (\phi_{12}, \ldots, \phi_{p2})$, we solve the following optimization

$$\max_{\phi_{12}, \ldots, \phi_{p2}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j2} x_{ij} \right)^2 \right\}$$

subject to $\sum_{j=1}^{p} \phi_{j2}^{2} = 1$ and $\sum_{j=1}^{p} \phi_{j1} \phi_{j2} = 0$.

First and second principal components must be orthogonal.

Equivalent to saying that the scores (z_{11}, \ldots, z_{n1}) and (z_{12}, \ldots, z_{n2}) are uncorrelated.
How do we say this in math?

To find the second principal component $\phi_2 = (\phi_1, \ldots, \phi_p)$, we solve the following optimization

$$
\max_{\phi_1, \ldots, \phi_p} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_j x_{ij} \right)^2 \right\}
$$

subject to $\sum_{j=1}^{p} \phi_j^2 = 1$ and $\sum_{j=1}^{p} \phi_1 \phi_j = 0$.

First and second principal components must be orthogonal.
How do we say this in math?

To find the second principal component $\phi_2 = (\phi_{12}, \ldots, \phi_{p2})$, we solve the following optimization

$$
\max_{\phi_{12}, \ldots, \phi_{p2}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j2} x_{ij} \right)^2 \right\}
$$

subject to $\sum_{j=1}^{p} \phi_{j2}^2 = 1$ and $\sum_{j=1}^{p} \phi_{j1} \phi_{j2} = 0$.

First and second principal components must be orthogonal.

Equivalent to saying that the scores (z_{11}, \ldots, z_{n1}) and (z_{12}, \ldots, z_{n2}) are uncorrelated.
Solving the optimization

This optimization is fundamental in linear algebra. It is satisfied by either:

- The singular value decomposition (SVD) of X

 $X = U \Sigma \Phi^T$

 where the ith column of Φ is the ith principal component ϕ_i, and the ith column of $U \Sigma$ is the ith vector of scores $(z_1, ..., z_n)$.

- The eigendecomposition of $X^T X$

 $X^T X = \Phi \Sigma^2 \Phi^T$
Solving the optimization

This optimization is fundamental in linear algebra. It is satisfied by either:

- The singular value decomposition (SVD) of X:

 $$X = U \Sigma \Phi^T$$

 where the ith column of Φ is the ith principal component ϕ_i, and the ith column of $U\Sigma$ is the ith vector of scores (z_{1i}, \ldots, z_{ni}).
Solving the optimization

This optimization is fundamental in linear algebra. It is satisfied by either:

- The singular value decomposition (SVD) of X:
 \[
 X = U \Sigma \Phi^T
 \]
 where the ith column of Φ is the ith principal component ϕ_i, and the ith column of $U \Sigma$ is the ith vector of scores (z_{1i}, \ldots, z_{ni}).

- The eigendecomposition of $X^T X$:
 \[
 X^T X = \Phi \Sigma^2 \Phi^T
 \]
PCA in practice: The biplot

Figure 10.1
Scaling the variables

Most of the time, we don’t care about the absolute numerical value of a variable.
Scaling the variables

Most of the time, we don’t care about the absolute numerical value of a variable. We care about the value relative to the spread observed in the sample.

Before PCA, in addition to centering each variable, we also multiply it times a constant to make its variance equal to 1.
Example: scaled vs. unscaled PCA

Figure 10.3
Scaling the variables

In special cases, we have variables measured in the same unit; e.g. gene expression levels for different genes.
Scaling the variables

In special cases, we have variables measured in the same unit; e.g. gene expression levels for different genes.

Therefore, we care about the absolute value of the variables and we can perform PCA without scaling.
How many principal components are enough?
How many principal components are enough?

We said 2 principal components capture most of the relevant information. But how can we tell?
The proportion of variance explained

We can think of the top **principal components** as directions in space in which the data vary the most.
The proportion of variance explained

We can think of the top **principal components** as directions in space in which the data vary the most.

The \(i \)th **score vector** \((z_{1i}, \ldots, z_{ni})\) can be interpreted as a **new** variable. The variance of this variable decreases as we take \(i \) from 1 to \(p \).
We can think of the top **principal components** as directions in space in which the data vary the most.

The *ith score vector* \((z_{1i}, \ldots, z_{ni})\) can be interpreted as a *new* variable. The variance of this variable decreases as we take \(i\) from 1 to \(p\). However, the total variance of the score vectors is the same as the total variance of the original variables:

\[
\sum_{i=1}^{p} \frac{1}{n} \sum_{j=1}^{n} z_{ji}^2 = \sum_{k=1}^{p} \text{Var}(x_k).
\]
The proportion of variance explained

We can think of the top **principal components** as directions in space in which the data vary the most.

The ith **score vector** (z_{1i}, \ldots, z_{ni}) can be interpreted as a *new* variable. The variance of this variable decreases as we take i from 1 to p. However, the total variance of the score vectors is the same as the total variance of the original variables:

$$
\sum_{i=1}^{p} \frac{1}{n} \sum_{j=1}^{n} z_{ji}^2 = \sum_{k=1}^{p} \text{Var}(x_k).
$$

We can quantify how much of the variance is captured by the first m principal components/score variables.
The proportion of variance explained

The variance of the mth score variable is:

$$\frac{1}{n} \sum_{i=1}^{n} z_{im}^2$$
The proportion of variance explained

The variance of the mth score variable is:

$$\frac{1}{n} \sum_{i=1}^{n} z_{im}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} x_{ij} \right)^2$$
The proportion of variance explained

The variance of the mth score variable is:

$$\frac{1}{n} \sum_{i=1}^{n} z_{im}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} x_{ij} \right)^2 = \frac{1}{n} \sum_{mm}^{2}.$$

Scree plot
The proportion of variance explained

The variance of the mth score variable is:

$$\frac{1}{n} \sum_{i=1}^{n} z_{im}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} x_{ij} \right)^2 = \frac{1}{n} \sum_{mm}^2.$$
The proportion of variance explained

The variance of the mth score variable is:

$$
\frac{1}{n} \sum_{i=1}^{n} z_{im}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jm} x_{ij} \right)^2 = \frac{1}{n} \Sigma_{mm}^2.
$$

Scree plot
Generalizations of PCA

PCA works under a Euclidean geometry in the space of variables. Often, the natural geometry is different:

- We expect some variables to be "closer" to each other than to other variables.
- Some correlations between variables would be more surprising than others.

Examples:

- Variables are pixel values, samples are different images of the brain. We expect neighboring pixels to have stronger correlations.
- Variables are rainfall measurements at different regions. We expect neighboring regions to have higher correlations.
Generalizations of PCA

PCA works under a Euclidean geometry in the space of variables. Often, the natural geometry is different:

- We expect some variables to be “closer” to each other than to other variables.
 - Variables are pixel values, samples are different images of the brain. We expect neighboring pixels to have stronger correlations.
 - Variables are rainfall measurements at different regions. We expect neighboring regions to have higher correlations.
Generalizations of PCA

PCA works under a Euclidean geometry in the space of variables. Often, the natural geometry is different:

► We expect some variables to be “closer” to each other that to other variables.

► Some correlations between variables would be more surprising than others.
Generalizations of PCA

PCA works under a Euclidean geometry in the space of variables. Often, the natural geometry is different:

- We expect some variables to be “closer” to each other that to other variables.
- Some correlations between variables would be more surprising than others.

Examples:

- Variables are pixel values, samples are different images of the brain. We expect neighboring pixels to have stronger correlations.
Generalizations of PCA

PCA works under a Euclidean geometry in the space of variables. Often, the natural geometry is different:

- We expect some variables to be “closer” to each other that to other variables.
- Some correlations between variables would be more surprising than others.

Examples:

- Variables are pixel values, samples are different images of the brain. We expect neighboring pixels to have stronger correlations.
- Variables are rainfall measurements at different regions. We expect neighboring regions to have higher correlations.
Generalizations of PCA

There are ways to include this knowledge in a PCA. See: