Production vs Revenue Efficiency With Limited Tax Capacity
Theory and Evidence From Pakistan

Michael Best (SIEPR), Anne Brockmeyer (WB), Henrik Kleven (LSE),
Johannes Spinnewijn (LSE), Mazhar Waseem (Manchester)
Production Efficiency

- **Production Efficiency Theorem** (Diamond & Mirrlees 1971):

 Any second-best optimal tax system maintains production efficiency

- **Key policy implications:**
 - Permits taxes on consumption, wages and profits
 - Precludes taxes on inputs, turnover and trade

- The theorem has been influential in the policy advice given to developing countries
Production Efficiency vs Revenue Efficiency

- Production Efficiency Theorem assumes perfect tax enforcement
 → Violated everywhere, but especially in developing countries

- Tax evasion introduces a trade-off between production and revenue efficiency in tax design

- In the context of firm taxation in Pakistan, we provide:
 - Simple model on the optimal production-revenue efficiency trade-off
 - Quasi-experimental evidence on the evasion elasticity w.r.t taxes
 - Link model & evidence to quantify optimal policy
Novel Quasi-Experimental Approach

- **Minimum Tax Scheme:** firms taxed either on profits or turnover (lower rate on turnover) depending on which liability is larger
 - This production inefficient policy is motivated by tax compliance

- **Non-standard kink** where both tax rate and tax base jump
 - Kink changes real and evasion incentives differentially
 - Novel method for estimating tax evasion based on a bunching approach

- **Wide applicability** of our approach: such schemes are ubiquitous
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion
 Numerical Analysis
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion
 Numerical Analysis
Firm Behavior: Real vs Evasion Responses

- Real output y, real cost $c(y)$, declared cost \hat{c}, penalty $g(\hat{c} - c(y))$

- Tax liability $T = \tau[y - \mu\hat{c}]$

- Maximization of after-tax profits

$$c'(y) = 1 - \tau_E$$

$$g'(\hat{c} - c(y)) = \tau \mu$$

- Effective Marginal Tax Rate $\tau_E = \tau \frac{1 - \mu}{1 - \tau \mu}$:
 - $\tau_E = 0$ for a profit tax $\mu = 1$ [production efficiency]
 - $\tau_E = \tau$ for a turnover tax $\mu = 0$ [production inefficiency]
Proposition [Production Inefficiency]

With **perfect enforcement**, optimal tax base is pure profits \((\mu = 1)\)

With **imperfect enforcement**, the optimal tax base is

- **Between pure profits and turnover** \((0 < \mu < 1)\)
- **Depends on the evasion-output elasticity ratio**

\[
\frac{\tau}{1 - \tau} \times \frac{\partial \tau_E}{\partial \tau} (\mu) = G(\mu) \times \frac{\varepsilon \hat{c} - c}{\varepsilon y}
\]

- **effective wedge** \((\downarrow \text{ in } \mu)\)
- **tax gap** \((\uparrow \text{ in } \mu)\)
- **elasticity ratio**
General equilibrium extension raises two additional considerations

1. **Cascading effect**: Distortions travel through production chain

2. **Incidence effect**: Price changes shift income between final and intermediate sectors

Simple 2-sector model:
- Intermediate sector A
 \[y_A = l_A \]
- Final goods sector B
 \[y_B = F(l_B, y_A) \]
Firm Behavior

- Intermediates

\[p_A = w / (1 - \tau_E) \]

Incidence effect: \(\tau_E \) distorts scale and profits of sector A

- Final goods

\[w = F'_{l_B} \times (1 - \tau_E) = F'_{y_A} \times (1 - \tau_E)^2 \]

\[\text{MRTS}_{l_B,y_A} = F'_{l_B} / F'_{y_A} = 1 - \tau_E \]

Cascading effect: \(y_A \) taxed twice \(\Rightarrow \) \(\tau_E \) distorts input mix in sector B
With perfect enforcement, optimal tax base is pure profits \((\mu = 1)\)

With imperfect enforcement, the optimal tax base is interior \((0 < \mu < 1)\) and satisfies

\[
\frac{\tau}{1 - \tau} \times \frac{\partial \tau_E}{\partial \tau} (\mu) \times \left\{ \frac{\beta [1 + \alpha (\mu)]}{1 + (1 - \beta) \varepsilon_{pA}} \right\} = G (\mu) \times \frac{\varepsilon_{\hat{c} - c}}{\varepsilon_y}
\]

\[
\alpha = \frac{\text{MRTS}}{1 + \text{MRTS} \times \left(\frac{\partial l_B}{\partial \tau_E} / \frac{\partial y_A}{\partial \tau_E} \right)} \quad \beta = \frac{y_B}{pA y_A + y_B} \quad \varepsilon_{pA} = \frac{\partial \log p_A}{\partial \log \tau_E}
\]
Optimal Policy

With *imperfect enforcement*, the optimal tax base is interior (0 < \(\mu < 1 \)) and satisfies

\[
\frac{\tau}{1 - \tau} \times \frac{\partial \tau_E}{\partial \tau} (\mu) \times \left\{ \frac{\beta [1 + \alpha (\mu)]}{1 + (1 - \beta) \varepsilon_{pA}} \right\} = G (\mu) \times \frac{\varepsilon_{\hat{c} - c}}{\varepsilon_y}
\]

\[
\alpha = \frac{\text{MRTS}}{1 + \text{MRTS} \times \left(\frac{\partial l_B}{\partial \tau_E} / \frac{\partial y_A}{\partial \tau_E} \right)} \quad \beta = \frac{y_B}{p_A y_A + y_B} \quad \varepsilon_{pA} = \frac{\partial \log p_A}{\partial \log \tau_E}
\]

- partial equilibrium analysis \(\Rightarrow \) smaller \(\mu \) (broader base) if
 - \(\alpha \) large: \(l_B \) & \(y_A \) highly substitutable
 - \(\beta \) large: final goods large part of economy
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion
 Numerical Analysis
Minimum Tax Scheme

▶ Combination of profit tax ($\mu = 1$) and turnover tax ($\mu = 0$):

$$T = \max \{ \tau_\pi (y - c) ; \tau_y y \} .$$

▶ Firms switch between the two taxes depending on profit rate $\hat{\pi}$:

$$\tau_\pi (y - c) = \tau_y y \iff \hat{\pi} \equiv \frac{y - c}{y} = \frac{\tau_y}{\tau_\pi} .$$

▶ Kink: tax base and marginal tax rate change discontinuously, but tax liability is continuous
Bunching at the Minimum Tax Kink

\[c'(y) = 1 \]
\[g'(\hat{c}-c) = \tau_{\pi} \]

Density

Profit Rate \((y-\hat{c})/y\)

smooth density under profit tax \(\tau_{\pi}\)
Bunching at the Minimum Tax Kink

\[c'(y) = 1 - \tau y \]
\[g'((\hat{c} - c)) = 0 \]
\[c'(y) = 1 \]
\[g'((\hat{c} - c)) = \tau_\pi \]

Density

Profit Rate \(\frac{y - \hat{c}}{y}\)

Introduction Conceptual Framework Empirical Methodology Data Empirical Results
Bunching at the Minimum Tax Kink

\[
c'(y) = 1 - \tau y \\
g'(\hat{c} - c) = 0 \\
\]
Minimum Tax Kink Ideal for Eliciting Evasion

- **Real output response:**
 - Firms choose real output based on $1 - \tau_E$
 - At the kink, production wedge τ_E changes from 0 to $\tau_y (\approx 0)$
 \Rightarrow almost no variation and therefore small real response

- **Evasion response:**
 - Firms choose evasion based on $\tau \mu$
 - At the kink, $\tau \mu$ changes from $\tau_\pi (\gg 0)$ to 0
 \Rightarrow large variation and therefore large evasion response

- **Bunching B identifies (mostly) evasion:**

\[
B \propto \frac{\tau_y^2}{\tau_\pi \varepsilon y} - \frac{\Delta (\hat{c} - c)}{y}
\]
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion
 Numerical Analysis
Data

- Administrative data from FBR Pakistan
- All corporate tax returns from 2006-2010 (∼15,000 returns/year)
- New electronic data collection system in place for this time period
- In each year, about half of the firms are turnover tax payers and half of them are profit tax payers
Variation in Minimum Tax Kink

- **Variation in profit tax rate** τ_{π} across firms:
 - High rate of 35%, low rate of 20%
 [depends on incorporation date, turnover, assets, #employees]

- **Variation in turnover tax rate** τ_{y} over time:
 - 2006-07: tax rate of 0.5%
 - 2008: turnover tax scheme withdrawn
 - 2009: tax rate of 0.5%
 - 2010: tax rate of 1%
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion
 Numerical Analysis
Bunching Evidence

Reported Profit as Percentage of Turnover

High-rate Firms

Density

-5 0 1.43 2.5 5 10

High-rate Kink

Introduction Conceptual Framework Empirical Methodology Data Empirical Results 17 / 30
Bunching Evidence

Reported Profit as Percentage of Turnover

High-rate Firms

Low-rate Firms

Introduction Conceptual Framework Empirical Methodology Data Empirical Results
Bunching Evidence

- **2006/07/09 Kink**
- **No Kink in 2008**

The graph shows the density distribution of reported profit as a percentage of turnover. The data points are differentiated by year, with blue dots representing 2006/07/09 and red diamonds representing 2008.

- The graph indicates a kink in the data on 2006/07/09, with a noticeable peak at a certain density value.
- In 2008, there is no such kink, as indicated by the absence of a significant peak.

Key Points:
- **Introduction**
- **Conceptual Framework**
- **Empirical Methodology**
- **Data**
- **Empirical Results**
Bunching Evidence

Reported Profit as Percentage of Turnover

2006/07/09 Kink 2010 Kink

0 .02 .04 .06 .08
Density

−5 0 1.43 2.86 10

Introduction Conceptual Framework Empirical Methodology Data Empirical Results
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results

 Bunching Evidence

 Estimating Evasion

 Numerical Analysis
Estimating Evasion

High rate firms - 2006/07/09

Bunching = 4.44 (.1)

Reported Profit as Percentage of Turnover

Low rate firms

High rate firms

Counterfactual

Polynomial degree 5. Binsize .214
Estimating Evasion

High rate firms - 2006/07/09

Bunching = 4.44 (.1)
Without evasion:
Output elasticity \[e\] = 133.3 (4)

Reported Profit as Percentage of Turnover

Low rate firms
High rate firms
Counterfactual

Polynomial degree 5. Binsize .214

Counterfactual
Estimating Evasion

High rate firms – 2006/07/09

Bunching = 4.44 (.1)
Without evasion: Output elasticity [e] = 133.3 (4)
With evasion: Evasion rate change = 66.7% (2.0) [e=0]
66.2% (2.0) [e=1]
64.2% (2.0) [e=5]
Estimating Evasion

Low rate firms – 2006/07/09

Bunching = 2.0 (.2)
Without evasion: Output elasticity [e] = 34.3 (3.3)
With evasion: Evasion rate change = 17.1% (1.6) [e=0]
16.6% (1.6) [e=1]
14.6% (1.6) [e=5]
Robustness

- **Distortionary profit tax**
 - If $\tau_E > 0$ under profit tax, then turnover tax may improve real incentives
 - \Rightarrow firms move away from the kink and **create a hole**

- **Output evasion**
 - If firms can underreport output, the turnover tax reduces output evasion (due to $\tau_y < \tau_\pi$) in addition to cost evasion
 - \Rightarrow bunching identifies **combined output and cost evasion**

- **Filing Costs (Lazy Reporting)**
 - If adding line items to return involves a fixed cost, then underreport costs under turnover tax
 - \Rightarrow bunching **conflates evasion and filing responses**
 - \Rightarrow kink should affect **number of items reported**
Testing for Lazy Reporting

\[DD = -0.0056 \pm 0.0049 \]
\[DD_{\text{near}} = 0.0038 \pm 0.0067 \]

Turnover Tax Applies
Profit Tax Applies

Fraction of Cost Categories Reported

Reported Profit as Percentage of Turnover

2006/7/9 (Kink) 2008 (No Kink)
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion
 Numerical Analysis
Methodology

- Welfare increased by broader base and lower rate ($\mu \downarrow, \tau \downarrow$) if

$$\frac{\tau}{1 - \tau} \cdot \frac{\partial \tau E}{\partial \tau} (\mu) < G (\mu) \cdot \frac{\varepsilon \hat{c} - c}{\varepsilon y} \simeq -\frac{d (\hat{c} - c)}{\Pi} / \varepsilon y$$

- $\text{lhs} \in [0, 0.54]$. Estimate $\text{rhs} \simeq 1.22$
 \Rightarrow welfare gains from broadening base

- Evaluate welfare gains of moving from pure profit tax to pure turnover tax holding aggregate profits fixed
 - Assume iso-elastic production function and evasion cost function
 - Calibrate to match empirical distributions of turnover, costs and evasion rate responses
Results

<table>
<thead>
<tr>
<th>Output Elasticity (ε_y)</th>
<th>Panel A: Pure Turnover Tax</th>
<th>Panel B: Optimal Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revenue Gain (%</td>
<td>Tax Base (μ)</td>
</tr>
<tr>
<td>(1)</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>62</td>
<td>0</td>
</tr>
</tbody>
</table>
Conclusion

- Production inefficient policies like turnover taxes may be optimal under imperfect enforcement

- Novel quasi-experimental approach using minimum tax schemes for estimating evasion responses to switches between profit taxes and turnover taxes

- Returns to improved tax enforcement in Pakistan are high: up to 2/3 of profit tax revenues are lost due to underreporting

- Numerical analysis ⇒ holding aggregate profits fixed & moving to
 - turnover taxation can increase revenue by 74%
 - optimal tax can increase revenue by 76%
Counterfactual Estimation

Estimate counterfactual density following Chetty et al (2011):

\[
d_j = \sum_{l=0}^{q} \beta_l (z_j)^l + \sum_{k=z_L}^{z_U} \gamma_k \cdot 1[z_j = k] + v_j.
\]

Estimate excess mass:

\[
b = \frac{\sum_{k=z_L}^{z_U} \hat{\gamma}_k}{\sum_{k=z_L}^{z_U} \hat{d}_k / N_k}
\]

Excess mass indicates the profit rate change \(\Delta \hat{\pi}\) for marginal buncher.
Output Evasion

<table>
<thead>
<tr>
<th>Observed Responses</th>
<th>Without Evasion (\varepsilon_y)</th>
<th>With Evasion (\varepsilon_y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunching (b)</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Profit Rate (\Delta \hat{p})</td>
<td>(3)</td>
<td>(4) (5) (6) (7)</td>
</tr>
<tr>
<td>Output Elasticity (\varepsilon_y)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Evasion Rate</td>
<td>(10)</td>
<td>(11)</td>
</tr>
<tr>
<td>Response</td>
<td>(12)</td>
<td>(13)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\varepsilon_y = 0)</th>
<th>(\varepsilon_y = 0.5)</th>
<th>(\varepsilon_y = 1)</th>
<th>(\varepsilon_y = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-rate Firms, 2006/07/09</td>
<td>4.47 (0.1)</td>
<td>1.0 (0.03)</td>
<td>134.2 (3.8)</td>
<td>68.1 (1.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-rate Firms, 2006/07/09</td>
<td>2.00 (0.2)</td>
<td>0.4 (0.04)</td>
<td>34.3 (3.3)</td>
<td>17.6 (1.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-rate Firms, 2010</td>
<td>2.04 (0.2)</td>
<td>0.4 (0.04)</td>
<td>14.6 (1.2)</td>
<td>15.0 (1.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>