The Social Value of Expertise

Pablo Kurlat

Stanford University

SED 2013
Questions

How to think about expertise in financial markets
 ▶ Rent-seeking vs. value-creation
 ▶ “Are too many smart people going to Wall Street?”

Expertise ≡ ability to evaluate assets
 1. Competitive equilibrium in lemons market with heterogeneous expertise
 2. Compare private vs social value of expertise
The Economy

- Assets $i \in [0, 1]$ pay $q(i)$ at $t = 2$
 - $q(i) = \mathbb{I}(i > \lambda)$
 - Fraction λ are “lemons”

- Buyers b
 - Preferences $u(c_1, c_2) = c_1 + c_2$
 - Endowment: $w(b)$ of goods at $t = 1$

- Sellers v
 - Preferences $u(c_1, c_2, v) = c_1 + \beta(v) \cdot c_2$. $\beta(v)$ increasing w.l.o.g.
 - Endowment: 1 unit of each possible asset

- Information:
 - Sellers: know i and therefore $q(i)$
 - Buyer b: observes signal $x(i, b) = \mathbb{I}(i > b\lambda)$ but not index i
 - b exogenous for now; later: incentive to increase b
Expertise

Bad Assets

\[x(i,b) \]

Good Assets

\[x(i,b') \]

\[q(i) \]

more expertise
Markets

- A large set of “markets” m. A market specifies
 - the price at which assets trade
 - “clearing algorithm” for assigning assets to buyers. Sellers may get rationed

- Sellers choose which assets to supply in each market
 - No exclusivity

- Buyers choose which markets to buy from
 - Impose an acceptance rule
 \[\chi(i) : l \rightarrow \{0, 1\} \]
 s.t.
 \[\chi(i) = \chi(i') \quad \text{whenever} \quad x(i, b) = x(i', b) \]
 - $\chi(i) = 1$ means “I am willing to accept asset i in this market”
Clearing Algorithms: Example

<table>
<thead>
<tr>
<th>i</th>
<th>$q(i)$</th>
<th>$\chi(i)$ of buyer 1</th>
<th>$\chi(i)$ of buyer 2</th>
<th>$S(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>Red</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>Green</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- **Option 1: buyer 1 picks first (at random)**

<table>
<thead>
<tr>
<th>i</th>
<th>Buyer 1 gets</th>
<th>Buyer 2 gets</th>
<th>Prob of selling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Red</td>
<td>0.5</td>
<td>0</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>Green</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Option 2: buyer 2 picks first (at random)**

<table>
<thead>
<tr>
<th>i</th>
<th>Buyer 1 gets</th>
<th>Buyer 2 gets</th>
<th>Prob of selling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Red</td>
<td>0.75</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Green</td>
<td>0.25</td>
<td>1</td>
<td>$\frac{5}{6}$</td>
</tr>
</tbody>
</table>
Equilibrium

- Define each possible \{price, algorithm\} as a separate market

- Sellers:
 - choose what markets (if any) to offer their assets in
 - take as given the probability of selling each asset in each market

- Buyers
 - choose what markets to buy from and what acceptance rules to impose
 - take as given the distribution of assets they’ll get in each market with each rule

- Allocation: in each market
 - probability of selling each asset
 - distribution of assets for each acceptance rule
 - result from applying clearing algorithm to supply and demand
Equilibrium Characterization

- **Markets:**
 - All trades take place in the same market
 - Clearing algorithm: “less-restrictive-first”

- **Sellers:**
 - Try to sell all bad assets
 - Try to sell good assets iff
 \[\beta(v) \leq p^* \Rightarrow \text{defines cutoff } v^* \]

- **Buyers:**
 - Impose rule
 \[\chi(i, b) = x(i, b) \]
 - Only participate if sufficiently expert \((b \geq b^*)\)

- ** Trades**
 - All good assets offered do get sold
 - Bad assets get rationed depending on how many active buyers they mislead
Equilibrium Characterization

1. Indifference for buyer b^*
 - Accepts all good assets. Measure: $v^* (1 - \lambda)$
 - Accepts bad assets that look good: $i \in [\lambda b^*, \lambda]$. Measure: $\lambda (1 - b^*)$
 - Indifference:
 \[p^* = \frac{v^* (1 - \lambda)}{v^* (1 - \lambda) + \lambda (1 - b^*)} \] (1)

2. Indifference for seller v^*
 \[p^* = \beta (v) \] (2)

3. Good assets get sold
 - Good assets bought by buyer b:
 \[\frac{w(b)}{p^*} = \frac{v^* (1 - \lambda)}{v^* (1 - \lambda) + \lambda (1 - b)} \]
 - If good assets are all sold:
 \[\int_{b^*}^{1} \frac{w(b)}{p^*} \frac{v^* (1 - \lambda)}{v^* (1 - \lambda) + \lambda (1 - b)} db = v^* (1 - \lambda) \] (3)
Welfare Exercise

- Take $w(b)$ (wealth/expertise distribution) as given

- Consider single buyer with 1 unit of wealth and expertise b

- Compute marginal value of increasing expertise to b'
 - Marginal private value
 - Marginal social surplus

- For any cost-of-expertise function, efficiency depends on private vs. social
Private Value

- Utility of buyer b:

$$U = \frac{1}{p^*} \left[\frac{v^*(1 - \lambda)}{v^*(1 - \lambda) + \lambda(1 - b)} - p^* \right]$$

- Marginal value of expertise:

$$\frac{\partial U}{\partial b} = \frac{1}{p^*} \frac{\lambda(1 - \lambda)v^*}{[(1 - \lambda)v^* + \lambda(1 - b)]^2}$$
Social Value

- Social surplus

\[S = (1 - \lambda) \int_0^{\nu^*} [1 - \beta(v)] dv \]

- Marginal social value of expertise

\[\frac{\partial S}{\partial b} = (1 - \lambda)(1 - \beta(v)) \frac{\partial \nu^*}{\partial b} \]

- Effects of more expertise \(\frac{\partial \nu^*}{\partial b} \):
 - buy more good assets and fewer bad assets
 -⇒ (If nothing were to adjust) good assets run out
 -⇒ Higher equilibrium price (and marginal buyers withdraw)
 -⇒ Marginal sellers sell assets

- Computing:

\[\frac{\partial \nu^*}{\partial b} = \frac{\lambda (1 - \lambda) \nu^*}{w(b^*) \left[[(1 - \lambda) \nu^* + \lambda (1 - b^*)] \beta'(\nu^*) - \frac{\lambda(1-\lambda)(1-b^*)}{(1-\lambda)\nu^*+\lambda(1-b^*)} \right] + \lambda (1 - \lambda) \nu^* \beta'(\nu^*) + \lambda (1 - \lambda) \nu^* \int_{b^*}^{1} w(b) \frac{(1-\lambda)}{[(1-\lambda)\nu^*+\lambda(1-b)]^2} db} {[(1 - \lambda) \nu^* + \lambda (1 - b)]^2} \]
Comparison of Private and Social Value

- Ratio of private to social value:

$$\frac{\partial S}{\partial b} = \frac{p^* (1 - p^*)}{\frac{\partial U}{\partial b}} = \left[w(b^*) \left[\left(\frac{v^*}{\lambda} + \frac{1 - b^*}{1 - \lambda} \right) \beta'(v^*) - \frac{(1 - b^*)}{(1 - \lambda) v^* + \lambda (1 - b^*)} \right] + v^* \beta'(v^*) + v^* \int_{b^*}^{1} w(b) \frac{(1 - \lambda)}{[(1 - \lambda) v^* + \lambda (1 - b)]^2} db \right]$$

- Social value is relatively high when:
 1. \(\beta'(v^*) \) is low
 * Many marginal sellers
 2. \(w(b^*) \) is low
 * Expertise of marginal buyer very sensitive
 3. \(p^* \) away from 0 or 1
 * \(p^* \approx 1 \): marginal trades create little surplus
 * \(p^* \approx 0 \): large private return to expertise

- The ratio \(\frac{\partial S}{\partial b} \) does not depend on \(b \)
 * (Same for semi-experts and super-experts)