Housing Market Responses to Transaction Taxes: Evidence From Notches and Stimulus in the UK∗

Michael Carlos Best & Henrik Jacobsen Kleven†

May 2014

Abstract

Using administrative data on all property transactions in the UK from 2004-2012, we provide evidence on the distortionary effects of property transaction taxes (“stamp duty”) on the housing market. Two sources of quasi-experimental variation allow us to obtain compelling graphical results: (i) notches created by discontinuous jumps in tax liability at threshold property prices, (ii) time variation created by permanent reforms and temporary stimulus in specific price brackets. We present two broad findings. First, transaction taxes strongly affect the price, volume and timing of property transactions. Our findings imply that property transaction taxes are extremely distortionary, with Laffer rates as low as 4–7%. Second, temporary transaction tax cuts are an enormously effective form of fiscal stimulus. A temporary elimination of a 1% transaction tax increased housing market activity by 20% in the short run (due to both timing and extensive responses) and less than half of the stimulus effect was reversed after the tax was reintroduced (due to re-timing). Due to the complementarities between moving house and consumer spending, these stimulus effects translate into GDP effects of about 1 dollar per dollar of foregone revenue. This is considerably larger than what has been found for other forms of fiscal stimulus.

∗We thank Tim Besley, Raj Chetty, Julie Cullen, Michael Devereux, Amy Finkelstein, Roger Gordon, Jonathan Gruber, Daniel Hamermesh, Benjamin Keys, Wojciech Kopczuk, Camille Landais, Attila Lindner, Bruce Meyer, Atif Mian, David Munroe, Benjamin Olken, James Poterba, John Van Reenen, Emmanuel Saez, Andrei Shleifer, Joel Slemrod, William Wheaton, and numerous seminar participants for very helpful comments and discussions. We would also like to thank the staff at Her Majesty’s Revenue & Customs’ (HMRC) datalab for access to the data and their support of this project. This work contains statistical data from HMRC which is Crown Copyright. The research datasets used may not exactly reproduce HMRC aggregates. The use of HMRC statistical data in this work does not imply the endorsement of HMRC in relation to the interpretation or analysis of the information. All results have been screened by HMRC to ensure confidentiality is not breached. All remaining errors are the authors’.

†Best: Department of Economics, London School of Economics (m.c.best@lse.ac.uk). Kleven: Department of Economics, London School of Economics (h.j.kleven@lse.ac.uk)
1 Introduction

Taxes on asset transfers are widely discussed by economists and policy makers, but remain understudied (Campbell & Froot 1994; Poterba 2002; Matheson 2011; European Commission 2013). This debate has been particularly energetic in recent years as a result of the enormous turmoil in the financial and housing markets and their potential importance for the boom-bust cycle of the economy as a whole. In this paper we focus on the taxation of the transfer of residential property—a policy that is ubiquitous throughout the world, and raises substantial amounts of revenue in many countries.\footnote{As of 2012, 38 states in the US had a property transaction tax Lincoln Institute of Land Policy (2014). In 2010 in the OECD, Austria, Australia, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, Germany, Greece, Hungary, Ireland, Iceland, Israel, Italy, Japan, the Netherlands, Norway, Poland, Portugal, South Korea, Spain, Sweden, Turkey, the UK, and the US imposed transaction taxes on property (Andrews et al. 2011). Beyond the OECD, Hong Kong, India, Pakistan, and Singapore also impose property transaction taxes.} We analyze the UK property transaction tax, known as the Stamp Duty Land Tax (SDLT), which is substantial both in terms of revenue and the distortions it introduces. Our analysis is based on first-time access to administrative stamp duty records covering the universe of property transactions combined with policy-induced quasi-experimental variation that allows us to obtain compelling and striking evidence on housing market responses to transaction taxes.

Our analysis delivers two broad findings. First, the transaction tax is highly distortionary across a range of margins, causing significant distortions to the price, volume and timing of property transactions. This finding raises significant questions about the suitability of a property transaction tax as a long run policy instrument. Second, temporarily eliminating the transaction tax as a stimulus policy during a recession is enormously effective. We find that such stimulus increases housing market activity dramatically, and that consumer expenditures complementary to moving house increase by roughly the amount of the tax cut. This finding is not specific to the elimination of a distortionary tax: reducing the cost of transacting a house in general appears to be a powerful stimulus policy. Beyond the UK, this finding lends support to the homebuyer tax credit introduced by the 2009 Stimulus Bill in the US.

We exploit administrative tax data on the universe of property transactions in the UK from 2004–2012, about 10 million property transactions. Besides the quality of the data, two sources of quasi-experimental variation allow us to obtain compelling evidence on housing market responses to transaction taxes. First, the UK stamp duty features large discontinuities in tax liability—notches—at cutoff property prices. For example, the tax rate jumps from 1% to 3% of the entire transaction price at a cutoff of £250,000 (about $400,000), creating an increase in tax liability of £5,000 (about $8,000) as the house price crosses this cutoff. Such notches create strong incentives for reducing house prices in a region above the cutoff to a point just below the cutoff, thereby creating a hole in the price distribution on the high-tax side and excess bunching in the price distribution on the low-tax side of the notch. This allows for non-parametric identification of house price
responses to transaction taxes using a bunching approach (Saez 2010; Chetty et al. 2011; Kleven & Waseem 2013). Second, the UK stamp duty features substantial time variation, including both permanent and temporary tax changes that affect specific price brackets but not others. For example, a stamp duty holiday lasting 16 months eliminated transaction taxes in a certain price range in order to provide stimulus to the housing market during the current recession. As we show, this provides an ideal setting for a difference-in-differences approach to evaluating both extensive responses (whether or not to buy a house) and timing responses (when to buy a house) to temporary stimulus.

Our empirical findings can be divided into four main categories. First, there is large and sharp bunching just below notch points combined with large holes above notch points in the distribution of house prices. Our bunching estimates imply that house prices respond by a factor of 2–5 times the size of the tax increase at the notch, with larger effects at the bottom than at the top of the price distribution. Since notches create extremely large implicit marginal tax rates in the vicinity of the cutoff, the large bunching responses are consistent with more modest elasticities of house prices with respect to marginal tax rate, around 0.1–0.3 across most notches. We show that these effects on the market value of transacted houses (“house prices”) may be driven by both the demand for quality-adjusted units of housing and the price per unit (through price bargaining), but not by standard market-level price incidence and such effects are therefore not part of our estimates.2

Second, we consider the dynamics of house price responses using both anticipated and unanticipated changes in the location of notches. The dynamic adjustment of bunching and holes to changes in notches is very fast, with a new steady state emerging in about 3–4 months for unanticipated changes and almost immediately for anticipated changes. The remarkable sharpness of our dynamic findings suggests that agents in the housing market are less affected by optimization frictions (inattention, inertia, etc.) than for example agents in the labor market (Chetty et al. 2011; Chetty 2012; Gelber et al. 2013; Kleven & Waseem 2013).

Third, we find strong evidence of short-term timing responses to pre-announced tax changes that create time notches at cutoff dates. In the two weeks leading up to an anticipated tax increase, activity levels in the housing market increased by around 150%. Our sharp, non-parametric evidence on timing responses in the housing market contributes to previous findings that short-term timing responses may far exceed medium- or long-run responses (Auerbach 1988; Burman & Randolph 1994; Goolsbee 2000; Einav et al. 2013).

Fourth, we estimate medium-term timing and extensive margin responses using temporary and permanent tax reforms.3 Temporary housing stimulus successfully boosts activity in the short run as transaction volumes in the treatment group clearly diverge from transaction volumes in a control group during the 16-month stamp duty holiday. A 1%-point cut in transaction taxes

2Our estimates of house price responses are analogous to the literature on taxable income responses (Saez et al. 2012), which combines real labor supply and wage bargaining effects (but does not include standard wage incidence).

3These are extensive responses for house purchases as opposed to house ownership. Hence, our estimates of extensive responses do not just capture movements between renting and owning, but also that existing homeowners make additional house purchases (and therefore move more) over their lifetime.
increases market activity by about 20% during the holiday. This effect combines a timing effect (inter-temporal substitution by those who would have purchased a house anyway) and an extensive margin effect (house purchases that would not have taken place absent the tax holiday). We can separate the two effects by comparing treatments and controls following the removal of the stimulus policy. Consistent with a timing effect, activity levels in the treatment group drop by about 8% compared to the control group in the first year after the holiday, with no further reversal in the second year after the holiday. The total reversal effect due to re-timing is less than half of the total stimulus boost, in contrast to Mian & Sufi (2012) who find complete reversal within one year of a US stimulus program. Our estimates imply extremely large elasticities with respect to transaction tax rates, a medium-term elasticity (including inter-temporal substitution) of more than 20 and a long-run extensive margin elasticity of more than 14.

Our results have implications for the design of fiscal stimulus. Even though higher transaction levels in the housing market (for a given aggregate housing stock) do not add mechanically to real economic activity, house purchases have important real effects. Besides the implications of homeowner mobility for housing and labor markets, moving house is associated with substantial household spending on repairs, renovations, durable goods (domestic appliances, consumer electronics, furnishing, etc.), and commissions to agents and lawyers. Using UK consumption survey data, we estimate conservatively that a house transaction triggers extra spending of about 5% of the house price. Combined with our estimated increase in transaction volume (20%) and the size of the tax cut (1% of the house price), this implies that the amount of extra economic activity per dollar of tax cut is about 1. This captures only the immediate stimulus effect of larger spending; it does not include potential multiplier effects or indirect effects of mobility. Compared to a large body of evidence on consumer responses to other forms of fiscal stimulus such as tax rebates (e.g. Shapiro & Slemrod 2003a,b; Johnson et al. 2006; Agarwal et al. 2007; Kreiner et al. 2012), our findings suggest that the spending impact of the UK housing stimulus program has been considerably larger. The large effect is due to the strong responsiveness of house purchases to transaction taxes along with the complementarities between moving house and consumer spending. More generally, reducing transactions costs in the housing market (using tax cuts or subsidies) may be a powerful form of stimulus.

Our results also have implications for the long-run revenue and welfare effects of property transaction taxes. We convert our elasticity estimates into welfare effects using the fiscal externality approach from public finance (e.g. Kleven & Kreiner 2006; Saez et al. 2012; Hendren 2013), which does not require parametric assumptions on preferences. We estimate that the marginal cost of public funds for the stamp duty varies from 1.17 in the lowest tax bracket to 18 in the highest tax bracket. For comparison, this is orders of magnitude larger than for the personal income tax, where it varies from 1.1 at the bottom of the income distribution to 2.68 at the top of the distribution (Kleven & Kreiner 2006), and for the UK tax system as a whole where it is only about 1.2 (Dahlby 2008). Furthermore, our estimates imply that the revenue-maximizing tax rate—the Laffer rate—is only around 4–7%, and so transaction taxes above this modest level reduce revenue and are Pareto
inefficient. It is important to note that while the presence of notches in the UK stamp duty makes it particularly distortionary, it is not the presence of notches per se that makes the transaction tax so inefficient. Rather, this is due to the underlying responsiveness to this type of tax and applies to smooth schedules as well.

Transaction taxes are understudied in the enormous public finance literature and our paper takes a step towards closing this gap. A small body of empirical work has studied the effects of property transaction taxes on house prices and homeowner mobility in different countries (Benjamin et al. 1993; van Ommeren & van Leuvensteijn 2005; Besley et al. 2011; Dachis et al. 2012). Moreover, related to our first result (static house price bunching), two contemporaneous papers by Slemrod et al. (2014) and Kopczuk & Munroe (2014) find similar house price responses using US tax notches. A larger empirical literature has examined the impact of capital gains taxes on asset prices and asset transactions (e.g. Feldstein et al. 1980; Auerbach 1988; Burman & Randolph 1994) and some of this work has focused specifically on the taxation of housing capital gains (Cunningham & Engelhardt 2008; Shan 2011). Capital gains taxes and transaction taxes share the feature that tax liability is triggered by a transaction, with the key difference being that transaction taxes fall on the entire value of the asset and not just on the appreciation of the asset. Compared to the rest of the literature, our data and rich quasi-experimental variation allows us to estimate a broader set of responses (prices, timing, extensive margin) over both the short and the long run, and to use these estimates to evaluate the long-run welfare properties of transaction taxes as well as the short-run argument for varying transaction costs in the housing market to achieve macroeconomic stabilization.

The paper proceeds as follows. Section 2 presents our conceptual framework, section 3 describes the context and data, section 4 estimates house price responses using notches, section 5 estimates timing and extensive responses using stimulus and permanent reforms, and section 6 concludes.

2 Conceptual Framework

To guide the empirical analysis, this section first develops a simple static model of a competitive housing market and then considers a dynamic extension of that model. The framework is deliberately unrealistic in some dimensions as our main goal is to build the most parsimonious model possible that is still general enough to demonstrate the key empirical effects. Appendix A.1 extends our conceptual analysis to a setting with matching frictions and price bargaining.

2.1 A Static Model of the Housing Market

Agents choose whether or not to become homeowners (extensive margin) and how much housing to buy conditional on owning (intensive margin). Letting c denote units of a numeraire con-

4 Besides these empirical papers, theoretical work by Lundborg & Skedinger (1999) has analyzed the implications of housing transaction taxes.
consumption good and \(h \) denote units of quality-adjusted housing stock, we consider the following parametrization of preferences

\[
u (c, h) = c + \frac{A}{1 + 1/\varepsilon} \left(\frac{h}{A} \right)^{1 + 1/\varepsilon} - q \cdot I \{ h > 0 \},
\]

where \(A, \varepsilon \) are parameters characterizing housing preferences and \(q \) is a fixed cost of entering the owner-occupied market including both transaction costs (search costs, broker fees, etc.) and the utility from renting instead of owning. We allow for heterogeneity in all of these parameters captured by a smooth density distribution \(f (A, \varepsilon, q) \). The quasi-linear utility function conveniently eliminates income effects on housing demand as we will focus purely on the price effect.

As a baseline, consider a flat transaction tax rate \(t \) on the value of housing purchased. Denoting the price per unit of housing by \(p \) and income by \(y \), the budget constraint is given by

\[
c + (1 + t) ph = y.
\]

Conditional on owning \((h > 0) \), maximizing utility (1) with respect to the budget constraint (2) yields the following housing demand function

\[
h^* = A ((1 + t) p)^\varepsilon,
\]

where \(\varepsilon \) is the price elasticity of housing demand. Indirect utility conditional on \(h > 0 \) and exclusive of the fixed cost \(q \) can be defined as \(v ((1 + t) p, y) \equiv u (c^*, h^*) + q \), while indirect utility conditional on \(h = 0 \) is given by \(u (y, 0) = y \). The agent then enters the owner-occupied housing market iff

\[
q \leq v ((1 + t) p, y) - y \equiv q^*
\]

Total housing demand is then given by

\[
D ((1 + t) p) = \int_A \int_\varepsilon \int_0^{q^*} h^* f (A, \varepsilon, q) \, dq \, d\varepsilon \, dA.
\]

We will be agnostic about the details of the supply side and denote housing supply by \(S (p) \). The equilibrium condition \(D ((1 + t) p) = S (p) \) determines the equilibrium price \(p \) as a function of \(1 + t \).

Now consider the introduction of a discrete jump \(\Delta t \) in the average transaction tax rate—a notch—at a cutoff property value. Denoting property value by \(h_v \equiv ph \), the notched tax schedule can be written as \(T (h_v) = t \cdot h_v + \Delta t \cdot h_v \cdot I \{ h_v > \overline{h}_v \} \) where \(\overline{h}_v \) is the cutoff and \(I \{ \cdot \} \) is an indicator for being above the cutoff. Figure 1 illustrates the implications of this notch in a budget set diagram (Panel A) and density distribution diagrams (Panels B-D). The budget set diagram (depicted in \((h_v, c) \)-space) illustrates intensive responses among individuals with heterogeneous housing preferences \(A \), but a specific demand elasticity \(\varepsilon \). The notch creates bunching at the cutoff.
\bar{h}_v by all individuals in a preference range $(\bar{A}, \bar{A} + \Delta \bar{A})$, who would have bought houses on the segment $(\bar{h}_v, \bar{h}_v + \Delta \bar{h}_v)$ in the absence of the notch. The marginal bunching individual at $\bar{A} + \Delta \bar{A}$ is indifferent between the notch point \bar{h}_v and the best interior location \bar{h}_v^I. No individual is willing to locate between \bar{h}_v and \bar{h}_v^I, and hence this range is completely empty. The density distribution of property values corresponding to the budget set diagram (all A, one specific ε) is shown in Panel B. Since the behavioral response in Panels A-B depends on the size of the demand elasticity ε (and converges to zero for $\varepsilon = 0$), the density distribution in the full population (all A, ε) can be illustrated as in Panel C where some individuals are willing to buy just above the notch point.\footnote{Notice that the above characterization is based on a given price p per unit of housing. The tax-induced change in aggregate housing demand (from bunching as well as interior responses further up) will affect the equilibrium price, which by itself will shift indifference curves in Panel A (as they are depicted in (h_v, c)-space) and hence shift the density distribution of property values. The qualitative characterization above holds for any arbitrary price and therefore also for the new equilibrium price. The key insight is that, in this competitive model, price incidence occurs at the market level and therefore does not contribute to bunching and holes locally around notches. Appendix A.1 considers a bargaining model where price incidence occurs at the match level in which case price incidence does create bunching and holes.}

In addition to intensive responses, the notch creates extensive responses above the cutoff by individuals close to being indifferent between buying and not buying (with $q \approx q^*$). However, such extensive responses will be negligible just above the cutoff. This can be seen by considering an individual who prefers a location on the segment $(\bar{h}_v, \bar{h}_v + \Delta \bar{h}_v)$ without the notch and therefore prefers the cutoff \bar{h}_v with the notch (conditional on buying). For such an individual, the change in the threshold fixed cost Δq^* induced by the notch is given by

$$\Delta q^* = u(\bar{c}, \bar{h}_v / p) - u(c^*, h^*), \tag{6}$$

where $\bar{c}, \bar{h}_v / p$ is the consumption bundle obtained at the notch. As the preferred point absent the notch h^* converges to the cutoff \bar{h}_v / p from above (and hence c^* converges to \bar{c}), Δq^* converges to zero and extensive responses disappears. Intuitively, if in the absence of the notch, an individual would choose to buy a house slightly above \bar{h}_v, then in the presence of the notch, she will be better off by buying a house at \bar{h}_v (which is almost as good) rather than not buying at all. This reasoning implies that extensive responses affect the density distribution as illustrated in Panel D of Figure 1. These effects can be summarized in the following proposition

Proposition 1 (Notches). A transaction tax featuring a notch at a property value \bar{h}_v at which the proportional tax rate jumps from t to $t + \Delta t$ induces

(i) an intensive margin response as agents in a house price range $(\bar{h}_v, \bar{h}_v + \Delta \bar{h}_v)$ bunch at the threshold \bar{h}_v, where the width of the bunching segment $\Delta \bar{h}_v$ is monotonically increasing in the demand elasticity ε (as characterized below by equation (9)); and

(ii) an extensive margin response as agents in the house price range (\bar{h}_v, ∞) who are sufficiently close to indifference between buying and not buying, $q \in (q^* + \Delta q^*, q^*)$, no longer buy. The extensive response converges to zero just above the cutoff as $\Delta q^* \to 0$ for $h_v \to \bar{h}_v^I$.

These effects imply that at the cutoff at \bar{h}_v the density of house values that we observe will feature
In this case, equation (7) can be generalized to

\[B(\bar{h}_v) = \int_{h_v}^{h_v + \Delta h_v} g_0(h_v) \, dh_v \approx g_0(\bar{h}_v) \Delta h_v, \tag{7} \]

where \(B(\bar{h}_v) \) is excess mass at the cutoff and \(g_0(h_v) \) is the counterfactual density of house values (i.e. the density that would prevail absent the notch). The approximation is accurate to the extent that the counterfactual is approximately uniform around the notch. Based on equation (7), it is possible to recover the house price response \(\Delta \bar{h}_v \) based on estimates of the counterfactual distribution \(g_0(h_v) \) and bunching \(B(\bar{h}_v) \).

The relationship (7) implicitly assumes that there is just one bunching segment \((\bar{h}_v, h_v + \Delta \bar{h}_v)\), which amounts to assuming that \(\varepsilon \) is homogeneous in the population. Our conceptual framework allows for heterogeneity and we can also account for it in the empirical implementation. There will be a price response \(\Delta \bar{h}_v(\varepsilon) \) and a counterfactual density \(\tilde{g}_0(h_v, \varepsilon) \) associated with each type \(\varepsilon \). In this case, equation (7) can be generalized to

\[B(\bar{h}_v) = \int_{\varepsilon} \int_{h_v}^{h_v + \Delta h_v(\varepsilon)} \tilde{g}_0(h_v, \varepsilon) \, dh_v \, d\varepsilon \approx g_0(\bar{h}_v) \, E[\Delta \bar{h}_v], \tag{8} \]

where \(E[\Delta \bar{h}_v] \) is the average price response across all \(\varepsilon \). As before, the approximation requires that the counterfactual density is locally uniform in house prices \(h_v \) (but not type \(\varepsilon \)) around the notch point. Equation (8) shows that estimates of the counterfactual distribution and bunching allows us to recover the average house price response in the population.

As shown by Kleven & Waseem (2013), the relationship between bunching and the demand elasticity can be characterized using two distinct approaches. The structural approach considers the marginal bunching individual who is indifferent between the notch point and her best interior location. This indifference condition along with the first-order condition for the no-notch location \(\bar{h}_v + \Delta \bar{h}_v \) implies that the marginal bunching individual satisfies

\[\frac{1}{1 + \Delta \bar{h}_v / \bar{h}_v} - \frac{1}{1 + 1 / \varepsilon} \left[\frac{1}{1 + \Delta h_v / \bar{h}_v} \right]^{1+1/\varepsilon} - \frac{1}{1 + \varepsilon} \left[1 + \frac{\Delta t}{1 + t} \right]^{1+\varepsilon} = 0. \tag{9} \]

With our estimate of the width of the bunching segment \(\Delta \bar{h}_v \) and the tax parameters \(\bar{h}_v \) and \(\Delta t / (1 + t) \), this condition gives a unique demand elasticity \(\varepsilon \). However, since the structural approach relies heavily on the functional form for utility as well as the competitive market assumption, we follow Kleven & Waseem (2013) and also characterize the elasticity using a reduced-form approximation. This approach relates the house price response \(\Delta \bar{h}_v \) to the change in the implicit marginal tax rate between \(\bar{h}_v \) and \(h_v + \Delta \bar{h}_v \) created by the notch. Defining this implicit marginal tax rate as \(t^* = \{ T(\bar{h}_v + \Delta \bar{h}_v) - T(\bar{h}_v) \} / \Delta \bar{h}_v \), the house price elasticity with respect to \((1 + t^*) \) is given by

\[\varepsilon_r \equiv \frac{\Delta \bar{h}_v / \bar{h}_v}{\Delta t^* / (1 + t^*)} \approx \left(\frac{\Delta h_v / \bar{h}_v}{\Delta t / (1 + t)} \right)^2, \tag{10} \]

where the notch-induced change in the implicit marginal tax rate is approximated as \(\Delta t^* \approx \{ \Delta t \cdot \bar{h}_v \} / \Delta \bar{h}_v \).
The advantage of estimating a house price elasticity with respect to the marginal tax rate (using notches that create jumps in the average tax rate) is that it allows for an evaluation of house price responses in the interior of tax brackets (where individuals are responding to marginal tax rate changes) and also for an evaluation of alternative non-notched tax structures.

2.2 A Dynamic Extension to the Model

To guide the empirical analysis of temporary stimulus policy, let us briefly consider a dynamic extension of the previous model. In general, temporary tax changes will create both timing responses and extensive margin responses in the housing market. To see this, consider a simple two-period extension of the previous model. In general, temporary tax changes will create both timing responses in the interior of tax brackets (where individuals are responding to marginal tax rate changes) and also for an evaluation of alternative non-notched tax structures.

2.2 A Dynamic Extension to the Model

To guide the empirical analysis of temporary stimulus policy, let us briefly consider a dynamic extension of the previous model. In general, temporary tax changes will create both timing responses and extensive margin responses in the housing market. To see this, consider a simple two-period extension of the model in which agents maximize lifetime utility $u_1(c_1, h_1) + \beta u_2(c_2, h_2)$ where the per-period utility functions are given by

$$u_s(c_s, h_s) = c_s + \frac{A_s}{1 + 1/\varepsilon_s} \left(\frac{h_s}{A_s} \right)^{1+1/\varepsilon_s} - q_s \cdot I\{h_s \neq h_{s-1}\} \quad (11)$$

Note that all the preference parameters $\{A_s, \varepsilon_s, q_s\}$ are allowed to vary between periods. In each period, agents choose whether to be active in the housing market or whether to remain in their current house (either a rented house or a house they purchased in a previous period). For simplicity we will assume that all agents start out renting so that $h_0 = 0$ for all agents, but this does not affect any of the results. If agents choose to be active in the housing market in period s they pay a fixed cost q_s, choose the amount of housing to purchase h_s, and if $h_{s-1} \neq 0$, they also simultaneously sell their existing house. Agents also receive income of y_s in each period and so face a budget constraint analogous to equation (2) in each period $s \in \{1, 2\}$ given by

$$c_s + p_s \left[(1 + t_s) h_s - h_{s-1} \right] \cdot I\{h_s \neq h_{s-1}\} = y_s \quad (12)$$

Solving the model backwards, consider an individual who enters period 2 with housing $h_1 \geq 0$. Just as in the static case, this individual will maximize $u_2(c_2, h_2)$ subject to her budget constraint (12) and, conditional on buying, demand housing $h_s^* = A_2 \left[(1 + t_2) p_2 \right]^{\varepsilon_2}$. This agent therefore buys a new house iff $u_2(c_s^*, h_s^*) > u_2(y_2, h_1)$ and we can write her indirect utility as $v_2((1 + t_2) p_2, y_2, h_1) = \max \{u_2(c_s^*, h_s^*), u_2(y_2, h_1)\}$. Working backwards, individuals in period 1 anticipate the effect that their housing choices will have on their utility in period 2, so they maximize $u_1(c_1, h_1) + v_2((1 + t_2) p_2, y_2, h_1)$ subject to the period 1 budget constraint (12), again yielding a period-1 housing demand function h_1^* conditional upon buying. Individuals therefore buy in period 1 whenever $u_1(c_1^*, h_1^*) + \beta v_2((1 + t_2) p_2, y_2, h_1^*) > u_1(y_1, 0) + \beta v_2((1 + t_2) p_2, y_2, 0)$. In this model there will, in general, be four groups of agents: those who buy a house in period 1 and stay in it in period 2; those who buy in period 1 and then move in period 2; those who do not buy in period 1 but do so in period 2; and those who never buy.

In this formulation, we can think of p_s as the price of 1 unit of housing services in every period from the current period onwards. In a model without liquidity constraints and in which utility is quasi-linear this is, of course, immaterial. Moreover, even in a richer model the qualitative predictions that we explore in our empirical analysis will be unchanged.
If we now consider a reduction in the first-period tax t_1, this unambiguously makes buying a house in period 1 more attractive by lowering the net-of-tax price of housing. This has two conceptual effects on the level of activity in the housing market in period 1. First there will be a timing effect as agents who were close to indifferent between buying in period 2 and buying in period 1, i.e. those for whom $y_1 + \beta u_2 (y_2 - p_2 (1 + t_2) h_2^*, h_2^*) \approx u_1 (c_1^*, h_1^*) + \beta u_2 (y_2, h_1^*)$, buy a house in period 1 instead of waiting until period 2. Second, there will be an extensive margin effect by two types of agents. Those who were close to indifferent between never buying and buying in period 1, i.e. those for whom $y_1 + \beta u_2 (y_2, 0) \approx u_1 (c_1^*, h_1^*) + \beta v_2 ((1 + t_2) p_2, y_2, h_1^*)$, buy in period 1 instead of not buying at all. Furthermore, those who were close to indifferent between buying only in period 2 and buying in both periods, i.e. those for whom $y_1 + \beta u_2 (y_2 - p_2 (1 + t_2) h_2^*, h_2^*) \approx u_1 (c_1^*, h_1^*) + \beta u_2 (y_2 - p_2 [(1 + t_2) h_2^* - h_1^*], h_2^*)$, are induced to buy twice over their lifetime instead of only once. To summarize,

Proposition 2 (Temporary Stimulus). An unanticipated temporary stimulus policy reducing the transaction tax in period 1, but not in period 2, causes

(i) a timing effect as agents who were sufficiently close to indifference between buying in period 1 and buying in period 2 (preferring the latter) are induced to shift their house purchase forward; and

(ii) an extensive margin effect by two sets of agents. Those who were sufficiently close to indifference between buying in period 1 and never buying (preferring the latter) are induced to buy in period 1. Those who were sufficiently close to indifference between buying in both periods and buying only in period 2 (preferring the latter) are induced to buy twice over their lifetime instead of only once.

2.3 Revenue and Welfare Effects of a Property Transaction Tax

In this section we consider the revenue and welfare consequences of property transaction taxes, summarizing the effects in two key statistics. First, we derive the marginal cost of public funds, defined as the marginal welfare cost per dollar of revenue collected (see e.g., Kleven & Kreiner 2006; Dahlby 2008). Second, we derive the revenue-maximizing tax rate (Laffer rate). Tax rates beyond the Laffer rate reduce revenue as well as the utility of each homebuyer, and are therefore Pareto inefficient.

To evaluate the marginal welfare impact of transaction taxes, we exploit an insight from public finance that this can be measured by the fiscal externality, i.e. the fraction of government revenue lost due to behavioral responses to the tax (see e.g., Saez 2004; Kleven & Kreiner 2005; Hendren 2013). This result follows from an envelope condition, assuming that the government intervention is the only distortion to housing transactions. If non-government distortions are making housing transactions too costly compared to first best (for example, if agent commissions are larger than true social costs), then our measured welfare effects will be lower bounds.

To see how the approach works, consider an arbitrary marginal change to the transaction tax schedule. In general, such a tax change will affect government revenue by $dT = dM + dB$, where dM represents the mechanical revenue effect (due to changed tax rates taking behavior as given)
and dB represents the behavioral revenue effect (due to changed behavior taking tax rates as given). Abstraction from distributional considerations, the aggregate welfare cost dW is equal to the mechanical revenue effect dM. The reason is that behavioral responses have no first-order effects on aggregate utility because the tax change is small and agents are optimizing house transactions (envelope condition) and we have assumed that the only source of inefficiency is the government (no other externalities than the fiscal externality). This implies that the marginal cost of public funds can be written as

$$MCF \equiv \frac{dW}{dT} = \frac{1}{1 + dB/dM}. \quad (13)$$

This expression holds in a broad class of models (where the government is the only distortion), requiring no specific assumptions on the functional form of utility, market structure, etc.

Considering a proportional tax rate change dt, we express equation (13) as a function of behavioral elasticities. Using the notation of the model presented above, the mechanical revenue effect is given by $dM = h_v^n dt$ where $h_v^n = \int_A \int_\varepsilon \int_0^q \varepsilon \frac{ph^*}{h_v^n} f(A, \varepsilon, q) dqd\varepsilon dA$ denotes the average house value. The behavioral revenue effect dB consists of an intensive margin effect (individuals buying less housing, conditional on buying) and an extensive margin effect (individuals no longer buying). Intensive responses affect revenue by $dI = -\frac{t}{1+t} \tilde{\varepsilon} h_v^n dt$ where we define $\tilde{\varepsilon} \equiv -\int_A \int_\varepsilon \int_0^q \varepsilon \frac{ph^*}{h_v^n} f(A, \varepsilon, q) dqd\varepsilon dA$ as the house-value weighted average demand elasticity in absolute value. Finally, defining the extensive elasticity in absolute value as $\eta \equiv -\partial F(q^* | A, \varepsilon) dq^{1+t} F(q^* | A, \varepsilon)$, extensive responses affect revenue by $dE = -\frac{t}{1+t} \tilde{\eta} h_v^n dt$ where $\tilde{\eta} \equiv \int_A \int_\varepsilon \eta \frac{ph^*}{h_v^n} f(A, \varepsilon) d\varepsilon dA$ is the house-value weighted average extensive margin elasticity. Using $dB = dI + dE$, we obtain

$$MCF = \frac{1}{1 + (dI + dE)/dM} = \frac{1}{1 - \frac{t}{1+t} (\tilde{\varepsilon} + \tilde{\eta})}. \quad (14)$$

The second summary statistic we consider is the Laffer rate, defined as the rate t_L at which $dT = dM + dI + dE = 0$. Using the above expressions, we have

$$t_L = \frac{1}{\tilde{\varepsilon} + \tilde{\eta} - 1}, \quad (15)$$

and we note that, at the Laffer rate $t = t_L$, the marginal cost of funds is infinite. As mentioned above, the Laffer rate is a key statistic as it represents the Pareto bound of a tax system.

7 It is conceptually straightforward to incorporate distributional weights in our derivations.

8 It would be straightforward to consider other types of tax changes, but proportional tax changes are simpler to analyze and they are sufficient for (approximately) evaluating the UK transaction tax. This is due to the fact that the UK system is proportional within brackets and that notches at bracket cutoffs create only local distortions that will in general not contribute substantially to total revenue and welfare (though they are very useful for identification). Hence we will be able to apply our measure of the marginal cost of public funds separately to each bracket in order to evaluate the welfare effects through the house price distribution.
3 Context and Data

3.1 The UK Property Transaction Tax: Notches and Reforms

The UK property transaction tax—Stamp Duty Land Tax (SDLT)—is imposed on the transaction value of land and any construction on the land, known as the “chargeable consideration”. This is defined in the broadest possible terms to include anything of economic value given in exchange for land or property, including money, goods, works or services, and transfers of debts. The statutory incidence of the SDLT falls on the buyer, who is required to file a stamp duty return and remit tax liability to HMRC within a few weeks of the completed transaction. The SDLT is a significant source of government revenue in the UK, much more so than other wealth transfer taxes such as inheritance taxation and capital gains taxation. The SDLT has raised revenue of around 0.6% of GDP over recent years, and the political debate in the UK suggests that future rates (on highly priced properties) are more likely to go up than down.

A central aspect of the stamp duty is that it features discrete jumps in tax liability—notches—at threshold property prices. Tax liability is calculated as a proportional tax rate times the transacted property price, with different tax rates in different price brackets. Hence, as the purchase price crosses a bracket threshold, a higher tax rate applies to the entire amount and not just the portion that falls above the cutoff as in standard graduated schedules. Figure 2 illustrates the stamp duty schedule for residential property in tax year 2012–13. The schedule features five notches as the proportional tax rate jumps from zero to 1% at a price of £125,000, from 1% to 3% at a price of £250,000, from 3% to 4% at a price of £500,000, from 4% to 5% at a price of £1,000,000, and finally from 5% to 7% at a price of £2,000,000. The schedule is different for residential property in certain disadvantaged areas (where the first bracket threshold is at a higher price) as well as for non-residential property. It is worth noting that the buyer cannot mortgage the SDLT liability, it must be financed from savings, and so we should expect the SDLT to have large effects on liquidity constrained buyers. It should also be noted that stamp duty schedules are not indexed for inflation, which creates “bracket creep” as property price inflation pushes houses into higher stamp duty brackets.

Another important aspect of the stamp duty is that it has been subject to a great deal of policy experimentation over the years. As shown in Table 1, the main policy experiments during our data period have been (i) changes in the location of the lower notch and (ii) the introduction of new notches at £1,000,000 in April 2011 and at £2,000,000 in March 2012. It is worth describing the specific features of some of those policy changes as they will be important for the empirical

9The chargeable consideration includes the buildings and structures on the land as well as fixtures and fittings (such as in bathrooms and kitchens), but excludes freestanding furniture, carpets or curtains. If such extras are included in the sale, the buyer and seller are to agree on the market value of these extras and subtract it from the chargeable consideration. See http://www.hmrc.gov.uk/sdlt/calculate/value.htm for details.

11The UK tax year for personal taxes runs from April 6 in one year to April 5 the next year.

12At the £2,000,000 notch, the stamp duty rate jumps to 15% if the residential dwelling is purchased by certain “non-natural persons” such as corporations and collective investment schemes.
For the lower notch, the most salient change was the so-called **stamp duty holiday** between 3 September 2008 and 31 December 2009, which moved the first notch point from £125,000 to £175,000 and thereby eliminated stamp duty in a £50,000 range. The motivation of the program was to provide housing stimulus during the current recession.\(^{13}\) The following features of the stamp duty holiday are important for our analysis. First, the beginning of the holiday was *unanticipated* as it was announced suddenly by the then Chancellor Alistair Darling on the day before its introduction. Although there was some media speculation about the possibility of a stamp duty holiday in the month leading up to the announcement, the details and start date of such a holiday were unknown. Second, the end of this holiday was *anticipated*. The initial announcement was that the holiday would last for one year (until September 2009), but in April 2009 this was extended until the end of 2009 and the government committed to no further extensions (and indeed did not grant any extensions). The sudden announcement of the stamp duty holiday and the preannounced commitment to its end date allow us to compare the effects of expected and unexpected changes in tax policy. In particular, the pre-announced end date creates a **time notch** (a discrete jump in tax liability at a cutoff date) allowing us to analyze short-term timing effects. Finally, as the stamp duty holiday applied only to properties in a certain price range, we are able to study the stimulus effects of the policy and subsequent reversal (medium-term timing) using a difference-in-differences approach.

For the top notches, the introduction of a higher stamp duty rate above £1,000,000 was preannounced a full year in advance, while the higher stamp duty rate above £2,000,000 was confirmed just one day before it took effect. Hence, the introduction of the £1,000,000 price notch (but not the £2,000,000 price notch) also creates a time notch that allows us to study anticipatory behavior.

The UK stamp duty appears to be characterized by relatively high compliance. According to HMRC estimates, the so-called **tax gap**—the difference between taxes owed and taxes paid on a timely basis—is between 4–5% of true stamp duty tax liability. This is lower than the tax gap estimates for most other taxes in the UK. It is perhaps not surprising that tax evasion is a minor issue for this tax when considering the following points. First, almost all property transactions in the UK are facilitated by licensed real estate agencies, implying that stamp duty tax evasion requires collusion between a buyer, a seller and a real estate agency (typically with multiple employees). Such evasion collusion involving many agents is unlikely to be sustainable (Kleven *et al.* 2009). Second, the scope for tax evasion is further reduced by the existence of a considerable lag between agreeing on a house price and completing the contract.\(^{14}\) If the house price reported to tax authorities is lower than the true house price, the buyer must make a side payment to the seller. If the buyer makes the side payment at the time of agreeing on the house price, the seller would

\(^{13}\) Another stimulus program was implemented specifically for first-time buyers between 25 March 2010 and 24 March 2012. This program temporarily abolished the notch at £125,000, thereby eliminating stamp duty in the range between £125,000 and £250,000 for first-time buyers.

\(^{14}\) This lag is about 2 months on average in the UK housing market (Besley *et al.*, 2011).
be able to renege before completing the contract and it would be difficult for the buyer to recoup the payment. If instead the buyer promises to make the payment at the time of completing the contract, the seller would take his property off the market with no credible commitment from the buyer that he would not renege later when the bargaining position of the seller may be weaker. Hence, such side payments would be associated with substantial risk for either the buyer or the seller or both. Finally, as described above, the tax base is defined in an very comprehensive manner meaning that the scope for shifting or re-classification of specific features of the property to avoid the tax is limited. The one exception is the exclusion in the tax base of freestanding “extras” such as furniture and curtains. If such extras are included in the sale, the buyer and seller are to agree on the market value of these extras and subtract it from the chargeable consideration, which creates an opportunity to evade stamp duty by overvaluing such items (while undervaluing the rest of the property by the same amount). However, reporting large amounts of tax exempt extras is an audit trigger, limiting the degree to which such behavior is possible. For all of these reasons, we believe that house prices reported on stamp duty tax returns reflect true house prices in most (but not all) cases.

3.2 Data and Raw Time Series Evidence

The empirical analysis is based on administrative data covering the universe of stamp duty (SDLT) returns in the UK from November 2004 to October 2012. Since most property transactions require the filing of an SDLT return (the main filing exemption being for property transactions under £40,000), our data is close to the universe of property transactions in the UK. The full dataset contains about 10 million transactions. The dataset contains rich tax return information for each transaction, but currently very little information outside the tax return.

The housing market has seen substantial turmoil during the period we consider. Figure 3 shows the monthly number of house transactions (Panel A) and the monthly average property price (Panel B) in all of the UK and in London alone. The figure shows nominal prices (real prices give the same qualitative picture) and normalizes both the price and the number of transactions to one at the start of the period. We make the following observations. First, housing market activity collapses between late 2007 and early 2009 as the number of transactions falls by around two-thirds. There has been some recent recovery, but activity is still very far from pre-recession levels. Second, property prices also fall between late 2007 and early 2009, but the price drop is less dramatic and the subsequent recovery much stronger. Third, property prices (though not activity) in London have evolved differently than in the rest of the UK during the recession. While UK-wide property prices have recovered only partially in the past couple of years, London property prices are almost back on their pre-recession trend. Fourth, the recovery in house prices and activity throughout 2009 coincides with the stamp duty holiday, which has been used as an argument that the policy had the desired effect. We will take a quasi-experimental approach to evaluate how much of the recovery (if any) can indeed be explained by the stamp duty holiday. Finally, average house prices in London feature a sharp spike in early 2011 and a subsequent dip, which constitutes
our first piece of evidence of a behavioral response to stamp duty incentives. This spike reflects excess trading of houses above £1,000,000 just before the pre-announced introduction of the £1,000K stamp duty notch on 6 April 2011 and the dip reflects missing trading of such houses just after the introduction of the notch—a short-term timing response to an anticipated tax change.

4 House Price Responses to Transaction Taxes: Notches

4.1 House Price Responses to Static Notches

This section presents static results using price notches during periods when they are stable. We consider residential property transactions that incur a stamp duty land tax liability. Figure 4 considers the two notches located at cutoff prices of £250,000 (Panel A) and £500,000 (Panel B), both of which have remained in place throughout the period of our data. Each panel shows the empirical distribution of house values (blue dots) as a histogram in £5,000 bins and an estimated counterfactual distribution (red line). Following Chetty et al. (2011) and Kleven & Waseem (2013), the counterfactual distribution is estimated by fitting a flexible polynomial to the empirical distribution, excluding data in a range around the notch, and allowing for round-number fixed effects to capture rounding in the price data. The excluded range is demarcated by vertical dashed lines; the lower bound is set at the point where excess bunching starts and the upper bound is set at the point where the hole ends (where the empirical distribution above the cutoff changes slope from positive to negative).

As discussed in detail by Kleven & Waseem (2013), due to the presence of potential extensive responses above the excluded range, this estimation procedure intends to provide a “partial counterfactual” stripped of intensive responses, but not extensive responses. This partial counterfactual corresponds to the border of the light-gray area in Panel D of Figure 1, which is smooth around the cutoff. To simplify, our estimation of the counterfactual distribution ignores the marginal shift

\[c_i = \sum_{j=0}^{q} \beta_j (z_i)^j + \sum_{r \in \mathcal{R}} \eta_r I \left(\frac{h_v + z_i}{r} \in \mathbb{N} \right) + \sum_{k=h_v^-}^{h_v^+} \gamma_k I \{ i = k \} + \mu_i, \]

(16)

where \(c_i \) is the number of transactions in price bin \(i \), \(z_i \) is the distance between price bin \(i \) and the cutoff \(h_v \), and \(q \) is the order of the polynomial (\(q = 5 \) in Figure 4). The second term in (16) includes fixed effects for prices that are multiples of the round numbers in the set \(\mathcal{R} \), where \(\mathcal{R} = \{ 500, 1000, 5000, 10000, 25000 \} \). \(N \) is the set of natural numbers, and \(I \{ \cdot \} \) is an indicator function. Finally, the third term in (16) excludes a region \((h_v^-, h_v^+) \) around the notch that is distorted by bunching responses to the notch, and \(\mu_i \) is a residual reflecting misspecification of the density equation. Our estimate of the counterfactual distribution is defined as the predicted bin counts \(\hat{c}_i \) from (16) omitting the contribution of the dummies in the excluded range, and excess bunching is estimated as the difference between the observed and counterfactual bin counts in the part of the excluded range that falls below the notch \(\hat{B} = \sum_{i=h_v^-}^{h_v^+} (c_i - \hat{c}_i) \).

We may also define an estimate of missing mass (the hole) above the notch as \(\hat{M} = \sum_{i=h_v^+}^{h_v} (c_i - \hat{c}_i) \), but this statistic is not used in the estimation of house price responses and house price elasticities (see section 2.1). Standard errors on all estimates are calculated based on a bootstrap procedure as in Chetty et al. (2011). As a robustness check we have tried values between 4 and 7 for the order of the polynomial and our results are not significantly altered.
in the distribution above the hole due to intensive responses in the interior of the upper bracket. It is feasible to account for this shift in the distribution when estimating the counterfactual, but given the size of the incentive (a marginal tax rate change of 1–2% above the notch) and the house price elasticities that we find, this shift will be extremely small and have no substantive effect on any of our conclusions.

In Figure 4, each panel shows estimates of excess bunching below the notch scaled by the counterfactual frequency at the notch \(b \), the size of the hole (missing mass) above the notch scaled by the counterfactual frequency at the notch \(m \), the difference between these two \(m - b \), the average house price response to the notch \(\Delta h_v \), and the tax liability change at the notch \(\Delta \text{Tax} \). Our main findings are the following. First, both notches create large and sharp bunching below the cutoff. Excess bunching is 1.85 and 1.64 times the height of the counterfactual distribution at £250,000 and £500,000, respectively, and is strongly significant in each case. Second, both notches are associated with a large hole in the distribution above the cutoff. The size of the hole is larger than the size of excess bunching, although the difference between the two is not statistically significant from zero. Third, the hole in the distribution spans a £25,000 range above each cutoff, implying that the most responsive agents reduce their transacted house value by five times as much as the jump in tax liability of £5,000. Fourth, the average house price response is £10,000 at both the £250,000 notch and the £500,000 notch, a response that is twice as large as the tax jump.

We now turn to the lower notch, the location of which has changed several times during the period under consideration. The cutoff was located at £60,000 until 16 March 2005, at £120,000 between 17 March 2005 and 22 March 2006, at £125,000 between 23 March 2006 and 2 September 2008, at £175,000 between 3 September 2008 and 31 December 2009, and again at £125,000 from 1 January 2010 onwards. This section takes a static approach by considering bunching responses within each of these five periods separately, while the next section investigates dynamic adjustment paths around the reform episodes. Figure 5 shows results for the five periods in separate panels, each of which is constructed as in the Figure 4. The findings for the lower notch are qualitatively consistent with those for the other notches, with a clear and statistically significant bunching response to the tax notch in each period. The size of the bunch and the hole is smaller at the lower notch than at the upper notches, but so is the size of the notch. The effect of the notch on the average transacted house value is between £3,500 and £5,000, or about 4–5 times the size of the tax liability jump so responses are actually proportionally larger at the bottom.

17 This can be done by using an initial estimate of the house price elasticity (based on ignoring the shift in the upper distribution) to obtain an initial estimate of the distribution shift, re-estimate the counterfactual and the house price elasticity to respect the initial estimate of the distribution shift, and continue the procedure until the estimation converges.

18 This finding is interesting when considering mortgage terms in the UK. Mortgage rates depend on the downpayment as a share of the house price according to a notched schedule, with the credit terms improving drastically if the borrower is able to put down a deposit of at least 20%. Hence, if a buyer is targeting the 20% mortgage notch and is liquidity constrained, the house price is fixed at five times savings net of stamp duty payments (recall that stamp duty cannot be mortgaged). This implies that the house price responds precisely by a factor of five to the stamp duty. In future work, we plan to investigate the role of liquidity constraints for the joint responsiveness to taxes and mortgage rates using administrative mortgage data.
To facilitate comparison across notches, and to assess house price responses outside the regions around notches (where individuals are responding to standard marginal tax incentives), Table 2 converts the house price responses at each of the notches into house price elasticities with respect to the marginal tax rate using both the structural and reduced-form approaches outlined in section 2.1. Despite the large house price responses, the elasticities are relatively modest due to the enormous marginal tax rate variation driving those responses. The elasticity declines monotonically through the price distribution, ranging from around 0.2–0.3 at the bottom of the distribution to below 0.05 at the top. As shown by Kleven & Waseem (2013), the reduced-form approach in general over-estimates the elasticity, and consistent with this, we find that the reduced-form elasticity is slightly larger than the structural elasticity at each notch. These modest house price elasticities with respect to the marginal tax rate imply that house price responses outside the regions around notches are quite modest, though larger at the bottom.

In 2011 and 2012, the government introduced two new notches affecting very high value properties, one at £1 million on 6 April 2011 and another one at £2 million on 22 March 2012. The stamp duty notch at £2 million is commonly referred to as the “mansion tax”. Even though these are very recent notches, they have already created a clear house price distortion as shown in Appendix Figure A.2. This figure is constructed in the same way as the previous ones, except that the counterfactual distribution is obtained differently. We take advantage of the tax reform (notch introduction) by comparing the empirical house price distribution after the introduction of the notch to the empirical distribution in the year leading up to the introduction of the notch. The results are qualitatively very similar to the previous results, with an average house price response of £30,000 at the £1 million notch (3 times the tax liability jump of £10,000) and £100,000 at the £2 million notch (2.5 times the tax liability jump of £40,000).

Finally, when interpreting our results, note that reported house prices in our data can be described by \(h_v \equiv p \cdot h - e \), where \(p \) is the price per unit of quality-adjusted housing, \(h \) is the amount of quality-adjusted housing, and \(e \) is stamp duty evasion. This means that, in general, our estimates of house price responses combine price changes \(\Delta p \) (incidence), real demand changes \(\Delta h \) (buying a lower-quality house), and evasion responses \(\Delta e \). As clarified in the theory section, the price incidence effect reflects potential match-specific price bargaining rather than standard market-level incidence driven by aggregate demand and supply (which does not by itself create bunching). Our estimates of house price responses are conceptually similar to the estimation of taxable income responses (e.g. Saez et al. 2012), which combines wage bargaining effects, real labor supply, and evasion.

4.2 House Price Responses to Moving Notches

This section investigates the dynamics of behavioral adjustment to the changes in the position of the lower notch that were mentioned above. When considering dynamic adjustments, it is important to keep in mind that there is always a lag between agreeing on a purchase price and completing the housing contract. In the UK housing market, this lag is under 90 days for most
transactions and about 60 days on average (Besley et al. 2011). Since the official transaction date in our data refers to contract completion, the time it takes for the market to settle into a new equilibrium is bounded from below by about 3 months.

Figure 6 considers the movement of the lower notch from £120,000 to £125,000 on 23 March 2006. Each panel shows the empirical and counterfactual distributions in a given month between February 2006 and September 2006. The two vertical lines demarcate the £120,000 and £125,000 cutoffs and are either solid green (for the cutoff that is active in month in question) or dashed black (for the cutoff that is inactive). April 2006 is the first full month where the new cutoff is in place. The figure shows very clearly how the bunch moves over time in response to the changed location of the notch. Most of the adjustment has occurred after four months (in July 2006) and a new equilibrium has been reached after 6 months (in September 2006).\(^{19}\) Hence, most of the lag in the adjustment to the new equilibrium can be explained by the administrative lag between contract exchange and contract completion.

The next three figures consider the movement of the lower notch from £125,000 to £175,000 on 3 September 2008 (the start of stamp duty holiday) and the subsequent movement back to £125,000 on 1 January 2010 (at the end of stamp duty holiday). When interpreting the findings, it is worth keeping in mind that the start of the holiday was unanticipated while the end of the holiday was anticipated (see section 3.1). Figure 7 shows monthly bunching graphs over a 12-month period around the beginning of the holiday. It is constructed like the preceding figure, except that we now add estimates of excess bunching \(b\) around the two cutoffs in each month.\(^{20}\) The main findings are the following. First, it takes 3–4 months for bunching at the old £125,000 cutoff to disappear (bunching becomes statistically insignificant for the first time in December 2008), corresponding roughly to the lag between contract agreement and completion. Second, it takes about 3 months for bunching at the new £175,000 cutoff to build up and reach a steady state (bunching \(b\) is around 0.9 from November 2008 onwards). Third, although bunching at £175,000 in the winter months of 2008/09 is smaller in absolute terms than bunching at £125,000 in the summer months before the holiday, bunching in proportion to the counterfactual distribution (\(b\))—the right measure of responsiveness—is in fact slightly larger at £175,000. The presence of smaller absolute bunching at £175,000 is a result of seasonality in the housing market with fewer house transactions in the winter than in the summer.\(^{21}\) The presence of larger relative bunching \(b\) at £175,000 is consistent with the fact that this notch is larger than the previous one at £125,000 (tax liability jumps of £1,750 and £1,250 respectively).

Figure 8 turns to the 12-month period around the end of the holiday on 1 January 2010 and is constructed exactly as the preceding figure. It is interesting to see the difference in the speed of adjustment to a tax change that is fully anticipated. First, the bunching at £175,000 vanishes

19 Animated versions of all the figures from this section that show the dynamics more vividly can be found at http://personal.lse.ac.uk/kleven/Downloads/MyPapers/WorkingPapers/best-kleven_landnotches_april2013_videos.pdf

20 Animated versions of these figures are online at the address in footnote 19.

21 Seasonality in the housing market is a well-known phenomenon that has been studied in the macro literature (e.g. Ngai & Tenreyro 2012).
immediately in January of 2010 when this cutoff is no longer a notch point. This shows that buyers and sellers did indeed anticipate the end of the holiday and made sure to complete their housing contracts before the end of December 2009. We see such behavior in the graph for December 2009: there is a large upward shift in the December distribution between £125,000 and £175,000 (even though this is normally a low-season month) and an increase in excess bunching at £175,000. The next section investigates such short-term timing behavior in greater detail. Second, it takes about 2 months for bunching at the new £125,000 cutoff to build up and reach a stable equilibrium (\(b \) is roughly constant from February 2010 onwards). While this is faster adjustment than at the start of the holiday, it is not as fast as the disappearance of bunching at the end of the holiday. The implication is that, while buyers and sellers were rushing to complete agreed housing contracts below the the £175,000 notch just before the end of the holiday (immediate disappearance of old bunching), they did not to the same degree agree (but not complete) housing contracts below the £125,000 notch just before the end of the holiday (slower emergence of new bunching).

Figure 9 summarizes the evidence in the preceding figures by showing the monthly bunching estimate \(b \) from January 2007 to January 2011 at the £125,000 cutoff (blue dots) and the £175,000 cutoff (orange crosses) with 95% confidence intervals around each series. The solid vertical lines demarcate the beginning and end of the stamp duty holiday, while the dashed vertical line demarcates the de facto time at which the holiday took full effect given the lag between agreed and completed house purchases. The figure highlights just how sharply house prices react to tax notches and to changes in tax notches even at the monthly level. The level of bunching at the £125,000 cutoff is remarkably constant on each side of the holiday, while the level of bunching at the £175,000 cutoff is constant during the holiday. The steady state level of bunching at £175,000 (\(b \approx 0.9 \)) is larger than at £125,000 (\(b \approx 0.6 \)) as the former notch is larger. Once we account for the built-in sluggishness due to the time it takes to complete a housing contract, the market adjusts to a new stable equilibrium remarkably quickly. We also do not see any difference in price responsiveness during good times and bad times (compare early part of 2007 to the rest of the period).

Compared to recent bunching evidence from labor markets (e.g. Saez 2010; Chetty et al. 2011; Kleven & Waseem 2013), the remarkable sharpness of our evidence suggests that behavioral responses in the housing market are much less affected by optimization frictions such as inattention, inertia, etc. Our evidence suggests that agents in the housing market respond precisely and quickly to tax incentives.

5 Timing and Extensive Margin Responses: Tax Reforms and Stimulus

We saw in the previous section that house prices respond sharply and quickly to transaction taxes. In this section, we investigate the effect of the transaction tax on whether individuals transact, and if so, when they choose to transact. To do this, we analyze the impact of two policies changes discussed in section 3.1. First, the stamp duty holiday that temporarily eliminated the stamp duty on house purchases in the £125,000–£175,000 price range. Second, a reform that permanently elim-
inated the stamp duty on house purchases in the £60,000–£120,000 price range.

The stamp duty holiday was an unanticipated stimulus program with a fixed and fully anticipated end date. In the context of the dynamic model in section 2.2, this corresponds to an unanticipated tax cut in period s with no tax changes after period s, and in Proposition 2 we demonstrated that such a policy change has two conceptual effects on the level of activity in the housing market. First, there will be a timing effect as some agents who would have transacted a house after period s bring that transaction forward to period s. Second, there will be an extensive margin effect as some agents engage in additional house transactions over their lifetime, including house purchases in period s by those who would otherwise never buy (renter/homeowner margin) and house purchases in period s by those who continue to transact as often as they otherwise would have in other periods (more moving by existing homeowners).

Hence, to evaluate fiscal stimulus programs of this kind, it is crucial to obtain estimates not just of the total stimulus effect during the program (timing and extensive margin effects), but also of the degree to which it is driven by timing (all of which will be reversed after program withdrawal) and the length of the horizon over which there is re-timing (which determines the speed of reversal). This section provides compelling evidence on all three questions. We also combine our stimulus estimates with survey data on moving-related household spending in order to provide a lower bound on the effects on real economic activity (not including general equilibrium effects of increased homeowner mobility, Keynesian multiplier effects, etc.).

We begin the analysis by studying short term timing responses around the anticipated end date of the stamp duty holiday before building up to medium term timing and extensive margin responses.

5.1 Short Term Timing Responses to Anticipated Tax Changes

As described in section 3.1, the tax increase at the end of the stamp duty holiday was fully anticipated, creating a time notch on 1 January 2010 for houses between £125,000 and £175,000. This time notch creates a strong incentive for individuals to conclude their transactions before New Year, and bunching in the timing of transactions allows us to estimate this short-term timing response.

Before discussing the empirical results, we make two remarks. First, the housing market almost shuts down between Christmas and New Year, so the notch is effectively a notch just before Christmas. Hence, agents should respond to the notch by moving the date of purchase from the early weeks of 2010 to the third week of December 2009. Second, the existence of the Christmas holiday (with or without a tax notch) may in itself lead to a piling up of house transactions in the third week of December. This means that we cannot analyze the time notch using a “pure” bunching strategy as observed bunching in transactions before Christmas 2009 may overstate the response to the tax notch. We therefore pursue a difference-in-bunching strategy by comparing bunching in the treated group (transactions between £125,000–£175,000 in December 2009) to bunching in control groups (other years and/or other price ranges).

Figure 10 shows the weekly number of transactions around New Year in different price ranges.
and different years. Panel A compares the treated price range £125,000–£175,000 in the treated period 2009/10 to surrounding price ranges in the same period. The treated group features very strong bunching just before the notch and a large hole after the notch. The control groups also feature bunching and a hole (Christmas effect), but to a much smaller extent. Furthermore, the shutdown of activity between Christmas and New Year is less extreme in the treated group than in the control groups. To evaluate the timing response, we estimate excess bunching in each distribution during the last three weeks of the year using a bunching approach analogous to our approach for the price notches. The timing response is then given by the difference between bunching in the treated range and average bunching in the surrounding control ranges (Di-Bunching in the figure). We find that excess mass induced by the time notch is almost 3 times the height of the counterfactual and strongly significant, implying that the average timing response to the notch is 3 weeks.

Panel B is constructed in the same way, except that it compares the treated price range £125,000–£175,000 in the treated period 2009/10 to the same price range in other periods (one year earlier or two years earlier). The results are very similar, with estimated excess mass before the notch being somewhat larger and still strongly significant. The placebo tests in the bottom panels repeat the strategy in Panel A (comparing different price ranges), but one year or two years earlier. In each case, the timing effect is close to zero and statistically insignificant.

Overall, this provides very compelling evidence of short-term timing responses to anticipated tax changes, consistent with the sharpness of price responses discussed above. These findings contribute to the previous literature on the timing of the realisation of taxable income (Auerbach 1988; Burman & Randolph 1994; Goolsbee 2000) and medical expenditures (Einav et al. 2013).

5.2 Medium Term Timing and Extensive Margin Responses to Stimulus

During the stamp duty holiday, the tax rate was temporarily cut from 1% to 0% in the price range £125,000 to £175,000 without changing the tax rate in neighbouring price ranges, presenting us with an ideal opportunity to pursue a difference-in-differences approach to estimate medium term timing and extensive margin responses to the stimulus. A naïve first cut at this (that we refine shortly) is to compare the evolution over time in transaction volumes in the treated range £125,000–£175,000 to a nearby control range. This is done in Figure 11, which compares the log monthly number of transactions in the treated range £125,000–£175,000 (blue dots) to a control range defined as £175,000–£225,000 (orange crosses). We have normalized the log number of transactions in each month by subtracting the average log number of transactions in the pre-treatment period (the 2

\[c_w = \sum_{j=0}^{7} \beta_j z_w + \eta I \{ w \in \text{end of month} \} + \sum_{k=w^-}^{w^+} \gamma_k I \{ w = k \} + \mu_w, \]

(17)

where \(c_w \) is the number of transactions in week \(w \) and \(z_w \) is the distance of week \(w \) from the end of 2009. The second term is a fixed effect for weeks at the end of the month (which feature heavier trading in every month), while the third term excludes weeks in a range \((w^- , w^+)\), which we set to include the last 3 weeks of 2009 and the first 10 weeks of 2010.
years leading up to the holiday) in order to make visual comparison of the two series easier. The solid vertical lines mark the beginning (3 September 2008) and the end (31 December 2009) of the stamp duty holiday.23

The two series display completely parallel trends leading up to the holiday and then begin to diverge precisely when the holiday starts. The positive effect of housing stimulus in the treated range increases during the first months of the holiday and features a sharp spike in the last month as people rushed to take advantage of the stimulus before it expired. After the holiday, there is a sharp dip in the treated series during the first month, but only slight additional reversal thereafter as the treated group is marginally below the control group for about a year and then converges with the control group in the later part of the sample. Taken at face value, this graph implies that housing stimulus gave a large boost to housing market activity during the policy with very weak reversal after the policy (apart from the short-term timing effect shown by the spike and dip right around the stimulus end date analysed in section 5.1 above).24 However, we argue that this both overstates the positive impact of the stimulus policy and understates the slump after the end of the policy.

The issue with the analysis in Figure 11 is that treatment assignment (whether a transaction takes place in the £125,000–£175,000 price range) is endogenous to movements across bracket cut-offs. The stamp duty holiday creates an incentive to move into the treated price bracket from both sides. At the upper end of the range, the holiday creates a new notch at £175,000 that induces agents to move from a region above the cutoff to a point just below the cutoff (bunching). We have shown in section 4 above that bunching responses at £175,000 do indeed occur, and this increases activity in the treated range compared to the control range. At the lower end, the holiday eliminates the notch at £125,000 and therefore induces bunchers at this cutoff to move back into the hole above the cutoff. We have shown that the disappearance of bunching at £125,000 also occurs, and this further increases activity in the treated range compared to the control range. Hence, the positive effect of housing stimulus in Figure 11 combines the true effect on overall activity levels with endogenous price responses resulting from the change in the location of the notch.

There are two ways of dealing with this endogeneity issue. The simplest way is to widen the treatment range on each side (below £125,000 and above £175,000) in order to ensure that any price manipulation around notches occurs within the treatment range and so does not affect measured activity levels in this range. By including transactions outside the tax holiday area in

23 As described in section 3.1, a stamp duty relief scheme was implemented for first-time buyers in the price range £125K–£250K between 25 March 2010 and 24 March 2012 (after the end of the stamp duty holiday). Since we are also interested in estimating reversal after the stamp duty holiday, it is important to make sure that the first-time buyers’ relief scheme is not a confounding factor during the reversal period. This motivates using a control range (£175K–£225K) just above the treatment range (£125K–£175K), ensuring that both groups fall within the range eligible for first-time buyers’ relief and therefore face the same incentive from this scheme. There could still be a concern that the treatment and control range respond differently to the first-time buyer incentive, which would be a confounding factor in the reversal estimates. To alleviate this concern, we drop all transactions claiming first-time buyers’ relief throughout the analysis in this section. Including those observations only strengthens our findings below of incomplete reversal after the end of the stamp duty holiday.

24 Note that the control group also features a (much smaller) spike and dip around the end of the stamp duty holiday driven by the Christmas/New Year effect as discussed in section 5.1 above.
the treatment group, this strategy captures an intent-to-treat effect and therefore understates the impact on the actually treated. We consider this intent-to-treat strategy in Appendix Figure A.3, but here we focus instead on a more sophisticated way of dealing with endogeneity. This strategy exploits the fact that we have monthly bunching estimates of price responses to notches and can therefore directly control for it. That is, we may consider the number of transactions in different price brackets adjusted for the effect of bunching behavior in each month. To be precise, in every month, the estimated bunching mass just below £125,000 is reallocated to the treatment range £125,000–£175,000 while the estimated bunching mass just below £175,000 is reallocated to the control range £175,000–£225,000. By using these bunching-adjusted counts in our difference-in-differences strategy, we avoid bias from selection into treatment.

Figure 12 shows the results from this bunching-adjusted strategy. Panel A shows the normalized logs of the monthly number of transactions in the treatment and control ranges exactly as in Figure 11. It is visually clear that this strategy results in effects of housing stimulus that are qualitatively similar, but considerably smaller, and that there is a stronger lull in activity after the end of the stamp duty holiday. Panel A also suggests that the lull in activity lasts for approximately 12 months, after which the two series are completely parallel again. Panel B shows the cumulative sums of the two series in panel A as well as the cumulative sum of the differences between the two series (in green diamonds) in order to emphasize the effects we are studying. Panel B confirms that the two series track each other before the stimulus, diverge gradually during the stimulus period, and then converge for around 12 months until they revert to their pre-stimulus, parallel trends.

In order to quantify the effects of the stimulus, we run the following regression on a panel of monthly activity levels in price bins of £5,000 (over the range £125,000–£225,000) between September 2006 and October 2012

$$n_{it} = \alpha_0 Pre_t + \alpha_H Hol_t + \alpha_R Rev_t + \alpha_P Post_t + \alpha_T Treated_i + \beta_H Hol_t \times Treated_i + \beta_R Rev_t \times Treated_i + \beta_P Post_t \times Treated_i + \nu_{it},$$

(18)

where n_{it} is the log number of transactions in price bin i and month t, Pre_t is a dummy for the pre-period September 2006–August 2008, Hol_t is a dummy for the stamp duty holiday period September 2008–December 2009, Rev_t is a dummy for the post-holiday reversal period January–December 2010, $Post_t$ is a dummy for the later months January 2011–October 2012, $Treated_i$ is a dummy for the treated price range £125,000–£175,000, and finally ν_{it} is an error term that we allow to be clustered at the monthly level.\(^{25}\) The coefficients we are interested in are β_H (positive effect during stimulus) and β_R (negative effect after stimulus due to re-timing).

\(^{25}\)Since we run the difference-in-differences regression (18) using bunching-adjusted activity levels in £5K bins, we have to reallocate bunching mass below the two cutoffs to specific £5K bins above the cutoffs. We reallocate bunching mass below a cutoff to the five bins above the cutoff in proportion to the amount of missing mass (difference between the estimated counterfactual mass and the observed mass) in each bin. Furthermore, since activity levels are adjusted using estimated bunching at the thresholds, we are introducing measurement error to our dependent variable coming from misspecification of the counterfactual when calculating the amount of bunching at £125K and £175K. However, since this measurement error is effectively noise in the dependent variable, it does not cause bias in our estimates, but simply increases our standard errors.
Panel A of Figure 12 shows our estimates of the coefficients β_H, β_R and β_P. The coefficient $\hat{\beta}_H = 0.20 (0.022)$ implies that average monthly activity was approximately 20% higher during the holiday than it would have been in the absence of stimulus. This corresponds to an extensive margin elasticity η as defined in section 2.3 of 20.62 (2.18).26 The coefficient $\hat{\beta}_R = -0.08 (0.032)$ implies that average monthly activity was about 8% lower in the first year after the stimulus than it otherwise would have been. Together, these estimates imply that 31% of the additional activity created by the stimulus program was a timing response by people bringing forward their purchases in order to benefit from the tax cut, while the remaining 69% was a permanent, extensive margin effect.27 This implies that the long-run elasticity is 14.3 (3.26).

Since the end date of the reversal period (December 2010) was chosen visually as the point at which the two series become parallel again, there might be a concern that our estimate of total reversal is sensitive to the choice of this end date. In order to address this, Panel C of Figure 12 shows how this result changes as a different end date is chosen. The green diamonds show estimates of total reversal as a share of total stimulus as the regression (18) is performed using different reversal period cutoffs, and the grey shaded area depicts the 95% confidence interval around these estimates.28 The reversal estimate is not sensitive to this choice, never rising above 40%, and we can always confidently reject the presence of full reversal.

When considering the simpler intent-to-treat strategy described above (see Figure A.3), the effects are qualitatively similar but quantitatively somewhat weaker as one would expect. The intent-to-treat strategy produces larger reversal as a share of stimulus (40–50%) than the bunching-adjusted strategy, but we can still reject full reversal in all specifications.

These reversal findings stand in sharp contrast to Mian & Sufi (2012), who find complete and swift reversal following a short (1 month) stimulus program offering car transaction subsidies in the US. The contrast between our findings and those of Mian & Sufi (2012) may suggest that stimulus policies that are of extremely short duration, such as the one they study, do not give households sufficient time to respond along the extensive margin and therefore have only short-term timing effects. Hence, our findings highlight the importance of the length of the stimulus program. Of course, while the strength of reversal is important for evaluating stimulus, it does not by itself indict or validate such policies as their key rationale is to create more economic activity when the economy is slack (even if this comes at the expense of less economic activity when the economy is tight). The next section provides a rough estimation of the immediate increase in real economic activity created by the UK housing stimulus program.

It is important to note that our quasi-experimental micro approach to evaluating stimulus policy does not capture potential general equilibrium or multiplier effects. If the program had a salutary effect on the housing market and macroeconomy as a whole, this effect would be present in both treatment and control groups and therefore not show up in our difference-in-differences

26The elasticity is estimated as $\hat{\eta} = \beta_H / [\Delta t / (1 + t)]$

27The estimate of total reversal as a share of total stimulus is calculated as $- (12\hat{\beta}_R) / (16\hat{\beta}_H)$.

28The point estimates are calculated as $- (\sum_{t \in Rev} \hat{\beta}_R) / (16\hat{\beta}_H)$, where $\sum_{t \in Rev}$ denotes the length of the reversal period in the particular regression. Standard errors are computed by the delta method.
estimates. Besides general equilibrium and multiplier effects, a source of spillovers between treatments and controls may arise from real estate chains, i.e. linked house transactions whereby someone selling a house in the treatment range is simultaneously buying a house in the control range. Bias from chain effects can be reduced or eliminated by considering control ranges further away from the treatment range, but such strategies create other problems with comparability and parallel trends. The key thing to realize is that potential chain effects unambiguously work against us and create attenuation bias, and so the (large) stimulus estimates we obtain by comparing neighboring price ranges are, if anything, conservative.

5.3 GDP Effects of Stimulus

While we have established that the stamp duty holiday had a large effect on transaction volume in the housing market (and therefore on household mobility), a motivation for the policy was also to stimulate real economic activity through larger household spending driven by the complementarities between moving house and spending. Investigating the spending effect of the UK housing stimulus program also allows for a comparison between our findings and previous work on the consumer spending effect of fiscal stimulus such as income tax rebates (e.g. Shapiro & Slemrod 2003a,b; Johnson et al. 2006; Agarwal et al. 2007; Kreiner et al. 2012). A fully rigorous analysis of the effects of housing transactions on expenditure is beyond the scope of this paper, but we perform some back-of-the-envelope calculations to shed light on the likely magnitude of these effects.

Using data from the UK Living Costs and Food Survey, we estimate in Appendix table A.1 that households spend roughly an additional 1.6% of the value of their home on repairs, improvements, furnishings, appliances and other durable goods when they move. This is a conservative estimate compared to similar calculations for the US (Siniavskaia 2008; Zillow.com 2012). Estate agents’ fees average 1.98% of the house value and other commissions come to 1.24%, giving an estimate of the total expenditure accompanying a house transaction of 4.8% of the house value. Denoting this estimate by ϕ, the immediate impact of the policy on GDP is $\Delta GDP = \phi h_m v \Delta n$ where $h_m v$ is the average value of houses bought during the stimulus, and Δn is the number of additional transactions resulting from the policy. To arrive at an estimate of the effectiveness of the policy that is comparable to other stimulus policies, we scale it by the foregone tax revenue, $\Delta Tax = \tau_0 h_m v n_0$ where $\tau_0 = 1\%$ is the pre-stimulus tax rate, and n_0 is the counterfactual number of transactions in the price range affected by the stimulus. In the previous section, we estimated $\Delta n / n_0$ to be $\beta_H = 0.20$, and so we arrive at an estimate of the effect on economic activity per dollar of tax cut equal to $\Delta GDP / \Delta Tax = \phi \beta_H = 0.96$.29

These calculations suggest that the stamp duty holiday was not only successful in stimulating housing market activity, but also provided a significant boost to real economic activity through the strong complementarities between moving house and consumer spending. These rough calculations exclude other indirect effects, for example labor market effects of increased mobility and

29 Appendix Table A.1 shows details of the calculations and their sensitivity to using the intent-to-treat estimate of β_H discussed in the previous subsection as well as an alternate estimate of households’ additional expenditure.
Keynesian multiplier effects. As a benchmark, the previous work cited above on fiscal stimulus through income tax rebates found significantly smaller effects on consumer spending (0.2–0.7 dollars of spending per dollar of tax cut, as opposed to about 1 dollar of spending here). Overall, our findings suggest that transaction tax cuts (or subsidies) can be very effective at stimulating both housing market activity and real economic activity during downturns.

5.4 Extensive Margin Responses to a Permanent Tax Cut

On 16 March 2005, the bottom notch was permanently moved from £60,000 to £120,000. The reform took effect immediately after its announcement, and while a reform of this kind had been expected, the exact timing and details were not. Since this was a permanent reform, studying its impact over an extended period after its implementation will allow us to analyze the extensive margin effects of permanent reforms (since potential timing effects will only affect the months just after the reform). It is also worth noting that this reform was implemented during the height of the housing market boom, in sharp contrast to the stamp duty holiday implemented at the bottom of the recession.

The reform cut the tax from 1% to 0% over the price range £60,000 to £120,000 while leaving the tax unchanged in neighbouring price ranges, which again presents us with the opportunity to pursue a difference-in-differences strategy. The issue that treatment assignment is endogenous to price responses to the movement of the notch is present in exactly the same way as for the stamp duty holiday, and so we address it in the same way by using monthly bunching estimates to account for price responses. Figure 13 shows the results from our bunching-adjusted difference-in-differences strategy. Panel A shows the normalized log counts of monthly transaction volumes in the treatment range £60,000–£120,000 (blue circles) and the control range £120,000–£180,000 (orange crosses) together with the estimated treatment effect from a regression analogous to equation (18), while panel B shows the cumulative sums of the normalized log counts in the treatment and control ranges. As panel A shows, the treatment and control ranges were parallel in the months leading up to the reform, and then diverged sharply immediately following the reform. The estimated coefficient \(\hat{\beta}_P = 0.23 (0.018) \) implies that this permanent reform increased monthly transaction volumes by approximately 23% on average, implying an extensive margin elasticity \(\eta \) of 23.2 (1.86). This effect is considerably larger than the permanent effect of the stamp duty holiday stimulus, consistent with the idea that the permanent effect of tax changes is increasing in the length of the time horizon of the policy as discussed in section 5.2.

6 Long Run Revenue and Welfare Impacts of a Transaction Tax

With our estimates of the intensive margin house price elasticity \(\varepsilon \) and the long-term extensive margin elasticity \(\eta \), we can evaluate the long-run revenue and welfare impacts of the transaction tax as analyzed in section 2.3. Table 3 presents the results from applying equation (14) for the marginal cost of funds (MCF) separately in each bracket, and applying equation (15) for the Laffer rate. For the extensive margin elasticity \(\eta \), we use two possible values: the long-term extensive
margin elasticity of 14.3 estimated from the stamp duty holiday in section 5.2, and the long-term elasticity of 23.2 estimated from the permanent reform in section 5.4. For the intensive margin house price elasticity \(\varepsilon \), we use the estimates obtained from bunching at notches shown in Table 2. The calculation of MCF in each bracket is based on the intensive elasticity obtained from the notch at the bottom of the bracket, while the calculation of the Laffer rate is based on the intensive elasticity obtained from the 1% bracket (as this price bracket contains the average house price in the UK).

As shown in Table 3, the MCF increases strongly as we move up the progressive tax schedule and is extremely large in the higher brackets. The MCF in the first tax bracket is 1.2–1.3, while the MCF in the top tax bracket is about 18 under the smaller extensive margin elasticity, or beyond the Laffer rate (negative MCF) under the larger extensive margin elasticity. These MCF estimates are very large compared to standard tax instruments. For example, Kleven & Kreiner (2006) estimate an MCF for the UK personal income tax that ranges between 1.1 for the bottom earnings decile and 2.68 for the top earnings decile. Similarly, Dahlby (2008) reports that the overall MCF for the UK income tax is about 1.2, and that for the US income tax it is about 1.1. These numbers imply that there exist revenue neutral shifts from stamp duty to income taxation that would increase aggregate welfare. Furthermore, since earnings and house values are strongly correlated, our findings suggest that a revenue and distribution neutral shift from stamp duty to income taxation that increase welfare is feasible. Another way of demonstrating the inefficiency of transaction taxes is to consider the Laffer rate, corresponding to the Pareto bound for this type of instrument. Our estimate of the Laffer rate is very small, between 4% and 7%, as compared to 70–80% for the income tax in the US (Saez et al. 2012).

Overall, the estimates in Table 3 raise important questions about the desirability of transaction taxes as a long-run policy instrument. This conclusion is not driven by the particular notched structure of transaction taxes in the UK; as explained in section 2.3, our welfare estimates represent smooth tax instruments that ignore the (local) distortions created by notches.

7 Conclusion

This paper has studied the impact of property transaction taxes on the housing market, using unique administrative data on every property transaction in the UK from 2004–2012 and compelling quasi-experimental variation created by notches, tax reforms, and stimulus. We have presented evidence on the effects of transaction taxes on house prices as well as on the timing and volume of house purchases, including an analysis of the dynamics of adjustment to both anticipated and unanticipated tax changes. Using a variety of methods, we find that prices and especially activity levels in the housing market respond very strongly and quickly to transaction taxes. Taking advantage of the fact that we estimate behavioural responses along a variety of margins, we convert our estimates of behavioural elasticities into welfare effects. Our estimates imply that the marginal cost of funds for the property transaction tax is orders of magnitude larger than for
other tax instruments, and that the revenue-maximizing tax rate (Laffer rate) is as low as 4–7%. Transaction taxes beyond this modest level are Pareto inefficient.

It should be noted that it is not the existence of notches per se that makes the transaction tax so distortionary. The large distortions arise from the strong underlying responsiveness to the tax, which we are able to identify using notches and other sources of exogenous variation. Moreover, our study of transaction taxes in the property market could also have implications for the potential effects of transaction taxes in other asset markets, including the transaction taxes on financial assets that have been discussed widely in recent years.

Our findings from the 2008–2009 stamp duty holiday contribute to the scant micro evidence on the effectiveness of fiscal stimulus and, in particular, present some of the first evidence on the effectiveness of using temporary tax changes to stimulate the housing market during economic downturns. The 16-month stamp duty holiday was enormously successful in stimulating housing market activity, increasing the volume of house transactions by as much as 20% in the short run (due to timing and extensive responses) followed by a smaller slump in activity after the policy is withdrawn (as the timing effect is cancelled out). Due to the complementarities between moving house and consumer spending, these stimulus effects translate into GDP effects that are considerably larger than what has been found for other forms of fiscal stimulus such as income tax rebates. More generally, these findings suggest that reducing the cost of housing transactions is an effective stimulus policy. Beyond the UK, this finding lends support to the homebuyer tax credit introduced by the 2009 Stimulus Bill in the US.

An interesting dynamic question remains regarding the ability of asset transaction taxes to affect the emergence of asset-price bubbles and the volatility of the economy more generally. Addressing this issue raises some daunting empirical challenges, ideally requiring exogenous variation in transaction taxes across economies, and so is left for future research.
References

Table 1: Residential Property Tax Notches

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - £60K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>£60K - £120K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>£120K - £125K</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>£125K - £175K</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>£175K - £250K</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>£250K - £500K</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>£500K - £1000K</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>£1000K - £2000K</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>£2000K - ∞</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Notes: The table shows how the stamp duty land tax schedule for residential property has varied over time. Each column represents a time period during which the tax schedule was constant. The rows represent price ranges, and the entry in each cell is the tax rate that applies to that price range in the time period.
Table 2: Intensive Elasticity Estimates

<table>
<thead>
<tr>
<th>Notch Point (£000s)</th>
<th>Period</th>
<th>Δt (%-points)</th>
<th>Δh_v</th>
<th>Intensive Elasticity ε</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Structural)</td>
<td>(Reduced Form)</td>
</tr>
<tr>
<td>60</td>
<td>11/2004 – 3/2005</td>
<td>1</td>
<td>3,500</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1,026.1)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>120</td>
<td>4/2005 – 3/2006</td>
<td>1</td>
<td>5,000</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(282.2)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>125</td>
<td>3/2006 – 9/2008</td>
<td>1</td>
<td>5,000</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(534.0)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>175</td>
<td>9/2008 – 12/2009</td>
<td>1</td>
<td>5,000</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1,981.8)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>125</td>
<td>1/2010 – 10/2012</td>
<td>1</td>
<td>5,000</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(274.6)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>250</td>
<td>11/2004 – 10/2012</td>
<td>2</td>
<td>10,000</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1,997.0)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>500</td>
<td>11/2004 – 10/2012</td>
<td>1</td>
<td>10,000</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3,808.7)</td>
<td>(0.024)</td>
</tr>
</tbody>
</table>

Notes: The table shows the absolute values of the structural and reduced-form estimates of the house price elasticity implied by bunching at the notches. The From and To columns demarcate the period the notch was in place. The Δt column is the percentage-point jump in the tax rate at the notch. The Δh_v column shows our estimate of the average house price change implied by our estimated bunching mass using equation (7), and it's bootstrapped standard error in parentheses. The final two columns show our estimate of the structural elasticity implicitly defined by equation (9) with its standard error (derived by the delta method) in parentheses and our estimate of the reduced-form elasticity using equation (10) with its standard error (derived by the delta method) in parentheses.
Table 3: Marginal Cost of Funds and Laffer Rates for a Transaction Tax

<table>
<thead>
<tr>
<th>Bracket (£000s)</th>
<th>Rate (%)</th>
<th>Intensive Elasticity $\bar{\varepsilon}$</th>
<th>Marginal Cost of Funds $\tilde{\eta} = 14.3$</th>
<th>Marginal Cost of Funds $\tilde{\eta} = 23.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 – 250</td>
<td>1</td>
<td>0.16</td>
<td>1.17</td>
<td>1.31</td>
</tr>
<tr>
<td>250 – 500</td>
<td>3</td>
<td>0.08</td>
<td>1.72</td>
<td>3.11</td>
</tr>
<tr>
<td>500 – 1,000</td>
<td>4</td>
<td>0.04</td>
<td>2.23</td>
<td>9.42</td>
</tr>
<tr>
<td>1,000 – 2,000</td>
<td>5</td>
<td>0.09</td>
<td>3.18</td>
<td>L</td>
</tr>
<tr>
<td>2,000 –</td>
<td>7</td>
<td>0.13</td>
<td>17.86</td>
<td>L</td>
</tr>
</tbody>
</table>

Laffer Rate t_L

- 0.16
 - 7.43
 - 4.47

Notes: The table shows the marginal cost of funds in the different brackets of the stamp duty schedule in place as of 2013, and the Laffer rate for the stamp duty. The marginal cost of funds is given by equation (14). The Laffer rate is given by equation (15). A value L indicates the rate is beyond the Laffer rate. The $\bar{\varepsilon}$ column shows the intensive margin elasticity used for the calculations. For the marginal cost of funds, this is the absolute value of the reduced-form intensive margin elasticity estimated from the notch at the bottom of the bracket, while the the value from the 1% bracket (containing the average house value) is used for the Laffer rate calculation. $\tilde{\eta}$ is the absolute value of the extensive margin elasticity.
Notes: Figure 1 illustrates the implications of a notched transaction tax schedule in a budget set diagram (Panel A) and density distribution diagrams (Panels B-D). The budget set diagram in panel A (depicting preferences as in equation (1) and the budget set given by equation (2) in \((h_v, c)-space\)) illustrates intensive responses among individuals with heterogeneous housing preferences \(A\), but a specific demand elasticity \(\varepsilon\). The notch creates bunching at the cutoff \(\bar{h}_v\) by all individuals in a preference range \((\bar{A}, \bar{A} + \Delta \bar{A})\), who would have bought houses on the segment \((\bar{h}_v, \bar{h}_v + \Delta \bar{h}_v)\) in the absence of the notch. The marginal bunching individual at \(\bar{A} + \Delta \bar{A}\) is indifferent between the notch point \(\bar{h}_v\) and the best interior location \(\bar{h}_I\). No individual is willing to locate between \(\bar{h}_v\) and \(\bar{h}_I\), and hence this range is completely empty. The density of property values corresponding to the budget set diagram (all \(A\), one specific \(\varepsilon\)) is shown in Panel B. Since the behavioral response in Panels A-B depends on the size of the demand elasticity \(\varepsilon\) (and converges to zero for completely price inelastic buyers), the density in the full population (all \(A\), \(\varepsilon\)) can be illustrated as in Panel C where some individuals are willing to buy just above the notch point. In addition to intensive responses, the notch creates extensive responses above the cutoff by individuals close to the indifference point between buying and not buying \(\left(q \approx q^*, where \ q^* \ is defined in equation (4) \right)\). However, such extensive responses will be negligible \emph{just} above the cutoff. Intuitively, if an individual prefers buying a house slightly above \(\bar{h}_v\) in the absence of the notch, then he will be better off by buying a house at \(\bar{h}_v\) (which is almost as good) than not buying at all in the presence of the notch. This reasoning implies that extensive responses affect the density as illustrated in Panel D.
Notes: Figure 2 shows the stamp duty land tax schedule for residential properties in place in March 2013 graphically as the solid blue line. The tax liability jumps discretely at the notches at £125,000, £250,000, £500,000, £1,000,000 and £2,000,000. Within the brackets defined by these notches, the tax rate is constant, and applied to the whole transaction price at the rates shown along the top of the figure.
Notes: Panel A shows the monthly average price of property transactions relative to the average price in April 2005 in London (blue circles) and the U.K. (orange crosses). The average price of property transactions in London during the period April 2005 - October 2012 was £345,360 and the average price in the U.K. during our data period was £199,479. Panel B shows the monthly total number of property transactions relative to the number that took place in April 2005 in London (blue circles) and the U.K. (orange crosses). The average monthly number of property transactions in London during the period April 2005 - October 2012 was 12,955 while the average monthly number of property transactions in this period in the U.K. was 103,561.
Figure 4: Bunching and Holes Around the Notches That Remain Constant

A: Notch at £250,000

- $b = 1.85 (0.340)$
- $m = 2.21 (0.365)$
- $m - b = 0.36 (0.694)$
- $h_v = £10,000 (1,997.0)$
- Tax = £5,000

B: Notch at £500,000

- $b = 1.64 (0.510)$
- $m = 2.27 (0.387)$
- $m - b = 0.63 (0.855)$
- $h_v = £10,000 (3,808.7)$
- Tax = £5,000

Notes: The figure shows the observed density of property transactions (blue dots) and our estimated counterfactual density (red line) around the notch at £250,000 where the tax liability jumps by £5,000 (from 1% to 3% of the transaction price) in panel A and around the notch at £500,000 where the tax liability jumps by £5,000 again (from 3% to 4% of the transaction price). The data used for these estimates excludes transactions that claim relief from the stamp duty land tax (except for those claiming first-time buyers’ relief) as the regular tax schedule does not apply to these transactions. The counterfactual density is estimated as in equation (16), using bins £100 pounds wide and a polynomial of order 5. The vertical dashed lines denote the upper and lower bounds of the excluded region around the notch. The upper bound of the excluded region is chosen as the point where the observed density changes slope from positive to negative. The estimate of equation (16) controls for round number bunching at multiples of £500, £1,000, £5,000, £10,000, £25,000 and £50,000. Both the empirical and the counterfactual density are shown aggregated up to bins £5,000 wide. b is our estimate of the excess mass just below the notch scaled by the average counterfactual frequency in the excluded range, with its standard error shown in parentheses. m is our estimate of the missing mass above the notch scaled by the average counterfactual frequency in the excluded range, with its standard error shown in parentheses. $m - b$ is our estimate of the difference between the missing mass and the bunching mass, again with its standard error in parentheses. The figures also show the average house value change created by the notch, and the tax liability change at the notch. All standard errors are obtained by bootstrapping the procedure 200 times.
Notes: The figure shows the observed density of property transactions (blue dots) and our estimated counterfactual density (red line) around the lower notch in the residential property tax schedule where the tax liability jumps from 0 to 1% of the transaction price. Panel A shows the period 1 November 2004 to 16 March 2005 when the notch was at £60,000. Panel B shows the period 17 March 2005 to 22 March 2006 when the notch was at £120,000. Panel C shows the period 23 March 2006 to 2 September 2008 when the notch was at £125,000. Panel D shows the period 3 September 2008 to 31 December 2009 when the notch was at £175,000. Panel E shows the period 1 January 2009 to 31 October 2012 when the notch was at £125,000. The data used for these estimates excludes transactions that claim relief from the stamp duty land tax (excepting those who claimed first time buyers’ relief) as the regular tax schedule does not apply to these transactions. The counterfactual density is estimated as in equation (16), using bins £100 pounds wide and a polynomial of order 5 in panels A, C, D and E and of order 4 in panel B. The vertical dashed lines denote the upper and lower bounds of the excluded region around the notch. The upper bound of the excluded region is chosen as the point where the observed density stops increasing and becomes decreasing (apart from spikes at round numbers). The estimate of equation (16) controls for round number bunching at multiples £500, £1,000, £5,000, £10,000, £25,000 and £50,000. Both the empirical and the counterfactual density are shown aggregated up to bins £5,000 wide. b is our estimate of the excess mass just below the notch scaled by the counterfactual density at the notch, with its standard error shown in parentheses. m is our estimate of the missing mass above the notch scaled by the counterfactual density at the notch, with its standard error shown in parentheses. $m - b$ is our estimate of the difference between the missing mass and the bunching mass, again with its standard error in parentheses. The figures also show the average house value change created by the notch, and the tax liability change at the notch. All standard errors are obtained by bootstrapping the procedure 200 times.
Figure 6: Dynamics of Bunching at Bottom Notch around March 2006

Notes: The figure shows the observed density of property transactions (blue dots) and our estimated counterfactual density (red line) in the region £75,000 – £225,000 separately for each month. On 23 March 2006, the bottom notch moved from £120,000 to £125,000. The estimation of the counterfactual is as described in section 4.1 and in the notes to figures 4 & 5. The estimation excludes data in the regions £115,000 – 140,000 and £170,000 – £190,000 and uses a polynomial of order 5. Animated versions of these figures that show the dynamics more vividly can be found at http://personal.lse.ac.uk/kleven/Downloads/MyPapers/WorkingPapers/best-kleven_landnotches_april2013_videos.pdf
Figure 7: Dynamics of Bunching Around the Beginning of Stamp Duty Holiday

Notes: The figure shows the observed density of property transactions (blue dots) and our estimated counterfactual density (red line) in the region £75,000 – £225,000 separately for each month. On 3 September 2008, the bottom notch was moved unexpectedly from £125,000 to £175,000. The estimation of the counterfactual is as described in section 4.1 and in the notes to figures 4 & 5. The estimation excludes data in the regions £115,000 – 140,000 and £170,000 – £190,000 and uses a polynomial of order 5. Animated versions of these figures that show the dynamics more vividly can be found at http://personal.lse.ac.uk/kleven/Downloads/MyPapers/WorkingPapers/best-kleven_landnotches_april2013_videos.pdf
Notes: The figure shows the observed density of property transactions (blue dots) and our estimated counterfactual density (red line) in the region £75,000 – £225,000 separately for each month. On 1 January 2010, the bottom notch was moved back from £175,000 to £125,000 as announced previously. The estimation of the counterfactual is as described in section 4.1 and in the notes to figures 4 & 5. The estimation excludes data in the regions £115,000 – £140,000 and £170,000 – £190,000 and uses a polynomial of order 5. Animated versions of these figures that show the dynamics more vividly can be found at http://personal.lse.ac.uk/kleven/Downloads/MyPapers/WorkingPapers/best-kleven_landnotches_april2013_videos.pdf
Figure 9: Bunching Estimates Over Time

Notes: The figure shows our estimates of $b(\bar{h}_v)$, the bunching mass just below \bar{h}_v scaled by the counterfactual frequency at \bar{h}_v, by month from January 2007 to February 2011 and for two values of \bar{h}_v, £125,000 (blue circles) and £175,000 (orange crosses). The first vertical line is at September 2008 when the stamp duty holiday was unexpectedly announced, moving the notch from £125,000 to £175,000. The dashed vertical line is at December 2008 to represent the observation that house transactions take up to 90 days to conclude, and so some inertia in the bunching responses is to be expected. The second vertical line is at December 2009 when the stamp duty holiday came to an end as anticipated, and the notch was moved from £175,000 back down to £125,000.
Notes: The figures show the weekly number of transactions around the end of the stamp duty holiday on 31 December 2009. Panel A shows the number of transactions taking place between 2009w27 and 2010w26 in the treated price range £125,000 – £175,000 (blue circles) alongside the number of transactions in the price ranges £75,000 – £125,000 (orange crosses) and £175,000 – £225,000 (green diamonds). Panel B shows the number of transactions taking place in the treated price range (£125,000 – £175,000) around the end of the stamp duty holiday, 2009w27 to 2010w26 (blue circles) as well as 1 year earlier (orange crosses) and 2 years earlier (green diamonds). Panel C shows the same price ranges as in panel A, but using data from 1 year earlier. Similarly, panel D shows the same price ranges as in panel A, but using data from 2 years earlier. The solid vertical line is placed at the end of the year (which at the end of 2009 is the end of the stamp duty holiday) and the dashed vertical lines demarcate the last 3 weeks of the year and the first 10 weeks of the year, which are the excluded range for the counterfactual estimates. The counterfactual is estimated according to (17):

\[c_w = \sum_{j=0}^{7} \beta_j (z_w)^j + \eta I \{ w \in \text{end of month} \} + \sum_{k=w^-}^{w^+} \gamma_k I \{ w = k \} + \mu_w \]

where \(c_w \) is the number of transactions in week \(w \) and \(z_w \) is the distance of week \(w \) from the end of 2009. The second term is a fixed effect for weeks at the end of the month (which feature heavier trading in every month), while the third term excludes weeks in the excluded range \((w^-, w^+) \). Each picture shows the difference-in-bunching estimate corresponding to the choice of treatment (blue circles) and control groups (orange crosses and green diamonds) depicted in the picture. The DiD estimate is the difference between the (normalized) bunching in the treatment group and the average bunching in the two control groups.
Figure 11: Effects of the Stamp Duty Holiday Stimulus: Naive Diff in Diff

Notes: The figure shows how the level of housing market activity changed over time in the price range affected by the stamp duty holiday (£125,000 - £175,000) and the neighbouring price range £175,000 - £225,000. The figure shows the normalized log monthly number of transactions defined as the log of the number of transactions in that month minus the average of the log of the number of transactions in the 24 months leading up to the start date of the Stamp Duty Holiday (September 2006 - August 2008).
Figure 12: Effects of the Stamp Duty Holiday Stimulus: Adjusting for Bunching

A: Normalized Log Counts

\[b_H = 0.20 \quad b_R = -0.08 \quad b_P = -0.00 \]

(0.022) (0.032) (0.010)

B: Cumulative Effect

C: Sensitivity to End Date of Reversal Period

\[\frac{-(12b_R)}{16b_H} = 0.31 \quad (0.124) \]

Notes: The figure shows the effect of the stamp duty holiday stimulus on housing market activity using the price range £125,000 - £175,000 as the treated price range and £175,000 - £225,000 as the control price range. However, all counts are adjusted for price manipulation using bunching estimates by moving excess transactions at £125,000 to prices between £125,000 and £150,000 and moving excess transactions at £175,000 to prices between £175,000 and £200,000. Panel A shows the normalized log monthly number of transactions defined as the log of the number of transactions in that month minus the average of the log of the number of transactions in the 24 months leading up to the start date of the Stamp Duty Holiday (September 2006 - August 2008). Superimposed on that are our estimates of \(\beta_H, \beta_R \) and \(\beta_P \) from the regression

\[
n_{it} = \alpha_0 \text{Pre}_t + \alpha_H \text{Hol}_t + \alpha_R \text{Rev}_t + \alpha_P \text{Post}_t + \alpha_T \text{Treated}_t + \beta_H \text{Hol}_t \times \text{Treated}_t + \beta_R \text{Rev}_t \times \text{Treated}_t + \beta_P \text{Post}_t \times \text{Treated}_t + \nu_{it}
\]

where \(n_{it} \) is the log of the monthly number of transactions \(\text{Pre}_t \) is a dummy for the pre-period September 2006–August 2008 inclusive, \(\text{Hol}_t \) is a dummy for the stamp duty holiday period September 2008–December 2009, \(\text{Rev}_t \) is a dummy for the post-holiday reversal period January–December 2010 inclusive, and \(\text{Post}_t \) is a dummy for the later months January 2011–October 2012 inclusive. \(\text{Treated}_t \) is a dummy for the treated price range and finally \(\nu_{it} \) is an error term. Panel B shows the cumulative sum of the normalized log counts in panel A (blue dots and orange crosses) as well as the cumulative sum of the differences between the treatment and control groups (green diamonds). Panel C shows how the proportion of the total effect of the stamp duty holiday that is undone by reversal after the end of the holiday changes as we use different months as the first month after the effect is gone. Specifically, it shows \(\left(\Sigma \text{Rev}_t \times \beta_R \right) / (16\beta_H) \) as the end date of the period used to define \(\text{Rev}_t \) changes. The vertical line is at our preferred choice for the first month of \(\text{Post}_t \), January 2011, which gives an estimate of the proportion of the total effect undone by reversal of 0.31 (0.124).
Figure 13: Effects of the Permanent Reform: Adjusting for Bunching

A: Normalized Log Counts

<table>
<thead>
<tr>
<th>Month</th>
<th>£60K - £120K</th>
<th>£120K - £180K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005m1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005m4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005m7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005m10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006m1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normalised Log Number of Transactions

B: Cumulative Effect

<table>
<thead>
<tr>
<th>Month</th>
<th>£60K - £120K</th>
<th>£120K - £180K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005m1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005m4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005m7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005m10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006m1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cumulative Difference

Notes: The figure shows the effect of the permanent tax cut of March 2005 when the bottom notch was moved from £60,000 to £120,000 on housing market activity using the price range £60,000 - £120,000 as the treated price range and £120,000 - £180,000 as the control price range. However, all counts are adjusted for price manipulation using bunching estimates by moving excess transactions at £60,000 to prices between £60,000 and £85,000 and moving excess transactions at £120,000 to prices between £120,000 and £145,000. Panel A shows the normalized log monthly number of transactions defined as the log of the number of transactions in that month minus the average of the log of the number of transactions in the 5 months we have data for leading up to the date of the reform (November 2004 - March 2005). Superimposed on that is our estimates of β_p from the regression:

$$n_{it} = \alpha_p Pret_i + \alpha_P Post_i + \alpha_T Treated_i + \beta_P Post_i \times Treated_i + \nu_{it}$$

where n_{it} is the log of the monthly number of transactions, $Pret_i$ is a dummy for the pre-period November 2004–March 2005 inclusive, $Post_i$ is a dummy for the months after the reform April 2005–March 2006 inclusive, $Treated_i$ is a dummy for the treated price range and finally ν_{it} is an error term. Panel B shows the cumulative sum of the normalized log counts in panel A (blue dots and orange crosses).
A Appendix

A.1 A Matching Frictions Model of the Housing Market

A key feature of the competitive housing market model is that excess bunching and holes around notch points reflect real demand responses (as opposed to price incidence) and therefore reveal the elasticity of real housing demand. This section shows that the same qualitative effects on the house price distribution can be generated by bargaining between buyers and sellers in a model with matching frictions. In this model, bunching responses reflect the bargaining power of buyers versus sellers.

Consider a specific match where the buyer has valuation B_v and the seller has valuation S_v of the property. Considering a flat transaction tax t (remitted by the buyer), the buyer’s surplus from trading at the before-tax house price h_v is equal to $B_v - (1 + t) h_v$, and the seller’s surplus is equal to $h_v - S_v$. The necessary and sufficient condition for a trade to take place is that there exists a price such that both traders obtain a positive surplus, i.e. we must have $S_v \leq B_v/(1+t)$.

The buyer and seller engage in Nash bargaining with bargaining power β for the buyer and $1 - \beta$ for the seller. The agreed before-tax price h_v^* maximizes $W = [B_v - (1 + t) h_v]^{\beta} [h_v - S_v]^{1-\beta}$, which yields

$$h_v^* = \beta S_v + (1 - \beta) \frac{B_v}{1+t}. \tag{19}$$

Hence, conditional on trading, the transaction tax reduces the house price h_v^*, with the strength of the price effect being proportional to the bargaining power of the seller $1 - \beta$. This means that we can characterize the effects of the transaction tax t in the following way. House transactions that were desirable to the buyer and seller in the absence of transaction taxes but sufficiently close to the indifference margin for both ($B_v/(1+t) < S_v \leq B_v$) will no longer occur (extensive response). House transactions that continue to be desirable in the presence of transaction taxes ($S_v \leq B_v/(1+t)$) will occur at lower prices according to equation (19). Assuming a smooth distribution of matches S_v, B_v and bargaining power β, captured by a density distribution $f(S_v, B_v, \beta)$, there will be a smooth distribution of traded house prices under the flat transaction tax t.

Consider now the introduction of a notch Δt in the transaction tax at the cutoff house price \overline{h}_v. Under the notched tax schedule and Nash bargaining between the buyer and seller, the agreed house price h_v is picked to maximize

$$W = [B_v - (1 + t + \Delta t \cdot I \{h_v > \overline{h}_v\}) h_v]^{\beta} [h_v - S_v]^{1-\beta}. \tag{20}$$

In general, solving this bargaining problem requires us to solve for the best price point within each tax bracket (below and above \overline{h}_v) and then pick the candidate solution that yields the largest welfare W. Trades that would occur below \overline{h}_v under the baseline flat tax are clearly unaffected by the notch and continue to feature house prices given by (19). On the other hand, trades that would
occur above \bar{h}_v under the baseline flat tax are affected by the notch. To see how these trades are affected, note first that any trade occurring strictly above the cutoff must satisfy the interior pricing condition (19) with the $1 + t$ replaced by $1 + t + \Delta t$. This allows us to distinguish between three cases.

First, some transactions just above \bar{h}_v under the baseline tax rate t would have an interior solution below \bar{h}_v under the larger tax rate $t + \Delta t$ (based on eq. (19) at tax rate $1 + t + \Delta t$). This is inconsistent with an interior solution in either bracket, and so these transactions bunch at the cutoff. Second, some transactions that were taking place in a region $(\bar{h}_v, \bar{h}_v + \Delta h_v)$ in the absence of the notch and that would be just above \bar{h}_v under an interior solution at the new tax rate $t + \Delta t$ (again based on eq. (19) at tax rate $1 + t + \Delta t$) also bunch at the cutoff. For such transactions, a small move to the cutoff provides a discrete gain to the buyer and only a marginal loss to the seller, yielding a larger value of W than at the interior location. Of course, for such a move to be possible, it must be the case that the seller still receives positive surplus, so only those transactions for which $S_v \leq \bar{h}_v$ will bunch. Given a smooth distribution of matches (S_v, B_v), there will be marginal bunching transactions such that welfare at the cutoff \bar{h}_v is precisely equal to welfare at the best interior location above the notch \bar{h}'_v. In the interval (\bar{h}_v, \bar{h}'_v) all transactions with $S_v \leq \bar{h}_v$ move to the threshold and so we get a hole in the price distribution there. The width of this hole depends on bargaining power and converges to zero as the bargaining power of the buyer β converges to zero.\(^{31}\)

Third and finally, transactions above \bar{h}'_v under an interior solution at the new tax rate $t + \Delta t$ are associated with a larger W at the new interior solution than at the cutoff. For those transactions, we get a downward price shift within the upper bracket.

This characterization applies only to matches for which a trade is still beneficial. The notch will also create extensive responses above the cutoff as house transactions that were desirable to the buyer and seller under the flat tax but close enough to the indifference margin for both $(B_v / (1 + t + \Delta t) < S_v \leq B_v / (1 + t))$ and which cannot take place with positive surplus at the notch (as $\bar{h}_v < S_v$) will no longer occur. Nevertheless, as in the competitive model, extensive responses are negligible just above the cutoff. Trades that would occur at a price $h_v \in (\bar{h}_v, \bar{h}_v + \Delta \bar{h}_v)$ in the absence of the notch (but have a negative surplus under the higher tax, i.e. $B_v / (1 + t + \Delta t) < S_v \leq B_v / (1 + t)$) must have a positive surplus under the lower tax such that $S_v \leq h_v \leq B_v / (1 + t)$. In the presence of the notch, for those trades to take place at the cutoff price \bar{h}_v it must be the case that $S_v \leq \bar{h}_v \leq B_v / (1 + t)$. Together these conditions imply that those trades cannot achieve positive surplus by bunching at the notch whenever $S_v \in NT = (\bar{h}_v, h_v)$. As the price absent the notch h_v converges to \bar{h}_v from above, we see that the no-trade set NT becomes empty and so there is no extensive margin response just above the threshold. Finally, note that the presence of the notch could shift the distribution of buyer and seller matches S_v, B_v above the notch, for

\(^{31}\)These marginal transactions satisfy

$$
(B_v - (1 + t) \bar{h}_v)^\beta (\bar{h}_v - S_v)^{1-\beta} = (B_v - (1 + t + \Delta t) \bar{h}'_v)^\beta (\bar{h}'_v - S_v)^{1-\beta}
$$

(21)

where $\bar{h}'_v = \beta S_v + (1 - \beta) \frac{B_v}{1 + t + \Delta t}$ and $\bar{h}_v + \Delta \bar{h}_v = \beta S_v + (1 - \beta) \frac{B_v}{1 + t}$. From this we can also immediately see that the width of the hole converges to 0 as the bargaining power parameter β converges to 0.
example, by inducing buyers and sellers with valuations that put them near the notch to continue searching in order to find another match. We suppress these effects for simplicity, but again, they will be negligible just above the notch.

The characterization above is analogous to the characterization for the competitive model, with the bargaining power parameter β in the bargaining model playing the role of the demand elasticity α in the competitive model. A graphical illustration similar to Figure 1 is also possible. Figure A.1 shows the direct analog of panel A of Figure 1 for the case of the bargaining model, and shares all of its qualitative features. The density diagrams in panels C-D of Figure 1 can also be reinterpreted in terms of the bargaining model, with panel C depicting the intensive margin effects on the house price distribution for the full distribution of βs and panel D incorporating the extensive margin effects. We can summarize the bargaining model’s predictions as follows

Proposition 3 (Notches with Matching Frictions). A transaction tax featuring a notch at a property value \bar{h}_v, at which the proportional tax rate jumps from t to $t + \Delta t$ induces

(i) an intensive margin response as matches in the house price range $(\bar{h}_v, \bar{h}_v + \Delta \bar{h}_v)$ for which $S_v \leq \bar{h}_v$ bunch at the threshold \bar{h}_v, where the width of the bunching segment $\Delta \bar{h}_v$ is monotonically increasing in the bargaining power parameter β as characterized by equation (21); and

(ii) an extensive margin responses as matches in the house price range $h_v \in (\bar{h}_v, \infty)$ for which $B_v / (1 + t + \Delta t) < S_v \leq B_v / (1 + t)$ and $S_v \in NT = (\bar{h}_v, h_v)$ choose not to trade. The extensive response converges to zero just above the cutoff as the set NT converges to the empty set as $h_v \to \bar{h}_v^+$.

49
Figure A.1: Budget Set Diagram for Bargaining Model

Notes: The budget set diagram depicts the Nash product as in equation (20) and the budget set of feasible allocations under the notched tax schedule in the space of net of tax surpluses (i.e. \((B_v - h_v - T(h_v), h_v - S)\)-space) and illustrates intensive responses among individuals with heterogeneous valuations \(\{B_v, S_v\}\), but a specific bargaining power \(\beta\). The notch creates bunching at the cutoff \(\bar{h}_v\) by all individuals in a preference range \(\beta S_v + (1 - \beta) \frac{B_v}{1+t} \in [\bar{h}_v, \bar{h}_v + \Delta h_v]\), who would have bargained prices on the segment \([\bar{h}_v, \bar{h}_v + \Delta h_v]\) in the absence of the notch. The marginal bunching match is indifferent between the notch point \(\bar{h}_v\) and the best interior location \(\tilde{h}_v^I\). No individual is willing to locate between \(\bar{h}_v\) and \(\tilde{h}_v^I\), and hence this range is completely empty. This figure is the direct analog of panel A of figure 1, and shares all its qualitative features.
A.2 Additional Figures & Tables

Figure A.2: Bunching and Holes Around the Highest Notches

A: Notch at £1,000,000

$b = 0.70$

$h_v = £30,000$

$\text{Tax} = £10,000$

$\gamma = 0.09$

B: Notch at £2,000,000

$b = 1.26$

$h_v = £100,000$

$\text{Tax} = £40,000$

$\gamma = 0.13$

Notes: The figure shows the observed density of property transactions (blue dots) and the density of property transactions in the year leading up to the introduction of the notch (red line) around the notches for very high value properties. The vertical dashed lines denote the upper and lower bounds of the excluded region around the notch. The upper bound of the excluded region is chosen as the point where the observed density changes slope from positive to negative. Panel A shows the notch at £1,000,000 introduced on 6 April 2011 where the tax liability jumps by £10,000 (from 4% to 5% of the transaction price) with both densities aggregated up to bins £25,000 wide. Panel B shows the notch at £2,000,000 introduced on 22 March 2012 where the tax liability jumps by £40,000 (from 5% to 7% of the transaction price) with both densities are aggregated up to bins £50,000 wide. b is our estimate of the excess mass just below the notch scaled by the average counterfactual frequency in the excluded range and m is our estimate of the missing mass above the notch scaled by the average counterfactual frequency in the excluded range. $m - b$ is our estimate of the difference between the missing mass and the bunching mass. The figures also show the average house value change created by the notch, and the tax liability change at the notch.
Notes: The figure shows the effect of the stamp duty holiday stimulus on housing market activity using the price range £115,000 - £195,000 as the treated price range and £195,000 - £235,000 as the control price range. Panel A shows the normalized log monthly number of transactions defined as the log of the number of transactions in that month minus the average of the log of the number of transactions in the 24 months leading up to the start date of the Stamp Duty Holiday (September 2006 - August 2008). Superimposed on that are our estimates of β_H, β_R and β_P from the regression equation:

$$n_{it} = \alpha_0 \text{Pre}_t + \alpha_H \text{Hol}_t + \alpha_R \text{Rev}_t + \alpha_P \text{Post}_t + \alpha_T \text{Treated}_i + \beta_H \text{Hol}_t \times \text{Treated}_i + \beta_R \text{Rev}_t \times \text{Treated}_i + \beta_P \text{Post}_t \times \text{Treated}_i + \nu_{it}$$

where n_{it} is the log of the monthly number of transactions Pre_t is a dummy for the pre-period September 2006–August 2008 inclusive, Hol_t is a dummy for the stamp duty holiday period September 2008–December 2009, Rev_t is a dummy for the post-holiday reversal period January–December 2010 inclusive, and Post_t is a dummy for the later months January 2011–October 2012 inclusive. Treated_i is a dummy for the treated price range and finally ν_{it} is an error term. Panel B shows the cumulative sum of the normalized log counts in panel A (blue dots and orange crosses) as well as the cumulative sum of the differences between the treatment and control groups (green diamonds). Panel C shows how the proportion of the total effect of the stamp duty holiday that is undone by reversal after the end of the holiday changes as we use different months as the first month after the effect is gone. Specifically, it shows $(\beta_R \sum \text{Rev}_t) / (16 \beta_H)$ as the end date of the period used to define Rev_t changes. The vertical line is at our preferred choice for the first month of Post_t, January 2011, which gives an estimate of the proportion of the total effect undone by reversal of 0.42 (0.123).
Table A.1: Immediate Impact of Fiscal Stimulus on GDP

<table>
<thead>
<tr>
<th>Time Since Last Move</th>
<th>< 1 Year</th>
<th>≥ 1 Year</th>
<th>≥ 5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Moving-Related Household Spending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repairs & Improvements</td>
<td>3,153</td>
<td>1,707</td>
<td>1,447</td>
</tr>
<tr>
<td>Furnishings</td>
<td>2,912</td>
<td>817</td>
<td>751</td>
</tr>
<tr>
<td>Appliances</td>
<td>153</td>
<td>87</td>
<td>100</td>
</tr>
<tr>
<td>Other Durables</td>
<td>426</td>
<td>434</td>
<td>436</td>
</tr>
<tr>
<td>Total Expenditure</td>
<td>6,644</td>
<td>3,043</td>
<td>2,734</td>
</tr>
<tr>
<td>Difference Movers - Stayers</td>
<td>3,600</td>
<td>3,909</td>
<td></td>
</tr>
<tr>
<td>Difference Movers - Stayers (% of house value)</td>
<td>1.57</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Estate Agent Commissions (% of house value)</td>
<td>1.98</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>Other Commissions (% of house value)</td>
<td>1.24</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>Impact of Purchase on Expenditure: φ</td>
<td>4.79</td>
<td>4.92</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Immediate Impact of Policy on GDP

	Using β_H = 0.20	Using β_H = 0.17
Impact of Policy on GDP per £ of Tax Cut (β_H × φ)	0.96	0.98
Impact of Policy on GDP per £ of Tax Cut (β_H × φ)	0.81	0.84

Notes: The table shows estimates of the immediate impact of the stamp duty holiday stimulus on GDP. Using the UK Living Costs and Food Survey from 2011, the first 7 rows of panel A present estimates of moving-related spending on repairs, renovations, furnishings, appliances and other durables. To obtain only the moving-related part of these spending categories, we compare homeowners who moved within the last year (movers) to homeowners who moved more than 1 year ago or more than 5 years ago (non-movers). Row 6 shows our estimates of total moving-related spending on these categories in absolute numbers (£3,600-£3,909 depending on comparison group), while row 7 scales the estimates by the average house price of houses transacted in 2011, £230,000. Rows 8 and 9 show spending on commissions to agents, lawyers, etc. A 2011 survey by Which? Magazine estimates that estate agents’ fees average 1.8% of the house price before VAT, or 1.98% with VAT (see http://www.which.co.uk/news/2011/03/estate-agents-fees-exposed-248666/). ReallyMoving (2012) estimates that other commissions and fees total £1,880 on average, and do not vary much with house value, so we scale this by the average value of houses bought in the range affected by the policy (£152,000). Combining rows 1-9, we reach our rough estimate of the effect of a house purchase on household spending (in % of the house price), which we denote by φ. This number is just below 5% independent of comparison group. In panel B we calculate the immediate impact of the policy on GDP (per £ of tax cut) as the moving-related spending triggered by the additional house transactions due to the policy. The total GDP effect is ΔGDP = φh_{mv}Δn where h_{mv} is the mean price of houses in the price range affected by the policy, and Δn is the number of additional house purchases induced by the policy. The foregone tax revenue is ΔTax = τ₀h_{mv}n₀ where τ₀ = 1% is the pre-stimulus tax rate, and n₀ is the counterfactual number of transactions. Combining these expressions, the effect of the policy is ΔGDP/ΔTax = φΔn / (τ₀n₀), where Δn/n₀ is our difference-in-differences estimate β_H in equation (18). The first row of panel B uses β_H = 0.20 as estimated in Figure 12, while the second row uses β_H = 0.17 as estimated in Figure A.3.