HOPLITES:
The Classical Greek Battle Experience

Edited by
Victor Davis Hanson

London and New York
INTRODUCTION

The long dominance of hoplite battle as the primary means of conflict resolution among the city-states of classical Greece is ironic. Hoplites were soldiers of the open plain. Because of their highly specialized equipment and phalanx formation, hoplites could do battle properly only in a wide, clear, flat space that was free of even minor obstacles. Yet as the most casual visitor is immediately aware, the geography of central and southern Greece is not defined by wide open plains, but rather by rugged mountains and deep ravines. The set forms of hoplite battle thus defy geomorphic logic. Common sense suggests that since Greece was a mountainous country, and the Greeks were (sometimes) rational men, the citizens of the city-states should have developed the arms, armor, and tactics suitable to mountain warfare. Yet, for most of the Classical Period, they failed to do so.

A second irony is involved in the slow development of poliorcetic science in classical Greece. Greece is not only a land of mountains, but a land of stone – the limestone and marble bedrock is typically close to the surface of the ground, and makes ideal building material. Early Greek masons learned how to quarry and finish large stone blocks, and architects assembled these blocks into formidable walls. Stone walls could be made higher by adding superstructures of dried brick. Thus, from the Mycenean period onward, major Greek settlements were protected by massive and well-built circuits. This being the case, we might expect that the classical Greeks would have developed effective forms of siegecraft – ways for warriors victorious on the field to get at the wives, children, and goods of their defeated opponents. Yet, once again, our commonsense expectations are confounded. Until the mid-fourth century BC, Greek poliorcetics remained rudimentary, and well-walled cities were usually secure from enemy attack.
For most of the Archaic and Classical Periods neither the natural obstacles of mountain and ravine, nor the man-made obstacles represented by fortification walls had a place in the central moment of Greek warfare: the clash of the opposing phalanxes in the fair field. But those same obstacles loom in the background of the hoplite battle. Throughout the period of hoplite warfare, obstacles defined the action before and after the trial of the phalanxes. By the late fifth century, man-made obstacles and the exploitation of natural obstacles were becoming increasingly problematic features of the hoplite’s experience of warfare. By the fourth century, natural obstacles were being systematically reinforced by man-made ones and this development led to the end of the traditional Greek way of war.

MOUNTAINS AND ROADS
The potential importance of obstacles in Greek warfare is linked to the physical structure of the polis. The territory of the city-state was often (although not always) delimited by mountain ranges, so that in order to go by land from one city-state to the other, it was frequently necessary to cross a mountain range. Since hoplite armies ordinarily travelled by land, rather than by sea, they often had to traverse mountains in order to invade the territory of a neighboring state (Ober 1985a: 111–29). If the war was against a more distant foe, several mountain ranges would have to be crossed (Hammond 1954). The mountains of central and southern Greece are very rugged, and they are characterized by deep gorges and dry-washes, the result of torrential seasonal runoff. Because of this morphology, it is not possible to cross the mountains just anywhere; only a few routes are available across any given range which avoid excessively steep slopes and gorges, and which take advantage of natural passes (Ober 1985a: 111).

Adding to the difficulty of the mountain obstacle was the fact that the hoplite army did not travel light. Hoplite arms and armor were much too hot and heavy to wear in the summer while marching across difficult terrain (Hanson 1989: 60–3). This meant that armor and weapons had to be transported, along with several weeks’ rations, for each hoplite and his attendants. Perhaps in some ‘next-door-neighbor’ campaigns, the baggage could be carried by the hoplites and their attendants alone. More often, however, baggage was hauled either on the backs of pack-animals or in ox-drawn carts. In either case, this meant a quantum leap in the size of the marching column, since at least some of the fodder for the pack/draft animals would also have to be carried along. Thus, even quite a small hoplite army – consisting of only a few hundred actual fighting men – would require a very significant baggage train. Large bodies of men accompanied by pack-trains or wagons cannot make effective use of narrow shepherd paths. Carts, especially, must stick to roadways that maintain minimum tolerances in terms of grade, width, and switchback design. Thus, the hoplite army was restricted to established routes across the mountains and the ideal was always a route that had been built into a properly designed highway.

Modern topographers (e.g. Hammond, Pritchett, Vanderpool, and Van de Maele) have traced the routes of a number of quite well-built, pre-modern roads in the mountains of central and southern Greece. Many of these roads are very impressive in their design and execution. Stretches of ‘Edward Clarke’s Road’ to Marathon, the ‘Road of the Towers’ in the northwestern Megarid, and the ‘Panakton Road’ in north-central Attica were studied by surveying teams under my direction. We found that these roads maintain very steady grades across extraordinarily difficult terrain. The grade is maintained by the use of frequent and well-designed switchbacks; in some cases the roads are wide enough to accommodate cart traffic. In order to maintain a constant width, the road-builders cut deeply into bedrock on the uphill side, and built massive rubble-stone retaining walls on the downhill side. Uphill stone embankments across drainages ensured that seasonal flooding would not wash out the roadway. Road metal, probably in the form of packed broken rock, smoothed the surface of some sections of the highway. The existence of wheel ruts (worn or cut grooves in the bedrock of the roadway) demonstrates that at least some ancient mountain roads were used by wheeled traffic.

Pre-modern roads are usually difficult to date, but in some cases (e.g. the ‘Road of the Towers’ across the Megarid, the ‘Koulouriotiko Monopati’ across western Attica) the presence of datable classical remains (buildings or graves) along the line of the road confirms the hypothesis that the road was built in classical times. In sum, roads across mountainous borderlands were built in the Classical Period, and these roads could be used by hoplite armies.

It is worth asking the question, ‘who built these classical roads – and why?’ Some Greek roads display the same sort of architectural skills evident in the design of classical Greek temples and public buildings. It is impossible to believe that they were simple improvements
most bulk trade in heavy goods went by sea, and there was and farm and been carried along, but adequate it would sometimes
Furthermore, when camping in the unpleasant. 13
have have hoplite to meet his opponent. home
walls
find;
was part of everyday life.
I, "effected by local amateurs to facilitate everyday traffic on existing paths. Rather, they must have been surveyed, designed, and built by experts who possessed considerable engineering ability. There is no evidence for the existence of large-scale overland trading companies in classical Greece that could harness the technical engineering skill or the manpower necessary to construct and maintain highways across international borders. As in the case of temples and other sophisticated structures, it is necessary to suppose that mountain roads were public projects, built by state authorities.

Why would a Greek polis undertake the expense of building a road – especially one across its own frontier? The obvious first guess might be to facilitate trade. But in most cases this hypothesis seems unlikely. Overland trade between poleis was limited in volume, and was not typically a matter for state involvement. The reason for this state of affairs was not so much a cultural disinterest in trade, but rather the relative ease and much lower cost of water-borne shipping. Thus, most bulk trade in heavy goods went by sea, and there was relatively little economic incentive for building roads.

The roads of classical Greece were not casual improvements by local residents, and were not built to link commercial markets. Rather, most of the classical roads across Greek mountain ranges are best explained as military highways – designed by military engineers and built and maintained with the labor of the armies that used them. The recognition that hoplite battles often required a long march across mountainous terrain, along with the assumption that roads across the mountainous borderlands between poleis were built and maintained by hoplite armies, adds to our understanding of the hoplite's experience of war.

The brief and bloody business of actual fighting was, for the offensive hoplite force, invariably preceded by a long, dusty, sweaty, thirsty hike. In most cases this hike would involve bivouacking in the field, perhaps under canvas, perhaps in the open. Rainstorms are rare in central Greece during the summer campaigning season, but when they do come they are torrential and would make the unsheltered hoplite's life very unpleasant. Furthermore, when camping in the mountains, level terrain is often hard to find; it would sometimes have been necessary for each hoplite or group of hoplites to build a stone platform into the steep hillside on which to pitch tents or spread bedding. Food would have been carried along, but adequate water must have been a real problem. Hiking in the dry summer heat of central Greece requires drinking great quantities of water to maintain one's health and strength. The hoplites, their attendants and the pack/draught animals all required drinking water; the daily water requirements for even a small army would be tremendous. In some areas, it would not be easy to procure the required amounts, and thirst would then torment man and beast alike.

The work of the march would not be limited to hiking and making camp. If it were necessary to build a roadway from scratch, the labor involved would be prodigious, but even maintenance roadwork could be tough and time-consuming. Rock-cutting with simple tools is very hard work. Hauling stone for building retaining walls is exhausting. And all this labor would be done under time pressure, since the campaigning season was short (Hanson 1989: 32–3). Some of the work might be done by attendants, but the need to get the road through surely required that the hoplites put their own backs into the chore. There is nothing incongruous about the image of free citizen and slave-attendant working side by side; Athenian citizens worked beside metics and slaves in other public building projects.

In the context of hoplites as road-crews, it is important to remember that the hoplite soldier was, most typically, a citizen-farmer who ran his small plot by the sweat of his own brow and the labor of family members. Most Greek farmers had to build and maintain fences, often these were of stone (Hanson 1983: 37–8). For a farmer, whose land included any hilly area, the business of hauling rock to build and maintain retaining walls was part of everyday life. Thus the grunt-work of road building would be a continuation of the labor performed by the citizen-soldier in his ordinary life, but with this exception: as a farmer he worked alone, or with his family and/or close neighbors. As a soldier he worked as part of a greater community of citizens, in a project that was likely to earn him no personal reward. The rough labor of road building and maintenance thus helped to integrate the everyday, private life of the individual citizen with the strange and frightening realm of military duty and self-sacrifice. Perhaps, then, the work of roadbuilding was reassuring to the Greek hoplite, despite the toll it took in arduous labor. The toilsome march across the borderland erected a bridge of familiar manual labor between the day-to-day existence of home and farm and the nightmare of the battlefield. The psychological bridge of common labor helped prepare the hoplite to meet his opponent.

The Greek soldier's work on the military highway not only provided a way into enemy territory, it represented the route home. If the battle resulted in victory for the invaders, the road might not seem
so important; the homeward march would be orderly, even leisurely. But if the invaders were beaten in battle, the road he had built was the hoplite’s lifeline. A good road out of enemy territory was the defeated soldier’s best chance to make good his escape. The horror of defeat in battle would be doubled and trebled if the pursuing enemy were able to chase the beaten soldiers along narrow paths well known to the native, but strange to the invader. Consider the situation of the defeated Athenian army in Aetolia in 426 BC. After the Athenians turned to run

Many were killed after rushing down into dried-up water-courses from which there was no road up or in other parts of the battlefield where they lost their way. The main body, however, took the wrong road and rushed into the forest, where there were no paths by which they could escape and which was set on fire by the enemy so that it burned all round them. Everything, in fact, which could happen in a flight happened to the Athenian army, and men perished by every form of death.

(Thuc. 5.98.1–3, trans. Warner)

A well-built military highway, whose every switchback was familiar, represented the defeated army’s best chance for effecting an orderly withdrawal from enemy territory. Thus, the product of his labor symbolized the hoplite’s hope of returning home safely. During the hours the soldier worked as a member of a road-crew, he was buying insurance that could be cashed in when worse came to worst on the battlefield.

We can imagine, then, the hoplites in the invading army working quite cheerfully at their sweaty road-building labors, despite the heat, thirst, and discomforts of the marching camp. But what of the residents of the territory to which the road led? It is hard to suppose that the citizens of a neighboring state could be ignorant of the intentions of road-builders hacking their way through the mountains. Shepherds, beekeepers, or others who used the mountains in the summer would relay the report of the construction, even if formal watchposts had not been established. Why, then, did the citizens of the threatened state not take preemptive action against the advancing invaders? When, occasionally, fifth-century Greek armies did occupy passes against their fellow Greeks, the defenders sometimes prevented the enemy from even attempting the crossing. Other pass-holders found that their uphill position made it easy to slaughter approaching hoplites with projectile weapons.

Yet, despite its effectiveness, the tactical ploy of temporary occupation of mountain passes by Greek armies seems to have remained quite rare before the late fifth century. No city-state adopted a coherent strategy of blocking passes into their territory until the fourth century (see p. 190). Why did Greeks allow a military highway to be constructed into their territory, in full knowledge that this road would allow their enemies easy access to their homelands, and an easy escape route even if the invaders were defeated? Of course, military roads were not one-way streets, and this year’s defenders could be next year’s invaders. Perhaps an element of optimistic calculation was sometimes involved in the decision: let our enemies do the work to build the invasion route that will in the long run do us more good and them more harm.

But more to the point, blocking the road would have been a breach of the unwritten rules of hoplite combat. The goal of invader and invaded was ordinarily identical: to set up a decisive battle in the open plain, rather than to avoid battle by clever stratagems. The Greek military ethos no more allowed the ordinary hoplite army to ambush the invaders in the hills than the aristocratic code allowed an eighteenth-century duelist to consider bushwacking his opponent on the way to the duelling ground. In both cases the conflict was an affair of honor, fought according to established conventions, between moral (if not physical) equals (cf. Connor 1988).

The unwillingness of the invaded to take advantage of the natural obstacles that had to be overcome by invaders reveals the essentially agonistic nature of hoplite conflict: a form of warfare that could only be engaged in by men who had agreed (formally or informally) on the nature of weapons, armor, and formations that would be permitted to the field of honor. This agreement did not make the ensuing battle any less fierce or more ‘civilized’ – but it did permit the battle to take place, and contained the bloodshed within a few hours. The importance of natural obstacles also alerts us to the fragility of the hoplite agon as a system of warfare. As soon as defenders began to take advantage of difficult terrain in order to prevent the incursion of enemy forces, the entire system of hoplite-battle conflict resolution would be upset, and a new form of warfare would necessarily replace it. This, as we shall see, is what happened in the fourth century.
FORTIFICATIONS AND POLIORCETICS

Consideration of the second primary category of obstacles – man-made walls, ditches, and so on – further clarifies the context in which the hoplite battle took place. The fortification history of most archaic Greek cities remains obscure, but there is good evidence for a city wall at Athens by the mid-sixth century, and other major cities were probably walled by this period as well. Certainly by the fifth century, circuit walls were standard for a proper polis. The Spartans were the peculiar exception (as in many other areas) because they refused to wall their central settlements. For most Greek cities, walls were an important symbol of autonomy and strength and might even be decorated with apotropaic symbols and relief carvings of gods to avert evil and protect the city. Walls could be constructed of solid stone, or with a stone socle topped by courses of mud-brick. In either case, the walls were erected wide and high, and were an efficient barrier against assault.

Hoplite warriors were not, as a rule, effective assault troops. In the early to mid-fifth century the Athenians had a reputation as being better at it than most, but that reputation seems to be based on their destruction of the Persian camp after the battle of Plataea, hardly a typical assault action. There are relatively few reports of attempted (and fewer of successful) assaults on strongly fortified positions by hoplite armies before the period of the Peloponnesian War. Several campaigns during the Peloponnesian War itself demonstrated how poor hoplites were at capturing even small, seemingly vulnerable, and ill-manned fortified places.

The inefficiency of hoplites as practitioners of poliorcetics cannot be laid to a generalized disinclination of ancient heavy infantry to assault walled positions. During the imperial period of Assyrian history (ca 800–600 BC), the Assyrian heavy infantryman time and again proved his ability to take strongly fortified cities. The Assyrians used projectile (especially arrow) barrages and battering-rams, along with scaling and mining techniques against major walled cities, with impressive results. Like that of the Assyrians, the Roman army was very good at siegecraft. There is no reason to suppose that towns of sixth- and fifth-century Greece were any better fortified than (e.g.) Phoenician cities of the eighth and seventh centuries or the Italian towns of the fifth, fourth, and third centuries. If Assyrian and Roman infantrymen could take fortified positions by storm, what was wrong with Greek hoplites?

HOPLITES AND OBSTACLES

There were only three approaches to assaulting an ancient city wall: the attackers must go over, under, or through it. For a variety of reasons, both to do with arms and armor and to do with the ethos of Greek combat, none of these approaches was at all attractive to the hoplite warrior.

Going over the enemy’s wall meant, for most classical Greek armies, using ladders. Ladder assaults were considered to be at least theoretically possible by Aeschylus, who in Seven Against Thebes (466–7) describes the shield of Eteokles as depicting ‘an armed man climbing the rungs of a ladder/towards the tower of his enemies, wishing to sack it.’ One of the panels of the Xanthian Nereid Monument (ca 380 BC) depicts three hoplites (helmeted, carrying shields) ascending a ladder, under protection of covering fire from archers on the ground. Ladders would have to be built by the besiegers with materials scavenged on the spot, or assembled from wooden components brought from home. In any event the ladders would be tall, narrow, flimsy, unstable, and flammable.

The city’s defenders would be massed at the top of the wall (e.g. Euripides, Phoinissai, 1137–8), ready to make life as nasty as possible for those coming up the ladders. As soon as the assault ladders were in place, the defenders would attempt to throw them down – along with any hapless soldiers who might be clinging to them. Aeneas the Tactician (36, cf. Garlan 1974: 174–6 with fig. 2) describes a simple swinging rig that defenders could use to sweep ladders from their walls. The defenders on the wall above had gravity on their side, and could drop heavy stones on the enemy below. Furthermore, many city circuits were enfiladed by towers, meaning that defenders in the towers could get easy bowshots at the assault troops. The hoplites scrambling up the ladders could not, of course, fire back.

The ladder-climbing soldier had to haul himself, and approximately 70 lbs (31.7 kg) of armor and weaponry (Hanson, chapter 3 in this volume, n. 1) up the rungs. Hoplite armor, heavy and rigid, severely restricted its wearer’s freedom of movement. His breastplate hampered the free upward extension of his arms; his legs were encased in constricting greaves. As a result, the climbing hoplite’s movements were ill-coordinated; his progress up the ladder would necessarily be slow and clumsy. For a painfully long time he represented an easy, almost defenseless target to defenders on the walls above and on the towers to his sides, who would hurl and shoot whatever was to hand at the attacker’s head, back, shoulders, and arms: certainly stones, perhaps also javelins, arrows, and torches.
Because of his defenseless position in relation to the threat from above, a strong helmet was essential to the ladder-climbing hoplite (cf. the helmeted hoplites on the Nereid Monument). The face-enclosing and neck-protecting Corinthian style helmet would offer a much greater degree of security against bombardment than would the lighter Boiotian helmet. Yet, the same heavy Corinthian helmet that might deflect missiles away from the hoplite's head and neck completely obscured his vision. At best, the Corinthian helmet allowed very constricted visibility to a man looking straight ahead (Hanson 1989: 71-2); it would be virtually impossible for the ladder climber in a Corinthian helmet to see up. Thus he climbed blind, through a hail of missiles that must have deafened him if they did not kill him, unsure even of where the top of the wall was, certain only in the knowledge that if he did live to get to the top, he would be at a terrible disadvantage.

The hoplite's shield was normally his best protection, but it would be worse than useless to him on the ladder. Unlike earlier models of shield, the hoplon lacked the strap that would allow it to be easily slung on the hoplite's back, although perhaps such a strap could be jerry-rigged. But even if a strap were rigged up, the shield would be more bother than aid. The enemy was to the side (in the towers) and above, so the shield hung on his back would offer no protection from the former, and little from the latter. But it would add considerably to the weight he carried, and would tend to drag him backward and unbalance him on the ladder.

As he mounted the ladder the hoplite must have felt a terrifying sense of aloneness. His experience of proper, phalanx battle (hellish as it was) had always been as a member of a close-knit group, whose members were in constant physical contact with their fellows, both front to back and side to side. The hoplite on the ladder was essentially alone. There might be a man ahead of him or behind him (cf. the Nereid Monument frieze), but he had none of the usual comfort of being one of a mass of friendly comrades. And when (or if) he did achieve the top of the wall, he was surrounded by enemies. If he had brought his shield, he now had to unsling it, if he did not, he was an easy target. In any case there were no comrades by his side, no one to watch his back. His chances of survival were slim. There was little hope of striking an effective blow and no hope of retreat. In short, going up the ladder was suicidal, and death would come in a lonely, ugly way. The situation is graphically described by Euripides:

How am I to tell how Kpaneus went mad?
For grasping the rungs of the long ladder
He ascended and boasted thus
That not even the sacred fire of Zeus would
Hold him back from seizing the city and its lofty towers.
Calling out these things while being stoned,
He crept up having drawn up his body under his shield
Passing up the smooth rungs of the ladder.
Just as he reached the cornice of the wall
Zeus struck him with his bolt; the earth rang
So that all were terrified. From the ladder
He was hurled, his limbs spreading apart,
Hair towards heaven and blood to the earth.
His arms and legs like the wheel of Ixion
Spun; the fiery corpse fell to earth.
(Eur. Phoinissai 1172-86, trans. Childs, City Reliefs)

A worn frieze from the Heroon at Trysa (ca 370 BC) depicts the likely aftermath of mounting the ladder: a hoplite falling head over heels through space, his round shield tumbling behind him, his ladder broken. These artistic and literary references demonstrate that ladder assaults were conceivable, and were presumably actually attempted. But they leave little doubt as to why there is such scant evidence for hoplite armies resorting to the 'over the top' option.

Going under the enemy wall meant digging beneath the wall in order to cause it to collapse. In many cases this was simply not an option, because the wall was constructed of stone blocks set on foundations cut into the bedrock (Lawrence 1979: 201-5). Only when the foundations of the wall were laid in fairly deep soil could undermining be attempted. Digging was hot, nasty work. Unlike rock cutting and hauling, tunneling was not the sort of labor that a peasant soldier would undertake as part of his normal agricultural round. Rather, mining was (especially for the Athenians, who gained much of their state revenue from the silver mines of south Attica) prototypically the work of the slave, and thus was regarded as labor beneath the dignity of the free citizen. Not only was the work of tunneling uncomfortable and degrading, it was dangerous: tunnels that were inadequately shored up could collapse suddenly, burying the tunnelers alive.

As soon as the defenders realized that the besiegers were trying to
undermine their walls, they would immediately enact countermeasures. They might detect the precise location of the enemy tunnel by placing the concave side of a shield on the ground, and using the shield to amplify the sounds of excavation (Hdt. 4.200). Once the defenders knew where the tunnel was heading, they could engage in counter-mining and so catch out the tunnel-diggers from above or below. The men in the tunnel would be without armor, unarmored (except for their picks and shovels), and completely unprepared for battle. Like moles dug out by a gardener, they would be slaughtered by the enemy without hope of striking a blow in their own defense. Little wonder, then, that there is no securely documented example of an early classical Greek assault based on mining.

The third option, going through the wall, was also dangerous, but at least it allowed the hoplite the advantage of fighting, and dying if need be, in the company of his fellows and with his feet planted on the ground. Going through the wall, in the days before the invention of effective barrage-artillery (see p. 192) meant using battering rams to knock down a gate. There was not much hope of breaching the thick, double-faced and rubble-packed stone wall itself. The wooden gates were the weakpoint, and might be smashed open if the attackers could bring sufficient weight and forward momentum to bear in horizontally directed blows. The shaft of the ram would ordinarily be a tree-trunk; its head might be of bronze – perhaps decorated with rams' heads, as in an example dedicated at Olympia. Only quite heavy battering rams would be effective, and, of course, the heavier the ram, the less offensive and defensive equipment the ramming crew could carry with them.

Greek military architects were well aware that the gate was the weakest part of any circuit; consequently they lavished considerable ingenuity on making gates difficult to approach and easy to defend. Some simple gates were flanked by massive towers, from which the defenders could safely attack the rammers from above and from the sides. Often the right-side gate tower (thus on the attacker's left) was built bigger, so as to give the defenders an especially good shot at the attackers' vulnerable unshielded side (e.g. the Athenian fort of Rhamnous). Somewhat more sophisticated was the 'overlap' style of gate (e.g. Mantinea) which forced the attackers to approach the gate itself through a corridor flanked on both sides with extensions of the city walls, walls that would, of course, be lined with defenders.

But perhaps most diabolical, from the attackers' point of view, was the gate-courtyard (e.g. the Athenian Dipylon Gate). In attacking this style of gate, the invaders had first to break through an external gate, often defended by towers. If they succeeded in this, the attack troops entered a small courtyard. A second gate, at least as strongly built as the first, lay at the end of the courtyard. The courtyard was designed as a killing ground: the besiegers were now surrounded by defenders on the walls and towers above. Until they broke the second gate the invaders would be pounded by a barrage of missiles from all sides. Although the hoplite on a ramming crew had the comfort of his fellows at his side, and he might be protected by a mantlet of some sort (Lawrence 1979: 42), his chance of survival was not much greater than the ladder-climber's. Unless the defenders jumped down into the courtyard, the attacking hoplite had no way of returning the fire of his tormentors above. Indeed, since he had to use at least one arm to hold even a light ram, his choice must have been whether to carry a shield or a spear – a devilish choice between being unarmed (but for a sword), or undefended (but for body armor) if he succeeded in breaking through the second gate.

Even if the assault crew did manage to break into the city by any of the means discussed above, the battle was still far from won. The residential areas of Greek towns built before the early to mid-fifth century were seldom designed on an orthogonal street plan. Rather, most of the city was characterized by a hodge-podge of narrow, winding streets and dead-end alleys. The streets were fronted by houses which often featured conjoined walls. Until they fought their way to the central agora (assuming they could find it), the intruders had no hope of forming a proper phalanx. Rather, they would find themselves in a running street fight, a form of warfare in which their heavy armor and unwieldy shields would be of little use. The ordinary rules of hoplite combat did not pertain in the case of intra-urban warfare. The defenders had the advantage of intimate knowledge of the street plan, and could use that knowledge to set ambushes and booby-traps for the invaders. Furthermore, once the attackers were within the walls, persons who were ordinarily noncombatants would take an active part in the resistance. Women, children, old men, even slaves, could stand on the rooftops bombarding the invaders with a hail of stones and heavy roof tiles: the third-century general Pyrrhus died in a street fight, struck on the head by a roof tile hurled by an Argive woman (Plut. Pyrrhus, 34.1-3). All the horrors of the street fight were suffered by Theban troops who were introduced into Plataia in 431 bc.
Twice or three times [the Theban hoplites] succeeded in beating off the assault, and all the while there was a tremendous uproar from the men who were attacking them, and shouting and yelling from the women and slaves on the roofs, who hurled down stones and tiles. . . . Finally they lost heart and turned and fled through the city, most of them having no idea, in the darkness and the mud . . . of which way to go in order to escape, while their pursuers knew quite well how to prevent them from escaping. The result was that most of them were destroyed . . . only a few of them got away . . . others were cut down here and there in different parts of the city . . . finally the . . . survivors wandering about in the city handed over their arms and surrendered unconditionally to the Plataians.

(Thuc. 2.4. trans. Warner)

Furthermore, as the Theban survivors learned, the invaders could expect no mercy if their attack faltered - the town residents, driven to a frenzy of anger and fear by the incursion into the normally sacrosanct realm of the city, would massacre the intruders if given a chance (Thuc. 2.5.7).

The problems faced by the individual hoplite soldier in attempting any of the approaches to assault discussed above were horrendous. His chance of survival was slim, and his death would come in a fashion inappropriate to his ideals. No hope of a noble death with 'all wounds in the front.' No praiseworthy demise while holding the line, or breaking the enemy ranks. Instead, death would come from above, from the side, visited upon him by an enemy he could not reach. Almost any wound suffered in an assault would be fatal, since in the fray there was little hope of a wounded man being evacuated by his comrades. If killed, his body, pierced with humiliating wounds in side and back, and his armor would belong to the enemy. It is hardly surprising that descriptions of frontal assaults on fortified positions are rare in classical Greek texts.

In lieu of the assault, a besieging army might try two possible approaches to taking an enemy city. The easiest, and most likely to be successful, was finding a traitor to open a gate and introduce the invaders into the city under cover of darkness. A convenient traitor might not be easy to locate in a city fully at peace with itself. But in late fifth- and fourth-century Greece the rash of civil wars between oligarchs and democrats created significant numbers of men willing to let in an enemy who promised to support their political agenda. The problems hoplite armies faced in undertaking either assaults or long-term sieges underline just how 'voluntary' hoplite battles really were. The warriors of the invaded state could always avoid battle simply by staying within their fortified enclave. The enemy could not

Aeneas the Tactician, author of a mid-fourth-century treatise 'On the Defense of Fortified Positions,' spends relatively little time on defeating frontal assaults, but was obsessed with treason and its prevention. Aeneas, probably an experienced mercenary captain, saw internal subversion as considerably more dangerous than poliorcetic science. Even if attackers were successfully smuggled in by a traitor, however, they still faced the horrors of the streetfight, as the Thebans learned in Plataia.

The other non-assault technique used to defeat the wall-obstacle was blockade-siege. This approach was only practicable for a very large army against a relatively small city. The sole way to ensure that supplies were not brought in to the besieged, while simultaneously containing the danger of counter-attacks from within the city, was to build a wall around the whole of the enemy's city. Counter-wall-a huge circuit like that of classical Athens was obviously out of the question, since the attackers could never man the many miles of wall that would have been necessary. The building of a counter-wall was a major undertaking, and would require hauling great quantities of materials (especially timber) from far away.

A full blockade-siege required a very large army, and one willing to serve continuously for a very long time. The enemy trapped within always enjoyed the advantage of internal lines of movement. Hidden from view behind their walls, the defenders could quickly mass their troops at a specific point just within the walls and sally out from a gate or postern. If the defenders did not have enough men permanently stationed in the threatened sector they would have a hard time containing the breakout. The besiegers' external lines of deployment (outside their makeshift wall) made it hard for them to concentrate troops against the sallying defenders. These difficulties help to explain why it took a good part of the combined Theban-Peloponnesian army (Thuc. 2.78.1–2) two years to reduce Plataia, a small town (Thuc. 2.77.2) protected by only a few hundred men (Thuc. 2.78.3), and why many of the Plataians could succeed in effecting a night escape. Given the relatively small numbers of hoplites that could be fielded by the average Greek polis, and the requirement that most of them return to their farms after a short campaigning season, circumvallation strategies were not often a real option.

The problems hoplite armies faced in undertaking either assaults or long-term sieges underline just how 'voluntary' hoplite battles really were. The warriors of the invaded state could always avoid battle simply by staying within their fortified enclave. The enemy could not
get in without inordinate and dangerous efforts – efforts that they were reluctant to attempt. Furthermore, the amount of economic damage the invaders could inflict on agricultural resources was (at least until the fourth century) quite limited (Hanson 1983; Ober 1985a: 33–5). The defenders came out from behind their walls into the field of battle, not because they had to, but because they accepted a code of military behavior that made the risk of death in a short battle in the open field seem preferable to the protracted and indecisive struggle between inefficient attacker and unwilling defender. Greek hoplite warfare was carried out within a relatively homogeneous cultural matrix. Because Greek defenders ‘played by the rules’ and seldom locked themselves in, Greek attackers had little need of the tactics or the projectile weapons suited to siegecraft. There is an important contextual difference between early classical Greek warfare and Assyrian and Roman warfare. The Greeks developed their agonistic style of battle by fighting one another. Assyrians and Romans fought imperialistic campaigns against foreigners. The victims of Assyrian and Roman expansionism often saw in the defense of their walled towns their only hope for independence. Thus, unlike the Greeks, the Assyrians and Romans were constrained to develop effective assault tactics.

Once again, we are struck by the fragility of the Greek system of agonistic conflict resolution, a system of war that was more ritualistic than rational in its set forms (cf. Connor 1988). The danger was ever present that some clever, rationalistic strategist would see that breaking the rules could give his side a huge advantage against traditionalist opponents. What would happen if a major war broke out and one side refused to accept the challenge to battle? What if, furthermore, the other side was neither willing to attempt the difficulties of assault or siege, nor able to find a traitor to let them in? What if neither side were satisfied with the stalemate that resulted? This is the scenario for the Peloponnesian War.

END OF THE AGON

Thucydides’ account makes it clear that Pericles’ strategy at the time of the outbreak of the Peloponnesian War was based on the assumption that as long as the Athenians refused battle in Attica, the Peloponnesians could not win the war. Getting the Athenian citizen-peasants to agree to this strategy took some doing, since it meant putting farms at risk and contravening the unwritten rules of engagement, but Pericles’ political and rhetorical skills were equal to the task (Ober 1985b). The resulting conflict was unlike any in previous Greek history.

The war was not characterized by hoplite battles. In the place of battles between phalanxes there were many other varieties of organized violence – naval skirmishes, sneak attacks, sieges, hit-and-run raids, atrocities against civilians, treason, assassination and double-dealing diplomacy, cold-blooded mass executions of prisoners of war, blockades and counter-blockades, ghastly civil conflicts. The total loss of life and destruction of property entailed in these various actions far exceeded the ordinary toll of hoplite battle. In the end, the Spartans won by adopting a campaign of economic coercion. The strategic plan included permanent occupation of the Athenian homeland and strangulation of Athenian trade routes. The Athenians, who had refused to fight the invader, were ultimately beaten by simple hunger (Ober 1985a: 35–7).

The external forms of hoplite battle survived the Peloponnesian War, but the code of military ethics that had stood in the place of a system of strategy and tactics did not. The fourth century was an age of rational strategic planning by both invaders and defenders. The result was a radical change in the role of obstacles in intra-Greek warfare.

Given the defensibility of passes against hoplite armies, the mountainous nature of inter-polis borderlands, and the dependence of hoplite armies on roads through rough terrain, blocking roads into the home territory was an obvious defensive strategy. Fourth-century writers on military theory, such as Xenophon, Plato, and Aristotle, discussed ways in which the rugged borderlands could best be defended against enemy incursions (Ober 1985a: 75–80). Theory and practice went hand in hand. Passes were now frequently guarded against invaders, often successfully. Athenian light-armed troops prevented a Spartan army from using the cart road through the Kaza Pass in 379 bc, and Boiotian troops held a pass on the Road of the Towers in 376 bc against another Spartan force (Ober 1985a: 204). When Thebes was preparing to invade Laconia after the battle of Leuctra, the Theban soldiers feared that Spartan territory would be difficult to break in to, due to the presence of garrisons (phrourai) at the passes (Xen. Hell. 6.5.24).

The natural difficulty of rough terrain could be enhanced by man-made obstacles. In some cases defenders built field walls and ditches to enclose vulnerable territory.43 The ideal was to keep the enemy out of
The roles played by the ordinary Greek warrior were drastically altered and multiplied as the result of the century of revolutionary military change that began with the Peloponnesian war. Many hoplites were forced to go into mercenary service when their local economies were wrecked by the drawn-out indecisive warfare typical of the age (Ober 1985a: 45–50). No longer a citizen-soldier who occasionally fought side by side with his neighbors in defense of home and country, the mercenary was a professional who fought constantly for pay and plunder, beside men of diverse backgrounds, in the service of any one of dozens of city-states, or for the Persian king, an Egyptian dynast, or an ambitious satrap. Even if he fought only as a citizen of his polis, the fourth-century soldier could not be just a hoplite. In the fourth century the Athenians instituted formal weapon-training for their young men. These ephebes were taught to use hoplite equipment indeed, but also how to use javelins and catapults — weapons well suited to the defense of fortified positions (Aristot. Ath. Pol. 42; Ober 1985a: 90–5). The fourth-century Greek soldier faced not only the exertions of the march and terror of phalanx battle, but also the long, dull grind of garrison duty in fortress or isolated watchtower.

By the mid-fourth century BC the military center of gravity of the Greek world had shifted north, to Macedon. Philip II introduced, or adapted, a number of Greek strategic and tactical innovations, many of which were in the area of poliorcetics. His men were expected to carry their own food and gear, which allowed them to dispense with baggage trains. As a result, Macedonian troops could move fast, and could use paths unsuitable for the baggage-encumbered hoplite army. This maneuverability meant that Philip often arrived at key passes before he was expected; thus, for example, he was able to surprise and destroy a force of mercenaries at Phocian Elatea in 339 BC and set up the decisive battle of Chaeronea.

Philip was a master of diplomatic chicanery, and sensibly preferred to take strong positions by the use of traitors when possible. But if he had to assault a fortified position, his men were ready to make the attempt. Unlike traditional hoplites, Philip’s soldiers were full-time professionals. Unlike mercenaries, they fought beside trusted comrades, for king and country. They had the training, the experience, and the morale necessary to be superb assault troops. Philip’s men proved themselves able to take major cities (e.g. Olynthus) by assault. Their success was not just a matter of morale and training, however. The many sling-bullets inscribed with Philip’s name found in the archaeological excavations at Olynthus demonstrate that, like the Assyrians before them, the fourth-century Macedonians had learned the usefulness of projectile barrage in siegecraft.

The problem of overcoming man-made obstacles led to technological advances which resulted in the development of the world’s first efficient siege artillery. The non-torsion (crossbow style) catapult was invented in Syracuse in 399 BC, as an assault weapon (D. S. 14.41.4, with Marsden 1969: 48–56). But artillery technology was quickly adapted to the purposes of defenders. By the second quarter of the fourth century, fortress towers often incorporated specially designed catapult chambers (Ober 1987a). Catapults could also be adapted for use as field artillery. Philip suffered one of his rare defeats when his army was bombarded by Phocian troops using stone-throwing catapults in 352 BC (Polyaen. 2.38.2, Marsden 1969: 59–60).

Catapult artillery was a further threat to the traditions of hoplite battle. The bolts and stones thrown by catapults were deadly at longer ranges than javelins, sling-bullets, and arrows. Now, a man in full armor was defenseless against projectiles hurled from a machine hundreds of yards away, fired by a mere technician. Instead of a few moments of vulnerability to light projectiles during the last stage of the charge (Hanson 1989: 31), the hoplite now had to fear absolutely lethal projectiles any time he was within 200 or 300 yards (180 to 270 m) of the enemy force or the enemy wall. Little wonder then, that when the Spartan king Archidamus first saw a catapult demonstrated,
HOPLITES

He reportedly cried out in anguish 'Man's valor is no more' (Plut. Mor. 191E, 219A; cf. Garlan 1974: 172-3).

By about 340 BC Macedonian military engineers had made a major breakthrough in artillery technology - the development of the torsion (hair- or sinew-spring) catapult (Marsden 1969: 56-62). Torsion catapults were much more powerful than the old non-torsion models. Artillery capable of smashing even well-built stone walls now became a major factor in assaults. This new weapon paved the way for the great siege successes of Alexander the Great and the Diadochoi. Few cities could hope to withstand storming by a Macedonian army, but the spectacular resistance of Rhodes to Demetrius Poliorcetes in 305 BC showed that there was still hope for defenders - and that hope led to a long era characterized by long, bloody, sieges. Josephus' description of the Roman siege of Jerusalem in the first century AD, with its graphic scenes of assault, counter-assault, constant artillery barrage, and endless, senseless killing, gives some idea of how urban residents experienced the new style of warfare.

From the late fifth century BC onward, obstacles would play a central part in actual combat, as well as in the stages of conflict before and after battle. The use of obstacles for strategic and operational advantage led to a style of warfare in which open battle was just another tactical ploy in a general's bag of tricks. The urge to fight the decisive battle could never be completely eliminated. Indeed, the improvements in siege techniques provided a practical incentive to the residents of an attacked city to take their chances in the fair field. But the days when an hour's battle could solve conflict between independent states for a year or a generation were past. The long, complex, and ugly western tradition of war as strategy, war as a profession, and war as a technological problem, had begun. With that strategic, professional, technological tradition the seeds were sown of wars that exterminated entire cultures and would come to threaten the extinction of the human race.

NOTES

I would like to thank Victor Hanson for his very helpful comments on earlier drafts of this chapter. The fieldwork discussed below was made possible by grants from the Research Office of Montana State University.

Works referred to by author alone or with short title or date are cited in full in the Bibliography to this volume.

2. On history of Greek wall-building, see Winter 1971; Lawrence 1979.

4. In the Athenian retreat from Syracuse in 413 BC, the hoplites exceptionally carried their own rations because of a lack of attendants and distrust of those they did have (Thuc. 7.75.5). Rations and attendants: D. Engels, Alexander the Great and the Logistics of the Macedonian Army (Berkeley, 1978), 123-30; Pritchett, War 1, 30-52.

5. Pack-animals and carts: Engels (supra n.4) passim (emphasizing pack-animals); N. L. Hammond, 'Army transport in the fifth and fourth centuries,' GRBS 24 (1983) 27-31 (emphasizing carts); Pritchett, Topography 3. 181-96; Engels (supra n.4) 12-24. My student, John MacLeod (Montana State University), points out in a paper based partly on personal experience and interviews with horse and mule packers that a significant percentage (in his experience one to three animals in twenty) will be lame or sore at any given time, and thus suggests that Engels' estimates of the number of pack animals needed by an army may be somewhat low.

8. Wheel ruts are found, for example, on the Coastal Pass Road from Megara to Eleusis: Ober 1985a: 128. See Pritchett, Topography 3. 167-81, for full discussion.

9. On which see, for example, J. J. Coulton, The Ancient Greek Architects at Work (Ithaca, 1982).

10. This is the opinion of John Slonaker, a civil engineer with extensive experience in road surveying, who worked with me on ancient Greek roads in 1983.

11. Cf. J. B. Salmon, Review of Pritchett, Topography 3 and 4, CR n.s. 35 (1985) 100-3, who suggests that the Hysiai-Tegea may have been built to facilitate metal imports into Tegian territory.

12. Cf. the remarks of K. Hopkins, 'Models, ships and staples,' in P. Garnsey and C. R. Whittaker, (eds) Trade and Famine in Classical Antiquity, Cambridge Philological Society Supp. 8 (Cambridge, 1983) 84-109. Hopkins attempts to bring a nuance to the argument against large-scale ancient trade in bulk goods, but concludes that even at the height of the Roman empire, most trade was short-haul, from farm or village to the nearest market-town. While challenging the universal validity of the famous comment of A. H. M. Jones (The Later Roman Empire 1964: 841) that 'it was cheaper to ship grain from one end of the Mediterranean to the other than to cart it 75 miles,' Hopkins acknowledges the relatively greater cost of land transport (104-5) noting that 'going over a mountain pass cost much more than going over level ground.'

13. Cf. Plut. Tim. 28; Thuc. 6.70; Dem. 50.23; Plato, Resp. 3.404; Xen. Hell. 4.5.3.

14. Cf. Thuc. 7.4.6 and esp. the ghastly scene described at 7.84 in which the Athenian army completely disintegrates when the thirsty hoplites...
HOPLITES

reached a river. The Vathychoia area on the Athenian-Megarian border, along the Road of the Towers, is a good example of an area without a ready water supply: Ober 1985a: 167; Ober 1987a: 592-3.

15. Co-workers: R. H. Randall, 'The Erechtheum workmen,' AJA 57 (1953) 199-210. On the question of the labor required to build a military highway, cf. Polybius (3.54-5) on Hannibal in the Alps. A usable road across the mountains already existed, but it was washed out in one section. Polybius claims that Hannibal spent one day rebuilding the 1.5-stade stretch so that it was usable for horses and pack-animals; three days to make it ready for elephants. Hannibal's men were working at top speed (he feared being caught by autumn storms) and Polybius emphasizes the greatness of the toil. It thus seems unlikely that this building rate would be exceeded by a classical Greek army. I would guess that a mile a week would be about as fast as Greek road-builders could hope to proceed through difficult terrain — but this is only a guess and many factors would affect the actual speed of building operations.

17. Cf. the ease with which the Syracusans were able to use their knowledge of the roads, fords, and passes, to defeat the retreating Athenian army in 413 BC (Thuc. 7.73-85). Examples could easily be multiplied.

18. The raid by Spartan hoplites Sphodrias into Attica in 378 BC was detected by rural residents: Xen. Hell. 5.4.21. The watchpost and border fortification system of Attica may have been elaborated in part as a reaction to this raid: Ober 1985a: 211-13.

19. Cf. the Syracusan destruction of the Athenian army in 413 BC, esp. Thuc. 7.78-7.79.2. For a list of examples, see G. E. M. de Ste Croix, The Origins of the Peloponnesian War (Ithaca, 1972), 190-5.

20. The issue of whether specific sections of given pass-roads were built by different state authorities must remain up in the air until more detailed studies of roads across borders have been carried out. It may turn out to be the case that there are polis-specific 'specifications' (cf. the detailed specifications on Athenian building contracts) as to grade and width; if so, a large enough corpus of measured roads could address the issue of who built a given road.

23. The Athenian reputation for skill at assaults: Thuc. 1.102.2. Rarity of assaults before and during the Peloponnesian War: Garlan 1974: 125-34. According to Plutarch (Per. 27-8, cf. Thuc. 1.116-17), when besieging Samos in 440 BC, Pericles preferred to spend money and time (in a siege that lasted eight or nine months) rather than risk the lives of citizens by attempting an assault. Failed assaults on small fortifications during the Peloponnesian War: Oinoe (Thuc. 2.18-19), Plataia (Thuc. 2.75-8). The

HOPLITES AND OBSTACLES

Spartan disaster at Pylos in 425 BC was set up by their unwillingness to assault frontally even a makeshift fortification (Thuc. 3.3-41).135

25. Cf. Lawrence 1979: 40. The Peloponnesian-Boiotian army at Plataia attempted to build a siege-ramp against the Plataian wall. This project took the entire army (assuming the text is correct) seventy days of 24-hour shifts to build, and ultimately failed (Thuc. 2.75-8). The experiment was not repeated by later Greek armies. Mobile siege-towers were apparently unknown in the Greek world before the Carthaginians used them at Selinus in 409 BC. The technology was adopted by Dionysius of Syracuse at Motya in 397 BC (Lawrence 1979: 42-3); by the mid-fourth century siege-towers were sufficiently well known to be mentioned by Aeneas Tacticus (32.8).

26. Frieze II, Block 872. See W. A. P. Childs, The City Reliefs of Lycia (Princeton, 1978), 22-31, esp. 27; fig. 11, Pl. 10.2.

28. When the Plataeans broke out of their besieged city in winter 428/7 BC, they used ladders to get over the Spartan wall of circumvallation (Thuc. 3.20, 22-3). Notably, the Plataean troops were light-armed and they took the enemy by surprise: first up the ladders were twelve men armed only with daggers and wearing breastplates; next came more light-armed men carrying spears; shields were carried only by the men who came up in a third wave. Of course, this system would not work if the ladder assault had been contested.

29. Stone-throwing: Aeneas Tacticus 38.6. A frieze from the Heroon of Trysa (Interior West Wall, Blocks A 7/8, B 9 = Childs (supra n.26) pl. 14) illustrates defenders on walls and towers, hurling stones and javelins at defenders huddling beneath their shields at the foot of the wall. For a discussion of other artistic evidence (sixth-century François vase, fourth-century Nereid Monument), see Childs, (supra n. 26) 77. Use of stones, javelins, arrows, slings, and fire by defenders: Garlan 1974: 135-47, esp. 135-6; Lawrence 1979: 39-40.

30. Earlier shields with straps for hanging shield across the back: Greenhalgh 1973: 64-74; Snodgrass 1964b: 37-68. The hoplites depicted on the Nereid Monument are carrying their shields on their arms, as usual in combat, and climbing 'one-handed.'

32. Childs (supra n. 26), 31-6, 72-3, fig. 9, pl. 3.

33. Childs (ibid., 68) notes that the motif of the city wall is little used in classical Greek art and that when walls are depicted, it is 'only in set mythological cycles and not in general battle contexts.'

35. The Plataean defenders undermined the Spartan ramp (Thuc. 2.76). Aeneas the Tacticus (37) discusses the use of defensive counter-mines.
HOP LITES

He also recommends ways that enemy miners can be killed by forcing smoke into their tunnels, or pestered by the introduction of bees and wasps! Mining and counter-mining were also common assault tactics in the Near Eastern tradition: Garlan 1974: 131-2, 143-5; Lawrence 1979: 41.

41. The Peloponnesian/Boiotian force at Plataia had a special force of 300 men detailed to counter attempted sallies, but these proved ineffective in the event: Thuc. 3.22-3.

42. Campaigning season: Thuc. 2.57 notes that the longest occupation of Attica during the Archidamian War lasted not more than forty days; difficulties involved with circumvallation: Lawrence 1979: 41-2.

44. Attica: Ober 1985a, Ober 1987b. The definitive publication of the fortification system of Boiotia by John Fossey is forthcoming. Contacts of the fortifications of Corinthia and Aitolia by (respectively) G. Gauvin and J. Scholten are producing evidence for what may turn out to be fortified lines. Macedonia (where the fortifications are not easily dated): A. Rizakis, 'Une forteresse macédonienne dans l'Olympe,' BCH 110 (1986) 331-46.

46. Philip's siegework: Cawkwell 1978: 160-3; Griffith (supra n. 45), 59, 62. Olynthius bullets: Lawrence 1979: 59. Garlan 1974: 202-11; see Philip as inaugurating a new age of effective siegework. Philip's record as a besieger of cities was, however, far from perfect; cf. his failure at Byzantium in 340 BC.

SACRIFICE BEFORE BATTLE

Michael H. Jameson

It is with the gods' help that wise commanders launch an attack, never against their wishes.

(Euripides Erechtheus Fr. 352 (Nauck TGF))

For the Greeks no undertaking was without its appropriate ritual, giving assurance of approval or, at the least, the withholding of hostility on the part of the supernatural. In war, where human life, pride, and prosperity were uniquely at risk, ritual was so conspicuous that it became the paradigm for other human activities. So Xenophon has Socrates say 'You see men at war appeasing the gods before they engage in battle and asking by means of sacrifices and omens what they ought to do. Do you think we should propitiate the gods any the less when we come to engage in farming?' (Oec. 5.19-20). Indeed, every stage of the process that led up to a clash of hoplite phalanxes on the field of battle was marked by attention to the gods. Victor Hanson (1989), writing on the Greek way of war, has brought out vividly the grim reality of the fighting, but he chose not to treat there the supernatural dimension. The aim of this essay is to complete the picture, in colors that will perhaps seem no less lurid than those used to describe combat itself.

For the earliest stages in the sequence of rites we look to the Spartans who offer the fullest examples of religious practice in warfare, though other cities certainly followed the same procedures, no doubt less rigidly and with their own distinctive practices. Once the Spartans had reached a decision on a campaign, the king, who was to lead the expedition, sacrificed in his house to Zeus Agetor ('Who leads out') and other gods associated with him. If the signs observed in this sacrifice were favorable, the 'fire-bearer' (purphoros) carried fire from the altar to the border of the land where the king sacrificed to Zeus...
HOPLITES

but by things, principles, allegories, personified collectives, or (at the most human) by opposing commanders, pitched against one another in single combat. For the same reason, when we have to describe the processes and the results of war, we employ a rich variety of euphemisms. Even the most violently patriotic and militaristic are reluctant to call a spade by its own name.

NOTES

1. W. K. Pritchett, for example, once remarked of scholarship concerning Leuktra that, "there are more reconstructions of Leuktra than any other Greek battle, and the end is not in sight" (War 4.54, n. 159); in this present volume (p. 156, n. 18) Everett L. Wheeler drew similar conclusions of Marathon: there is "publication of at least one article on the battle nearly every year".

BIBLIOGRAPHY

For the period 1918-39 there is a bibliography of Greek warfare in general by F. Lammert in Jahresbericht über die Fortschritte der Klassischen Altertumswissenschaft 274 (1941) 1-114; most recently, R. Lonis has done a similar study for the fifteen years between 1968 and 1983, 'La guerre en Grèce: 15 années de recherche 1968-1983' in Revue des Etudes Grecques 98 (1985) 321-79. The following titles refer to works cited in parentheses in the text. Abbreviations of periodicals follow those found in the Oxford Classical Dictionary.

Adam, J. P. L'architecture militaire grecque (Paris, 1982).
Adcock, F. E. The Greek and Macedonian Art of War (Berkeley and Los Angeles, 1957).
Ahlberg, G. Fighting on Land and Sea in Greek Geometric Art (Stockholm, 1971).
—— 'Cleon's Orders at Amphipolis,' JHS 85 (1965) 1-5.
—— Military Theory and Practice in the Age of Xenophon (Berkeley and Los Angeles, 1970).
Blyth, P. The Effectiveness of Greek Armour Against Arrows in the Persian War (Ph.D. University of Reading, 1977).
HOLITES

Borchhardt, J. Homerische Helme (Mainz, 1972).
Boucher, A. 'La tactique grecque à l’origine de l’histoire militaire,' REG 25 (1912) 300-12.
Carledge, P. 'Hoplites and heroes: Sparta’s contribution to the technique of ancient warfare,' JHS 97 (1977): 11-23.
Dreyer, H. 'Heerwesen und Kriegführung der Griechen,' in K. F. Herman, Lehrbuch der griechischen Antiquitaten II (2nd edn, Freiburg, 1889).
Ducrey, P. Le traitement des prisonniers de guerre dans la Grèce antique (Freiburg, 1968).
— The Origins of War (New York, 1985).
Frazer, A. D. 'The myth of the phalanx scrimmage,' CW 36 (1942) 15-16.

BIBLIOGRAPHY

— Recherches de poliorcétique grecque (Paris, 1974).
Greger, M. Schildformen und Schildeckmuck bei den Griechen (Berlin, 1908).
Hagemann, A. Griechische Panzerung (Leipzig, 1919).
Hammond, N. G. L. 'The main road from Boeotia to the Peloponnesse through the Northern Megarid,' BSA 49 (1954): 103-22.
Hanson, V. D. Warfare and Agriculture in Classical Greece (London, 1983).
— 'Epameinondas, the battle of Leuktra (371 BC) and the 'revolution' in Greek battle tactics,' CA 7.2 (1988) 190-207.
Krentz, P. 'The nature of hoplite battle,' CA 4 (1985a) 50-61.
Kukahn, E. Der griechischen Helm (Marburg, 1936).
HOPLITES

Kanze, E. and Schleif, H. II.-III. Berichte Uber die Ausgrabungen in Olympia: Jahrbuch des Deutschen Archäologischen Instituts 53 (Berlin, 1938) and 56 (Berlin, 1941).
Lammet, F. 'Schild,' 'Schlachtordnung' RE Ser. 2 Vol. 2A.1 (1921).
--- 'Synaspismos' RE Ser. 2 Vol. 4A.2 (1932).
Lawrence, A. W. Greek Arms in Fortification (Oxford, 1979).
Lippelt, O. Die griechische Leichtbewaffneten bis auf Alexander dem Großen (Jena, 1910).
Lippold, G. Griechische Schilde (Berlin, 1909).
Lorimer, H. L. 'The hoplite phalanx,' BSA 42 (1947) 76-138.
--- Early artillery towers: Messenia, Boiotia, Attica, Megarid,' American
HOPLITES

Vos, M. F. Scythian Archers in Attic Vase Painting (Groningen, 1963).
Wardman, J. 'Tactics and tradition of the Persian Wars,' Historia 8 (1959) 49-60.
Warre, J. Warfare in the Ancient World (New York, 1980).
Washington, H. S. 'Description of the site and walls of Plataia,' AJA 6 (1890) 452-62.
Warte, N. 'On the possibility of reconstructing Marathon and other ancient battles,' JHS 84 (1964) 119-39.
Westerman, W. L. 'On inland transportation and communication in antiquity, Political Science Quarterly 43 (1928): 364-87.
Winter, F. E. Greek Fortifications (Toronto, 1971).

INDEXES

I General Index

Acarnania 59, 227
Achaea 210
Achilles 22, 35, 41-2, 109, 112, 121, 240; ethos 123, 125, 128, 137-9, 140, 153-4; shield 211; "painter"
advance, see charge
Aegina 95, 102, 116
Aegyptos 116, 145
Aelian 88, 99
Aeneas Tacticus 138, 164, 181, 186-7, 195-6
Aeschines 165
Aeschylus 87, 91, 96, 101, 112-13, 132, 134, 205, 214, 238, 240, 243
Aetolia 5, 22, 81, 106, 178, 196, 244
Aegilus 8, 20, 30, 33, 102, 137, 142, 145-6, 148, 151, 166, 181, 227
Agesilus 39
Agis 104, 118, 148, 150, 246
agriculture 4-6; see also farmers
Alcæus 106, 129, 130, 229, 236
Alcibiades 115, 138, 141, 149
alcohol, in battle 18, 90, 113, 240
Alypesus 20
Alexander, of Macedon 52, 113, 125, 138, 141, 153, 192, 200, 202, 223, 247; of Pherae 52, 146
Amazons 25-6, 200
Ambracia 45, 54-5
Amphiaros 212
Amphilochus 98, 117-18, 168
Amphiulycon 72, 96
Anakeion 114

Anaxibus 107, 151
Andocides 114
annihilation, of armies 95-6
Antalcidas 27
Antigone 42
Antiochus 35
Apollo 108, 202, 210-11, 231, 240, 244-6
Arcadia 33, 50-1, 214
archers, see missile-troops
Archidamus 50, 61, 90, 92, 114, 120, 168, 191, 196
Archilochos 17-18, 96, 98, 102, 129-30, 132, 144
Ares 205, 209, 211, 215, 229
Arexion 206
Arginieus 44-5, 116, 226
Argos, Argives 42-3, 54-5, 61, 96, 100-1, 102, 105, 113, 140, 148, 185, 205, 215, 242, 245
Aristides 146
aristocrats, in battle 84, 105-6, 122-3, 128-30, 136, 142, 158
Aristodesimos 80, 95, 103, 107, 143
Aristophanes 7, 111, 144, 211, 229
Aristotile 28, 112-13, 114, 133, 138, 158
arms and armor, see panoply, body-armor, shield, helmet
Arrian 88, 99, 110, 200, 223
arrows, see missile-weapons
Artemis 91, 209-11, 214
artillery 28, 184, 191-2, 196; see also missile-weapons
Asclepiodorus 82, 88, 167