Overview of Growth Research in the Past Two Decades

by Pete Klenow

Stanford University and NBER

September 21, 2010
FIGURE 1.1 Per Capita GDP in Seven Countries, 1870–2000
1950s Solow (1956)

1960s Nelson and Phelps (1966)

1970s Dark Ages

1990s Explosion

Theory

- Romer (1990)
- Grossman and Helpman (1991)
- Stokey (1991)
- Aghion and Howitt (1992)
- Parente and Prescott (1994)
- Jones (1995)

Empirics

- Barro (1991)
- Mankiw, Romer and Weil (1992)
- Young (1994)
- Klenow and Rodriguez-Clare (1997)
- Hall and Jones (1999)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barriers to Riches</td>
<td>Parente and Prescott (2000)</td>
</tr>
<tr>
<td>Institutions</td>
<td>Acemoglu, Johnson and Robinson</td>
</tr>
<tr>
<td>Directed Technical Change</td>
<td>Mostly Acemoglu</td>
</tr>
<tr>
<td>Quantitative Theory</td>
<td>Minnesota diaspora</td>
</tr>
</tbody>
</table>
"Growth" actually divides into theories of ...

Long Run Growth
- Lucas (1988) human capital
- Romer (1990) technology

Level Differences and Transition Dynamics
- Barro and Sala-i-Martin (1992) physical capital
- Mankiw, Romer and Weil (1992) physical and human capital
- Parente and Prescott (1994) and Howitt (2000) technology
- Restuccia and Rogerson (2008) misallocation
What $\dot{X} = g X$ equation is the "engine" of growth?

$$Y(t) = K(t)^\alpha \left[A(t) h(t) (1 - u) L(t) \right]^{1-\alpha}$$

- **Solow:** $\alpha < 1$, $u = 0$, exogenous $\dot{A} = gA$
- **Rebelo:** $\alpha = 1$, $u = 0$, $\dot{K} = sAK - \delta K$, endogenous $s = I/Y$
- **Lucas:** $\dot{h} = uh$, endogenous $0 < u < 1$
- **Romer:** $\dot{A} = uhL A$, endogenous $0 < u < 1$
Major role for physical and human capital

- Mankiw, Romer and Weil (1992)
- Manuelli and Seshadri (2007)
- Erosa, Koreshkova and Restuccia (2010)

Major role for residual TFP

- Klenow and Rodriguez-Clare (1997)
- Hall and Jones (1999)
- Hendricks (2002)
- Caselli (2005)
Rough ratios of 90th to 10th percentiles of countries in recent years:

\[
\frac{Y(i)}{\text{pop}(i)} = \frac{L(i)}{\text{pop}(i)} \left(\frac{K(i)}{Y(i)} \right)^{1-\alpha} \underbrace{h(i)}_{3} \underbrace{A(i)}_{4}
\]

Human capital, physical capital, and residual TFP are all important.
The K/Y ratio is about 3/4 at the 10th percentile.

It is about 3 at the 90th percentile (4 times as big).

The share of physical capital $\alpha \approx 1/3$.

$$\left(\frac{K(i)}{Y(i)} \right)^{\frac{\alpha}{1-\alpha}} \approx 4^{1/2} = 2$$
PPP Capital-Output Ratio in 1996

PPP GDP per worker relative to the U.S. in 1996
Schooling attainment is about 13 years at the 90th percentile.

It is about 3 years at the 10th percentile.

Across workers within the typical country, each year of schooling is associated with about 10% higher wages (see Mincer regressions).

Suppose each year of schooling is also associated with 10% higher human capital across countries. Then the ratio of human capital is:

\[h(i) \approx \exp(0.1 \cdot 10) \approx 2.7 \]

This number is close to the answer from some more sophisticated quantitative theory (Erosa, Koreshkova and Restuccia, 2010).
Human Capital
- Acquired before, during, and after school age
- Includes any learning-by-doing
- Rival (if no externalities)

Technology/Ideas
- May be embodied in variety/quality of K/intermediates
- Or workers, managers, researchers (human capital)
- But the disembodied *idea* is non-rival
- Can be fully or only partially excludable
Why do we care what drives growth, level differences?

Human capital
- Quality, subsidies, financing of education
- Progressivity of tax rates on individual earnings
- Perhaps no scale effects

Technology/Ideas
- Intellectual Property Rights
- R&D tax credits, government funding of basic research
- Barriers to technology adoption
- Scale effects and openness to goods, FDI, ideas

Misallocation
- Barriers to equalization of marginal products in x-section
World Technology Frontier

- Technological change drives growth
- Most of it is embodied in physical capital
- Usually skill-biased
- Endogenous to R&D done mostly in the OECD
- Scale effects at the world level

See Jones and Romer (2010)

Distance from the World Technology Frontier

- Most countries share a long run growth rate
- For these countries, policy differences have level effects
Investing in ideas
R&D spending by region, 2006, %

- North America: 43.7%
- Europe: 28.9%
- Japan: 21.5%
- Rest of Asia: 4.8%
- China & India: 0.6%
- Other: 0.5%

Total: $478bn

Source: Booz Allen Hamilton database
FIGURE 3.1 Economic Growth over the Very Long Run in Six Countries
Industrial Revolution?

How do countries transition from the Malthusian Trap to growth?

Demographic Transition
- Fundamental in Lucas (2002)
- Incidental in Hansen and Prescott (2002)

Structural Transformation
Proximate vs. Fundamental Causes

Geography, Luck

\[\Downarrow \]

Institutions, Policies

\[\Downarrow \]

\[L/popl, K/Y, h, A \]

\[\Downarrow \]

\[Y/popl \]
Geographical Determinism = Montesquieu, Sachs

Case against:

- East vs. West Germany
- North vs. South Korea
- Hong Kong vs. China
- Singapore vs. Malaysia
- Nogales vs. Nogales (Arizona/Mexico)
- El Paso vs. Juarez (Texas/Mexico)
- Botswana and South Africa vs. rest of southern Africa
Steady State in the Neoclassical Growth Model

\[Y(t) = K(t)^\alpha [A(t)L(t)]^{1-\alpha} \]

\[\dot{A}(t)/A(t) = g_A, \quad \dot{L}(t)/L(t) = g_L \]

\[K(t) = I(t) - \delta K(t) \]

If the investment rate settles down to a steady state level \((I/Y)^{ss}\):

\[(K/Y)^{ss} = \frac{(I/Y)^{ss}}{g_A + g_L + \delta} \]

\[(Y/L)^{ss} = A(t) [(K/Y)^{ss}]^{\frac{\alpha}{1-\alpha}} \]
Per capita production:

\[y(i, t) = k(i, t)^\alpha \left[Z(t) A(i) \ell(i) \right]^{1-\alpha} \]

If \(Z(t) \) grows at a constant rate \(g_Z \), then:

\[g_y(i, t) \approx g_Z - \beta \left[\ln y(i, t) - \ln y(i, t)^{ss} \right] \]

\[y(i, t)^{ss} = Z(t) A(i) \ell(i) \left[(K(i)/Y(i))^{ss} \right]^{\frac{\alpha}{1-\alpha}} \]
σ Convergence

• When the S.D. of $ln y(i, t)$ across i is falling over t
• Not true of "East" vs. "West" 1820-1950
• Not true for all countries 1960-2000, unless weight by population

Unconditional β Convergence

• When richer countries exhibit slower growth
• See OECD since World War II, U.S. states 1880-1980
• In principle, can have β convergence without σ convergence

Conditional β Convergence

• When richer countries exhibit slower growth conditional on y^{ss}
• Seen over all countries 1960-2000, if condition on schooling
FIGURE 5.8 Growth Rates in the OECD, 1960–2000
FIGURE 5.9 Growth Rates around the World, 1960–2000
Evolution of Per Capita Income, 1750-1990

Per Capita Income, 1985 US Dollars

- Africa
- US
- Mexico
- Japan
- China
- East Asia

Divergence ... Big Time!

Growth miracles

Source: Lucas (2002)
Typical estimate is $\beta \approx 0.02$, or 2% per year.

See Barro and Sala-i-Martin (1992) and the literature it spawned.

2% is consistent with $\alpha \approx 2/3$ ($\alpha = 1/3$ would imply around 10%).

But there are many challenges to estimating β consistently:

- Where is the residual? If shocks, are they persistent?
- How does one adequately control for ss income differences?
- Hazardous to control for l/Y, h or A if transition dynamics.
Plethora of Cross-Country Growth Regressions (mostly in the 1990s).

A smaller literature regresses income levels on stuff.

The list of plausible instruments is short:

- Distance (instrument for trade? Frankel and Romer, 1999)
- Climate (for agriculture? Hall and Jones, 1999)
- Settler mortality (for institutions? AJR, 2002)
- Accidental leader deaths (for policy? Jones and Olken, 2005)
- Climate change (Dell, Jones and Olken, 2008)

Some clever "interaction" instruments:

- External financial dependence (Rajan and Zingales, 1998)
- Epidemiological transition (Acemoglu and Johnson, 2007)
- Declining cost of air travel (Feyrer, 2009)
Focus of Current Research

Quantitative Theory
- DGE growth/development model
- Key parameters calibrated to select micro, macro facts
- Positive analysis (how much does it explain?)
- Welfare analysis (what is the optimal policy?)

Disaggregate Data
- Regions, cities
- Industries
- Demographic groups
- Firms, plants, households, individuals
Sampling of Open Research Questions

Why is there an upward trend in s_K, s_h, $s_{R&D}$ in many countries?

Why have China and India taken off?

Why hasn’t Africa taken off yet? Or has it?

Measurement, modeling of technology transfer.

21st century Clark (x-country levels accounting within an industry).

Why did the world growth rate drop starting around 1975?