18.100C Writing Assignment 6

Tony Kim

November 11, 2007

1 Rudin Ch.6, Problem 10

Let \(p \) and \(q \) be positive real numbers such that

\[
\frac{1}{p} + \frac{1}{q} = 1. \tag{1}
\]

Prove the following statements.

1.1 If \(u \geq 0 \) and \(v \geq 0 \), then \(uv \leq \frac{u^p}{p} + \frac{v^q}{q} \). Equality holds if and only if \(u^p = v^q \).

If \(u = 0 \), \(v = 0 \) or both, the inequality is trivial since the LHS is zero, while the RHS is strictly nonnegative. So, we now treat the case where \(u > 0 \) and \(v > 0 \).

We wish to come up with a more convenient form of the inequality to work with. So, divide Eq (1) by the quantity \(v^q \) to obtain:

\[
\frac{u}{v^{q-1}} \leq \frac{1}{p} \cdot \frac{u^p}{v^q} + \frac{1}{q} \tag{2}
\]

Define \(z = \frac{u^p}{v^q} \). Given the bounds on \(u, v, p, q \), it is easy to see that \(z \) is a real variable taking on the values in \([0, \infty)\). Furthermore, recognizing

\[
\frac{u}{v^{q-1}} = \frac{u}{v^{q/p}} = \left(\frac{u^p}{v^q} \right)^{\frac{1}{p}} = z^{\frac{1}{p}} \tag{3}
\]

we can write Eq (2) as:

\[
z^{\frac{1}{p}} \leq \frac{1}{p} \cdot z + \frac{1}{q} \tag{4}
\]

\[
0 \leq \frac{1}{p} \cdot z - z^{\frac{1}{p}} + \frac{1}{q} \tag{5}
\]

So our task is now to show that the function \(f(z) = \frac{1}{p} \cdot z - z^{\frac{1}{p}} + \frac{1}{q} \) is nonnegative over \([0, \infty)\). At the boundaries, we find that \(f \) is positive. This is obvious for the case \(f(z = 0) = \frac{1}{q} \). The boundary as \(z \to \infty \)
is clear if we write \(f \) as:

\[
\begin{align*}
 f(z) &= \frac{1}{p} \cdot z - z^{\frac{1}{p} + \frac{1}{q}} \\
 &= z^{\frac{1}{p}} \cdot \left(\frac{1}{p} \cdot z^{\frac{1}{q}} - 1 \right) + \frac{1}{q},
\end{align*}
\]

since it is readily apparent that both the terms in the product are positive in the limit \(z \to \infty \). It remains to be shown that \(f \) is nonzero in the interval \((0, \infty)\).

Because we have shown that \(f \) at its two endpoints is positive, if \(f \) is negative in between, it must possess a local minimum at some point \(z_0 \) characterized by \(f'(z_0) = 0 \) and \(f(z_0) < 0 \). Computing the derivative of \(f \) gives:

\[
\begin{align*}
f'(z) &= \frac{1}{p} - \frac{1}{z^{\frac{1}{p}-1}} \\
 &= \frac{1}{p} \cdot \left(1 - z^{-\frac{1}{q}} \right)
\end{align*}
\]

Since the only real solution to \(1 - z^{-\frac{1}{q}} = 0 \) is \(z_0 = 1 \), there is only one point to investigate. Evaluating \(f \) at \(z_0 \) gives:

\[
\begin{align*}
f(z_0 = 1) &= \frac{1}{p} \cdot 1 - \frac{1}{\frac{1}{p} + \frac{1}{q}} \\
 &= \frac{1}{p} + \frac{1}{q} - 1 = 0
\end{align*}
\]

We see that the only local minimum (and hence the absolute minimum, since we also investigated the boundaries) of \(f \) over \([0, \infty)\) is 0, so we conclude that \(f(z) \geq 0 \), establishing the inequality we wanted to prove.

We now wish to show that the equality holds if and only if \(u^p = v^q \).

Suppose \(u^p = v^q \). In our language of \(f \) and \(z \), this corresponds to the case when \(z = 1 \). Returning to Eq (4) we find:

\[
\begin{align*}
z^{\frac{1}{p}} &\leq \frac{1}{p} \cdot z + \frac{1}{q} \\
1 &\leq \frac{1}{p} + \frac{1}{q} = 1
\end{align*}
\]

so the equality follows.

Now suppose we have the equality, i.e. \(z^{\frac{1}{p}} = \frac{1}{p} \cdot z + \frac{1}{q} \). We want to prove that \(z_0 = 1 \) (i.e. \(u^p = v^q \)) is the only possible solution.

Put \(g(z) = z^{\frac{1}{p}} \) and \(h(x) = \frac{1}{p} \cdot z + \frac{1}{q} \). Suppose, to get a contradiction, that there is a \(z_1 \neq z_0 \) such that \(g(z_1) = h(z_1) \).

Suppose \(z_1 > z_0 \). Since \(g \) is continuous and differentiable on \((0, \infty)\), by the MVT there is a \(c \in (z_0, z_1) \) such that:

\[
g'(c) = \frac{g(z_1) - g(z_0)}{z_1 - z_0}
\]
\[
\frac{h(z_1) - h(z_0)}{z_1 - z_0} = \frac{1}{p}
\]

but this is impossible since \(g'(z) = \frac{1}{p} \cdot \frac{1}{z^{\frac{1}{p}}}\) and hence \(g'(z) < \frac{1}{p}\) for all \(z \in (z_0, \infty)\).

If \(z_1 < z_0\), we similarly obtain a contradiction, since we can then bound \(g'\) below by \(\frac{1}{p}\).

So the only solution to \(g(z) = h(z)\) on \([0, \infty)\) is \(z_0 = 1\). In conclusion, we see that equality implies \(z = 1\) and hence \(u^p = v^q\).

1.2 If \(f \in R(\alpha)\) and \(g \in R(\alpha)\), \(f \geq 0, g \geq 0\) and \(\int_a^b f^p d\alpha = \int_a^b g^q d\alpha = 1\), then \(\int_a^b fg d\alpha \leq 1\)

It is clear that \(f\) and \(g\) pointwise satisfies the inequality:

\[
fg \leq \frac{f^p}{p} + \frac{g^q}{q}
\]

where \(p\) and \(q\) are chosen as in the first part of this assignment. By Rudin 6.12(b) then:

\[
\int_a^b f^p d\alpha \leq \int_a^b \left(\frac{f^p}{p} + \frac{g^q}{q} \right) d\alpha
\]

\[
\leq \frac{1}{p} \int_a^b f^p d\alpha + \frac{1}{q} \int_a^b g^q d\alpha
\]

\[
\leq \frac{1}{p} + \frac{1}{q} = 1
\]

where we have used the linearity of the integral with respect to the integrand (Rudin 6.12a) and the properties of \(f^p, g^q\) as well our earlier definition of \(p\) and \(q\). The result is proved.

1.3 If \(f\) and \(g\) are complex functions in \(R(a)\), then show the following:

\[
\left| \int_a^b fg d\alpha \right| \leq \left(\int_a^b |f|^p d\alpha \right)^{\frac{1}{p}} \cdot \left(\int_a^b |g|^q d\alpha \right)^{\frac{1}{q}}
\]

(7)

First, from Rudin 6.13b, we have:

\[
\left| \int_a^b fg d\alpha \right| \leq \int_a^b |f||g| d\alpha
\]

(8)

We wish to apply the results of the previous section to \(|f|\) and \(|g|\), which are by definition nonnegative. Define two constants \(F, G\) by:

\[
F = \left(\int_a^b |f|^p d\alpha \right)^{\frac{1}{p}}
\]

\[
G = \left(\int_a^b |g|^q d\alpha \right)^{\frac{1}{q}}
\]
First we assume that F, G are nonzero. Then define $u = |f|/F$ and $v = |g|/G$. Trivially, we have the following:

$$\int_a^b u^p d\alpha = \int_a^b \frac{|f|^p}{F^p} d\alpha = \frac{1}{F^p} \int_a^b |f|^p d\alpha = \frac{1}{F^p} \cdot \int_a^b |f|^p d\alpha = 1$$

Similarly, we obtain, $\int_a^b v^q = 1$.

Then u and v satisfies the premises for the previous results, and we have:

$$\int_a^b uv d\alpha \leq 1$$

$$\frac{1}{FG} \int_a^b |f| |g| d\alpha \leq 1$$

$$\int_a^b |f| |g| d\alpha \leq FG \left(\int_a^b |f|^p d\alpha \right)^{\frac{1}{p}} \left(\int_a^b |g|^q d\alpha \right)^{\frac{1}{q}}$$

and we have the result, provided that F, G are nonzero.

Now we return to the case where F, G or both are zero. We assume that f and g are continuous functions, so that $|f|, |g|$ are also continuous (Rudin 4.7: Continuity of compositions). We wish to show that under these conditions, the inequality is trivial.

Suppose $F = 0$. In the recent problem set, we showed (Rudin Ch.6, Problem 2) that if $h(x) \geq 0$, h is continuous on $[a, b]$, and $\int_a^b h(x) dx = 0$, then $h(x) = 0$ for all $x \in [a, b]$. It’s clear that for the case of integration with respect to α, the generalization of this theorem is that $h(x) = 0$ for those points for which $\frac{d\alpha}{dx} > 0$. Put more intuitively, h is zero when it contributes to the integral.

So, $F = 0$ implies that $|f|^p = 0$ for all $x \in [a, b]$ for which $\frac{d\alpha}{dx} > 0$. In turn, this implies $|f| = 0$ and $f = 0$ for those points. Therefore $\int_a^b fg d\alpha = 0$ since $f = 0$ for those points for which $\frac{d\alpha}{dx} > 0$. A similar conclusion is obtained if we assume $G = 0$. So in the case where one of the integrals vanish, Holder’s inequality assumes the trivial form: $0 \leq 0$.

We have covered all possibilities.

1We consider only $\frac{d\alpha}{dx} > 0$ since α is monotonically increasing.