Outline of Lecture

1 Short-Time Fourier Transform
2 Non-negative Matrix Factorization
3 Audio Source Separation
4 Wrapping Up
Where are we?

1. Short-Time Fourier Transform
2. Non-negative Matrix Factorization
3. Audio Source Separation
4. Wrapping Up
Stationary Processes

- We’ve seen the **Spectral Representation Theorem**, which says that all stationary processes are essentially just linear combinations of sinusoids.
- So: is a typical music recording stationary?
Short-Time Fourier Transform

- **Idea:** Audio is locally stationary.
- **Take Fourier transform of only a chunk of a signal at a time.**
Short-Time Fourier Transform

- **Idea:** Audio is locally stationary.
- **Take Fourier transform of only a chunk of a signal at a time.**
Short-Time Fourier Transform

- **Idea:** Audio is locally stationary.
- **Take Fourier transform of only a chunk of a signal at a time.**
Short-Time Fourier Transform

- **Idea:** Audio is locally stationary.
- **Take Fourier transform of only a chunk of a signal at a time.**
Short-Time Fourier Transform

- **Idea**: Audio is locally stationary.
- **Take Fourier transform of only a chunk of a signal at a time.**
Short-Time Fourier Transform

- **Idea:** Audio is locally stationary.
- **Take Fourier transform of only a chunk of a signal at a time.**
Short-Time Fourier Transform

- **Idea:** Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.
Short-Time Fourier Transform

- **Idea:** Audio is locally stationary.
- **Take Fourier transform of only a chunk of a signal at a time.**
Short-Time Fourier Transform

- **Idea:** Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.
Short-Time Fourier Transform

Plot log-magnitudes (deciBels) to make contrast clearer.
Summary

- The **Short-Time Fourier Transform** (STFT) takes in an input signal, and computes local DFTs to obtain a matrix.
- A plot of the magnitudes of this complex-valued matrix is called a **spectrogram**. (Log-magnitudes are often plotted instead of magnitudes.)
- There is also an inverse STFT (ISTFT), which takes in a complex matrix, computes the IDFT of each column, and adds the signal piece by piece to recover the time-domain signal.
Where are we?

1. Short-Time Fourier Transform
2. Non-negative Matrix Factorization
3. Audio Source Separation
4. Wrapping Up
In many applications, we wish to decompose a matrix X as a product of two matrices:

$$X = AB.$$

The most important example is principal components analysis (PCA).

$$\begin{bmatrix}
\vdots \\
x_1 \\
\vdots \\
x_n \\
\end{bmatrix} \approx \begin{bmatrix}
& d_1u_{11} & d_2u_{12} \\
& \vdots & \vdots \\
& d_1u_{n1} & d_2u_{n2} \\
\end{bmatrix}\begin{bmatrix}
\vdots \\
v_1^T \\
\vdots \\
v_2^T \\
\end{bmatrix}$$
Non-Negative Matrix Factorization

\[
\begin{bmatrix}
V \\
\end{bmatrix} \approx
\begin{bmatrix}
W \\
\end{bmatrix}
\begin{bmatrix}
H \\
\end{bmatrix}
\]

- A matrix factorization where everything is non-negative
- \(V \in \mathbb{R}_{+}^{F \times T}\) - original non-negative data
- \(W \in \mathbb{R}_{+}^{F \times K}\) - matrix of basis vectors, dictionary elements
- \(H \in \mathbb{R}_{+}^{K \times T}\) - matrix of activations, weights, or gains
- Typically, \(K \ll F, T\)
 - A compressed representation of the data
 - A low-rank approximation to \(V\)
NMF With Spectrogram Data

Figure: NMF of *Mary Had a Little Lamb* with $K = 3$
Factorization Interpretation I

Each column of V is a weighted sum of the columns of W.

$$
\begin{bmatrix}
v_1 & v_2 & \ldots & v_T
\end{bmatrix}
\approx
\begin{bmatrix}
\sum_{j=1}^{K} H_{j1} w_j & \sum_{j=1}^{K} H_{j2} w_j & \ldots & \sum_{j=1}^{K} H_{jT} w_j
\end{bmatrix}
$$
Factorization Interpretation II

V is a sum of rank-1 matrices.

$$
\begin{bmatrix}
v_1 & v_2 & \cdots & v_T
\end{bmatrix}
\approx
\begin{bmatrix}
w_1 & w_2 & \cdots & w_K
\end{bmatrix}
\begin{bmatrix}
h_1^T & \cdots & \cdots & \cdots \\
h_2^T & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots \\
h_K^T & \cdots & \cdots & \cdots
\end{bmatrix}
$$

$$V \approx w_1 h_1^T + w_2 h_2^T + \cdots + w_K h_K^T$$

\[= \quad + \quad + \quad \]
The NMF Cost Function

- So far we’ve been vague by saying \(V \approx WH \).
- Formally, NMF solves the optimization problem

\[
\min_{W,H} D(V|WH) \quad \text{subject to } W, H \geq 0
\]

for some choice of “distance” measure \(D \).

- Choices of \(D \):
 - Euclidean distance: \(D(V|\hat{V}) = \sum_{i,j} (V_{ij} - \hat{V}_{ij})^2 \)
 - Kullback-Leibler (KL) divergence:
 \[
 D(V|\hat{V}) = \sum_{i,j} V_{ij} \log \frac{V_{ij}}{\hat{V}_{ij}} - V_{ij} + \hat{V}_{ij}
 \]
 - KL divergence is more appropriate for audio.
Algorithms for NMF

• **General Strategy:** Fix W and update H. Fix H and update W. Iterate until convergence.

• The two problems are symmetric. So let’s look at fixing W and updating H (for KL divergence).

\[
D(V|WH) = - \sum_{i,j} V_{ij} \log \sum_k W_{ik} H_{kj} + \sum_{i,j} \sum_k W_{ik} H_{kj} + \text{const}.
\]

• This cannot be minimized in closed form for H. (Try it!)

• Suppose \tilde{H}_{kj} is our current guess and define $\pi_{ijk} = \frac{W_{ik} H_{kj}}{\sum_k W_{ik} H_{kj}}$. Then we can write

\[
D(V|WH) = - \sum_{i,j} V_{ij} \log \sum_k \pi_{ijk} \frac{W_{ik} H_{kj}}{\pi_{ijk}} + \sum_{i,j} \sum_k W_{ik} H_{kj} + \text{const}.
\]

and use Jensen’s inequality on the log.

• This “majorizing” function can easily be minimized!
Where are we?

1. Short-Time Fourier Transform
2. Non-negative Matrix Factorization
3. Audio Source Separation
4. Wrapping Up
The Problem of Source Separation

How do we recover the individual sources from just the mixture?
Source Separation Pipeline

\[V \approx WH \]

Ideal Pipeline:

1. Find a segment of music where only the backing band is playing. Take the magnitude STFT and run NMF. Keep \(W_{bg} \).
2. Find a segment of music where only vocals are present. Take the magnitude STFT and run NMF. Keep \(W_{vocal} \).
3. Now take the STFT of the mixture. Run NMF on the magnitudes, where \(W_{bg} \) and \(W_{vocal} \) are fixed, and estimate \(H_{bg} \) and \(H_{vocal} \).

\[
V \approx \begin{bmatrix} W_{bg} & W_{vocal} \end{bmatrix} \begin{bmatrix} H_{bg} \\ H_{vocal} \end{bmatrix}
\]

4. The backing band magnitudes can be recovered as \(W_{bg}H_{bg} \). Use the phases from the STFT, and take the ISTFT to recover the time-domain signal.
Source Separation Pipeline

\[V \approx WH \]

In practice:

1. Find a segment of music where only the backing band is playing. Take the magnitude STFT and run NMF. Keep \(W_{bg} \).
2. Find a segment of music where only vocals are present. Take the magnitude STFT and run NMF. Keep \(W_{vocal} \).
3. Now take the STFT of the mixture. Run NMF on the magnitudes, where \(W_{bg} \) and \(W_{vocal} \) are fixed, and estimate \(W_{vocal} \), \(H_{bg} \) and \(H_{vocal} \).

\[V \approx \begin{bmatrix} W_{bg} & W_{vocal} \end{bmatrix} \begin{bmatrix} H_{bg} \\ H_{vocal} \end{bmatrix} \]

4. The backing band magnitudes can be recovered as \(W_{bg}H_{bg} \). Use the phases from the STFT, and take the ISTFT to recover the time-domain signal.
A Demo

Let’s try this in R!
Where are we?

1. Short-Time Fourier Transform
2. Non-negative Matrix Factorization
3. Audio Source Separation
4. Wrapping Up
Projects

• Project proposals due Friday. (Please fill in survey first.)
• I will be available after class. I will also be available tomorrow morning. Please e-mail me to schedule a time.
Homework 3

- Geostatistics packages in R: gstat and geoR
- Prediction competition