A Schumpeterian Model of Top Income Inequality

Chad Jones and Jihee Kim
Forthcoming, *Journal of Political Economy*
Top Income Inequality in the United States and France

Source: World Top Incomes Database (Alvaredo, Atkinson, Piketty, Saez)
Related literature

- **Empirics**: Piketty and Saez (2003), Aghion et al (2015), Guvenen-Kaplan-Song (2015) and many more
- **Rent Seeking**: Piketty, Saez, and Stantcheva (2011) and Rothschild and Scheuer (2011)
- **Finance**: Philippon-Reshef (2009), Bell-Van Reenen (2010)
- **Not just finance**: Bakija-Cole-Heim (2010), Kaplan-Rauh
Outline

• Facts from World Top Incomes Database
• Simple model
• Full model
• Empirical work using IRS public use panel tax returns
• Numerical examples
The Composition of the Top 0.1 Percent Income Share

- Wages and Salaries
- Business income
- Capital income
- Capital gains
The Pareto Nature of Labor Income

\[\text{INCOME RATIO: } \frac{\text{mean}(Y \mid Y > Z)}{Z} \]

Equals \(\frac{1}{1-\eta} \) if Pareto...
Pareto Distributions

\[\Pr [Y > y] = \left(\frac{y}{y_0} \right)^{-\xi} \]

- Let \(\tilde{S}(p) \) = share of income going to the top \(p \) percentiles, and \(\eta \equiv 1/\xi \) be a measure of Pareto inequality:

\[\tilde{S}(p) = \left(\frac{100}{p} \right)^{\eta-1} \]

 - If \(\eta = 1/2 \), then share to Top 1% is \(100^{-1/2} \approx .10 \)
 - If \(\eta = 3/4 \), then share to Top 1% is \(100^{-1/4} \approx .32 \)

- Fractal: Let \(S(a) \) = share of \(10a \)'s income going to top \(a \):

\[S(a) = 10^{\eta-1} \]
Fractal Inequality Shares in the United States

From 20% in 1970 to 35% in 2010

A Schumpeterian Model of Top Income Inequality – p. 9
The Power-Law Inequality Exponent η, United States

η rises from .33 in 1970 to .55 in 2010

$1 + \log_{10} (\text{TOP SHARE})$
Skill-Biased Technical Change?

- Let \(x_i = \text{skill} \) and \(\bar{w} = \text{wage per unit skill} \)
 \[y_i = \bar{w} x_i^\alpha \]

- If \(\Pr[x_i > x] = x^{-1/\eta_x} \), then
 \[\Pr[y_i > y] = \left(\frac{y}{\bar{w}} \right)^{-1/\eta_y} \quad \text{where} \quad \eta_y = \alpha \eta_x \]

- That is \(y_i \) is Pareto with inequality parameter \(\eta_y \)
 - SBTC (\(\uparrow \bar{w} \)) shifts distribution right but \(\eta_y \) unchanged.
 - \(\uparrow \alpha \) would raise Pareto inequality...
 - This paper: why is \(x \sim \text{Pareto} \), and why \(\uparrow \alpha \)
A Simple Model

Cantelli (1921), Steindl (1965), Gabaix (2009)
Key Idea: Exponential growth w/ death \Rightarrow Pareto

Initial

Exponential growth

Creative destruction
Simple Model for Intuition

- Exponential growth often leads to a Pareto distribution.

- Entrepreneurs
 - New entrepreneur (“top earner”) earns y_0
 - Income after x years of experience:
 $$y(x) = y_0 e^{\mu x}$$

- Poisson “replacement” process at rate δ
 - Stationary distribution of experience is exponential
 $$\Pr[\text{Experience} > x] = e^{-\delta x}$$
What fraction of people have income greater than y?

- Equals fraction with at least $x(y)$ years of experience

$$x(y) = \frac{1}{\mu} \log \left(\frac{y}{y_0} \right)$$

- Therefore

$$\Pr[\text{Income} > y] = \Pr[\text{Experience} > x(y)]$$

$$= e^{-\delta x(y)}$$

$$= \left(\frac{y}{y_0} \right)^{-\frac{\delta}{\mu}}$$

- So power law inequality is given by

$$\eta_y = \frac{\mu}{\delta}$$
Intuition

• Why does the Pareto result emerge?
 ◦ Log of income \propto experience (Exponential growth)
 ◦ Experience \sim exponential (Poisson process)
 ◦ Therefore log income is exponential
 \Rightarrow Income \sim Pareto!

• A Pareto distribution emerges from exponential growth experienced for an exponentially distributed amount of time.

Full model: endogenize μ and δ and how they change
Why is experience exponentially distributed?

- Let \(F(x, t) \) denote the distribution of experience at time \(t \)
- How does it evolve over discrete interval \(\Delta t \)?

\[
F(x, t + \Delta t) - F(x, t) = \delta \Delta t (1 - F(x, t)) - [F(x, t) - F(x - \Delta x, t)]
\]

 inflow from above \(x \)

 outflow as top folks age

- Dividing both sides by \(\Delta t = \Delta x \) and taking the limit

\[
\frac{\partial F(x, t)}{\partial t} = \delta (1 - F(x, t)) - \frac{\partial F(x, t)}{\partial x}
\]

- Stationary: \(F(x) \) such that \(\frac{\partial F(x, t)}{\partial t} = 0 \). Integrating gives the exponential solution.
The Model

– Pareto distribution in partial eqm
– GE with exogenous research
– Full general equilibrium
Entrepreneur’s Problem

Choose \(\{e_t\} \) to maximize expected discounted utility:

\[
U(c, \ell) = \log c + \beta \log \ell
\]

\[
c_t = \psi_t x_t
\]

\[
e_t + \ell_t + \tau = 1
\]

\[
dx_t = \mu(e_t) x_t dt + \sigma x_t dB_t
\]

\[
\mu(e) = \phi e
\]

\(x \) = idiosyncratic productivity of a variety

\(\psi_t \) = determined in GE (grows)

\(\delta \) = endogenous creative destruction

\(\bar{\delta} \) = exogenous destruction
Entrepreneur’s Problem – HJB Form

• The Bellman equation for the entrepreneur:

\[
\rho V(x_t, t) = \max_{e_t} \log \psi_t + \log x_t + \beta \log(\Omega - e_t) + \frac{\mathbb{E}[dV(x_t, t)]}{dt} \\
+ (\delta + \bar{\delta})(V^w(t) - V(x_t, t))
\]

where \(\Omega \equiv 1 - \tau \)

• Note: the “capital gain” term is

\[
\frac{\mathbb{E}[dV(x_t, t)]}{dt} = \mu(e_t)x_tV_x(x_t, t) + \frac{1}{2}\sigma^2 x_t^2 V_{xx}(x_t, t) + V_t(x_t, t)
\]
Solution for Entrepreneur’s Problem

• Equilibrium effort is constant:

$$e^* = 1 - \tau - \frac{1}{\phi} \cdot \beta(\rho + \delta + \bar{\delta})$$

• Comparative statics:

 ◦ $\uparrow \tau \Rightarrow \downarrow e^*$: higher “taxes”

 ◦ $\uparrow \phi \Rightarrow \uparrow e^*$: better technology for converting effort into x

 ◦ $\uparrow \delta$ or $\bar{\delta} \Rightarrow \downarrow e^*$: more destruction
Stationary Distribution of Entrepreneur’s Income

- Unit measure of entrepreneurs / varieties
- Displaced in two ways
 - Exogenous misallocation (δ): new entrepreneur $\rightarrow x_0$.
 - Endogenous creative destruction ($\bar{\delta}$): inherit existing productivity x.

- Distribution $f(x, t)$ satisfies Kolmogorov forward equation:

$$
\frac{\partial f(x, t)}{\partial t} = -\bar{\delta} f(x, t) - \frac{\partial}{\partial x} \left[\mu(e^*) x f(x, t) \right] + \frac{1}{2} \cdot \frac{\partial^2}{\partial x^2} \left[\sigma^2 x^2 f(x, t) \right]
$$

- Stationary distribution $\lim_{t \to \infty} f(x, t) = f(x)$ solves

$$
\frac{\partial f(x,t)}{\partial t} = 0
$$
• Guess that \(f(\cdot) \) takes the Pareto form \(f(x) = C x^{-\xi-1} \Rightarrow \)

\[
\xi^* = -\frac{\tilde{\mu}^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}^*}{\sigma^2}\right)^2 + \frac{2}{\sigma^2} \tilde{\delta}}
\]

\[
\tilde{\mu}^* \equiv \mu(e^*) - \frac{1}{2} \sigma^2 = \phi(1 - \tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2} \sigma^2
\]

• Power-law inequality is therefore given by

\[
\eta^* = 1/\xi^*
\]
Comparative Statics (given δ^*)

$$
\eta^* = 1/\xi^*, \quad \xi^* = -\frac{\tilde{\mu}^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}^*}{\sigma^2}\right)^2 + \frac{2}{\sigma^2} \tilde{\delta}}
$$

$$
\tilde{\mu}^* = \phi(1 - \tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2}\sigma^2
$$

- Power-law inequality η^* increases if
 - $\uparrow \phi$: better technology for converting effort into x
 - $\downarrow \delta$ or $\bar{\delta}$: less destruction
 - $\downarrow \tau$: Lower “taxes”
 - $\downarrow \beta$: Lower utility weight on leisure
Luttmer and GLLM

- Problems with basic random growth model:
 - Luttmer (2011): Cannot produce “rockets” like Google or Uber
 - Gabaix, Lasry, Lions, and Moll (2015): Slow transition dynamics

- Solution from Luttmer/GLLM:
 - Introduce heterogeneous mean growth rates: e.g. “high” versus “low”
 - Here: $\phi_H > \phi_L$ with Poisson rate \bar{p} of transition ($H \rightarrow L$)
Pareto Inequality with Heterogeneous Growth Rates

\[\eta^* = 1 / \xi_H, \quad \xi_H = -\frac{\tilde{\mu}_H^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}_H^*}{\sigma^2}\right)^2 + \frac{2 (\bar{\delta} + \bar{p})}{\sigma^2}} \]

\[\tilde{\mu}_H^* = \phi_H (1 - \tau) - \beta (\rho + \delta^* + \bar{\delta}) - \frac{1}{2} \sigma^2 \]

- This adopts Gabaix, Lasry, Lions, and Moll (2015)

- Why it helps quantitatively:
 - **\(\phi_H \)**: Fast growth allows for Google / Uber
 - **\(\bar{p} \)**: Rate at which high growth types transit to low growth types raises the speed of convergence = \(\bar{\delta} + \bar{p} \).
Growth and Creative Destruction

Final output
\[Y = \left(\int_0^1 Y_i^\theta d\theta \right)^{1/\theta} \]

Production of variety \(i \)
\[Y_i = \gamma^{n_t} x_i^\alpha L_i \]

Resource constraint
\[L_t + R_t + 1 = \bar{N}, \quad L_t \equiv \int_0^1 L_{it} di \]

Flow rate of innovation
\[\dot{n}_t = \lambda (1 - \bar{z}) R_t \]

Creative destruction
\[\delta_t = \dot{n}_t \]
Equilibrium with Monopolistic Competition

- Suppose \(R/\bar{L} = \bar{s} \) where \(\bar{L} \equiv \bar{N} - 1 \).
- Define \(X \equiv \int_0^1 x_i di = \frac{x_0}{1 - \eta} \). Markup is \(1/\theta \).

Aggregate PF

\[
Y_t = \gamma^{n_t} X^\alpha L
\]

Wage for \(L \)

\[
w_t = \theta \gamma^{n_t} X^\alpha
\]

Profits for variety \(i \)

\[
\pi_{it} = (1 - \theta) \gamma^{n_t} X^\alpha L \left(\frac{x_i}{X} \right) \propto w_t \left(\frac{x_i}{X} \right)
\]

Definition of \(\psi_t \)

\[
\psi_t = (1 - \theta) \gamma^{n_t} X^{\alpha - 1} L
\]

Note that \(\uparrow \eta \) has a level effect on output and wages.
Growth and Inequality in the \bar{s} case

- Creative destruction and growth

$$\delta^* = \lambda R = \lambda (1 - \bar{z}) \bar{s} \bar{L}$$

$$g_y^* = \dot{n} \log \gamma = \lambda (1 - \bar{z}) \bar{s} \bar{L} \log \gamma$$

- Does rising top inequality always reflect positive changes?
 - No! $\uparrow \bar{s}$ (more research) or $\downarrow \bar{z}$ (less innovation blocking)
 - Raise growth and reduce inequality via \uparrow creative destruction.
Endogenizing Research and Growth
Endogenizing $s = \frac{R}{\bar{L}}$

- **Worker:**
 \[
 \rho V^w(t) = \log w_t + \frac{dV^W(t)}{dt}
 \]

- **Researcher:**
 \[
 \rho V^R(t) = \log(\bar{m}w_t) + \frac{dV^R(t)}{dt} + \lambda \left(\mathbb{E}[V(x, t)] - V^R(t) \right)
 + \bar{\delta}_R \left(V(x_0, t) - V^R(t) \right)
 \]

- **Equilibrium:**
 \[
 V^w(t) = V^R(t)
 \]
Stationary equilibrium solution

Drift of log x

$$\tilde{\mu}_H^* = \phi_H(1 - \tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2}\sigma_H^2$$

Pareto inequality

$$\eta^* = 1/\xi^*, \quad \xi^* = -\frac{\tilde{\mu}_H^*}{\sigma_H^2} + \sqrt{\left(\frac{\tilde{\mu}_H^*}{\sigma_H^2}\right)^2 + \frac{2(\bar{\delta} + \bar{p})}{\sigma_H^2}}$$

Creative destruction

$$\delta^* = \lambda(1 - \bar{z})s^*\bar{L}$$

Growth

$$g^* = \delta^* \log \gamma$$

Research allocation

$$V^w(s^*) = V^R(s^*)$$
Varying the x-technology parameter ϕ
Why does $\uparrow \phi$ reduce growth?

- $\uparrow \phi \Rightarrow \uparrow e^* \Rightarrow \uparrow \mu^*$

- Two effects
 - **GE effect**: technological improvement \Rightarrow economy more productive so higher profits, but also higher wages
 - **Allocative effect**: raises Pareto inequality (η), so $\frac{x_i}{X}$ is more dispersed $\Rightarrow E \log \frac{\pi_i}{w}$ is lower. Risk averse agents undertake less research.

- Positive level effect raises both profits and wages. Riskier research \Rightarrow lower research and lower long-run growth.
How the model works

• \(\uparrow \phi \) raises top inequality, but leaves the growth rate of the economy unchanged.

 ◦ Surprising: a “linear differential equation” for \(x \).

• Key: the distribution of \(x \) is stationary!

• Higher \(\phi \) has a positive level effect through higher inequality, raising everyone’s wage.

 ◦ But growth comes via research, not through \(x \)...

Lucas at “micro” level, Romer/AH at “macro” level
Growth and Inequality

• Growth and inequality tend to move in **opposite** directions!

• Two reasons
 1. *Faster growth* \Rightarrow *more creative destruction*
 - Less time for inequality to grow
 - Entrepreneurs may work less hard to grow market
 2. *With greater inequality, research is riskier!*
 - Riskier research \Rightarrow less research \Rightarrow lower growth

• Transition dynamics \Rightarrow ambiguous effects on growth in medium run
Possible explanations: Rising U.S. Inequality

• Technology (e.g. WWW)
 ◦ Entrepreneur’s effort is more productive $\Rightarrow \uparrow \eta$
 ◦ Worldwide phenomenon, not just U.S.
 ◦ Ambiguous effects on U.S. growth (research is riskier!)

• Lower taxes on top incomes
 ◦ Increase effort by entrepreneur’s $\Rightarrow \uparrow \eta$
Possible explanations: Inequality in France

- **Efficiency-reducing explanations**
 - Delayed adoption of good technologies (WWW)
 - Increased misallocation (killing off entrepreneurs more quickly)

- **Efficiency-enhancing explanations**
 - Increased subsidies to research (more creative destruction)
 - Reduction in blocking of innovations (more creative destruction)
Micro Evidence
Overview

- Geometric random walk with drift = canonical DGP in the empirical literature on income dynamics.
 - Survey by Meghir and Pistaferri (2011)

- The distribution of growth rates for the Top 10% earners
 - IRS public use panel for 1979–1990 (small sample)
Growth Rates of Top 10% Incomes, 1995–1996

From Guvenen et al (2015)
Decomposing Pareto Inequality: Social Security Data

The graph illustrates the Pareto inequality, \(\eta \), from 1980 to 2010. The data shows the trend for 'All together', '\(\bar{\mu}_H \) only', '\(\mu_H \) only', '\(\sigma_H \) only', and '\(\delta \) only'. The graph emphasizes the changes in inequality over time.
Pareto Inequality: IRS Data

PARETO INEQUALITY, \(\eta \)

Entrepreneurial income

Both

Wages and salaries

YEAR

One-Time Shocks to ϕ_H, \bar{p}, and τ
One-Time Shocks to ϕ_H, \bar{p}, and τ
The Dynamic Response to IRS/SSA-Inspired Shocks

Entrepreneurial income (IRS data)
Wages, salaries, and entrepreneurial income (IRS data)
Wages and salaries (SSA data)
The Dynamic Response to IRS/SSA-Inspired Shocks

![Graph showing GDP per person and income sources from 1960 to 2050. Income sources include entrepreneurial income (IRS data), wages, salaries, and entrepreneurial income (IRS data), and wages and salaries (SSA data).]
Conclusions: Understanding top income inequality

- Information technology / WWW:
 - Entrepreneurial effort is more productive: $\phi \uparrow \Rightarrow \eta \uparrow$
 - Worldwide phenomenon (?)

- Why else might inequality rise by less in France?
 - Less innovation blocking / more research: raises creative destruction
 - Regulations limiting rapid growth: $\bar{p} \uparrow$ and $\phi \downarrow$

Theory suggests rich connections between:
models of top inequality \leftrightarrow micro data on income dynamics