Dynamic Optimization - Part 1

1 Setup

- We’ll look at problems of the form:

\[
\begin{align*}
\sup_{\{x_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}) \\
\text{s.t.} \\
x_{t+1} \in \Gamma(x_t) \quad \forall t \\
x_0 \text{ given}
\end{align*}
\]

(1)

- Recall that for the Neoclassical Growth Model

 \begin{itemize}
 \item $x_t \rightarrow k_t$
 \item $F(x_t, x_{t+1}) \rightarrow u(f(k_t) + (1-\delta)k_t - k_{t+1})$
 \item $\Gamma(x_t) = [0, f(k_t) + (1-\delta)k_t]$
 \end{itemize}

- Use the notation $\tilde{x} = \{x_t\}_{t=0}^{\infty}$ to refer to complete sequences (SLP calls these plans).

- Let

\[
\Pi(x_0) = \{\tilde{x} : x_{t+1} \in \Gamma(x_t) \forall t\}
\]

be the set of feasible plans

- Remarks:

 1. We write sup because there is no presumption that the maximum exists
 - (But usually this is not an issue)
 2. The infinite sum

\[
\sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1})
\]
means
\[\lim_{T \to \infty} \sum_{t=0}^{T} \beta^t F(x_t, x_{t+1}) \]

- SLP assume that the limit exists for any \(\tilde{x} \in \Pi(x_0) \) (assumption 4.2) (although it could be \(+\infty\) or \(-\infty\)

3. \(x_t \) is a “state variable”. It belongs to a set \(X \).

4. \(\Gamma \) is a correspondence: it maps \(x_t \) into a set \(\Gamma(x_t) \subseteq X \)

2 A Variational Approach

- The goal is to find conditions such that FOCs are sufficient for an optimum

2.1 Assumptions

Assumption 1. \(F \) is increasing in the first argument.

This is just a normalization; otherwise redefine \(x \).

Assumption 2. \(X \subseteq \mathbb{R}_+^n \).

E.g. the capital stock is nonnegative. We could easily generalize to any nonzero lower bound on \(x \).

Assumption 3. \(F \) is differentiable.

So we can take FOCs

Assumption 4. \(F \) is concave.

Strict concavity will give uniqueness

2.2 Euler equation

- Suppose \(\bar{x}^* \) is the optimum, and it is interior, i.e.

\[x_{t+1}^* \in \text{int}(\Gamma(x_t^*)) \]

- Then

\[x_{t+1}^* \in \arg \max_{x_{t+1}} F(x_t^*, x_{t+1}) + \beta F(x_{t+1}, x_{t+2}^*) \]
• This implies Euler equation:

\[F_y(x_t^*, x_{t+1}^*) + \beta F_x(x_{t+1}^*, x_{t+2}^*) = 0 \]

(2)

• Notation: \(F_x \) is the derivative w.r.t. the first argument and \(F_y \) is the derivative w.r.t. the second argument.

• Remark: \(x \) could be a vector, so the Euler equation (2) should be read as a system of equations, one for each dimension of \(x \).

• Example:

\[
\begin{align*}
F' (x_t^*, x_{t+1}^*) &= u (f(k_t) + (1 - \delta) k_t - k_{t+1}) \\
F_y (x_t^*, x_{t+1}^*) &= -u' (f(k_t) + (1 - \delta) k_t - k_{t+1}) \\
F_x (x_{t+1}^*, x_{t+2}^*) &= u' (f(k_{t+1}) + (1 - \delta) k_{t+1} - k_{t+2}) [f' (k_t) + 1 - \delta] \\
\Rightarrow u' (f(k_t) + (1 - \delta) k_t - k_{t+1}) &= \beta u' (f(k_{t+1}) + (1 - \delta) k_{t+1} - k_{t+2}) [f' (k_t) + 1 - \delta] \\
\Rightarrow u' (c_t) &= \beta u' (c_{t+1}) [f' (k_t) + 1 - \delta]
\end{align*}
\]

2.3 Transversality condition

• Suppose we had a finite horizon, with last period \(T \)

• Then in any interior solution, it would have to be that

\[F_y (x_T^*, x_{T+1}^*) = 0 \]

• Generalization to infinite horizon case:

\[\lim_{T \to \infty} \beta^T F_y (x_T^*, x_{T+1}^*) x_{T+1}^* = 0 \]

or, using the Euler equation

\[\lim_{T \to \infty} \beta^T F_x (x_T^*, x_{T+1}^*) x_T^* = 0 \]

(3)

• Equation (3) is known as a transversality condition.

• Interpretation:

\(- \beta^T F_x (x_T^*, x_{T+1}^*) \) is the net present marginal value of \(x \) at time \(T \): how much does the value of the plan (measured as of time 0) increase if we increase \(x_T \).
- x_T is the level in period T
- Equation (3) is saying that the present value of x goes to zero as $T \to \infty$

2.4 Sufficiency result

Proposition 1. Suppose Assumptions 1-4 hold and \bar{x}^* is interior, satisfies (2) and (3) and $\sum_{t=0}^{\infty} \beta^t F (x_t^*, x_{t+1}^*) < \infty$. Then \bar{x} is a solution to problem (1). If Assumption 4 holds strictly, then \bar{x} is the unique solution.

Proof. Let \tilde{x} be any plan other than \bar{x}^*, i.e. such that $x_{t+1}^* \neq x_{t+1}^*$ for some t. Let

$$\Delta = \sum_{t=0}^{\infty} \beta^t \left[F (x_t^*, x_{t+1}^*) - F (x_t, x_{t+1}) \right]$$

Then

$$\Delta = \lim_{T \to \infty} \sum_{t=0}^{T} \beta^t \left[F (x_t^*, x_{t+1}^*) - F (x_t, x_{t+1}) \right]$$

$$\geq \lim_{T \to \infty} \sum_{t=0}^{T} \beta^t \left[F_x (x_t^*, x_{t+1}^*) [x_t^* - x_t] + F_y (x_t^*, x_{t+1}^*) [x_{t+1}^* - x_{t+1}] \right]$$

$$= F_x (x_0^*, x_1^*) [x_0^* - x_0] + \lim_{T \to \infty} \sum_{t=0}^{T} \beta^{t+1} F_x (x_{t+1}, x_{t+2}^*) [x_{t+1}^* - x_{t+1}] + \sum_{t=0}^{T} \beta^t F_y (x_t^*, x_{t+1}^*) [x_{t+1}^* - x_{t+1}]$$

$$= F_x (x_0^*, x_1^*) [x_0^* - x_0] + \lim_{T \to \infty} \sum_{t=0}^{T} \beta^{t} (\beta F_x (x_{t+1}, x_{t+2}^*) + F_y (x_t^*, x_{t+1}^*)) [x_{t+1}^* - x_{t+1}]$$

$$- \lim_{T \to \infty} \beta^{T+1} F_x (x_{t+1}, x_{t+2}^*) [x_{t+1}^* - x_{t+1}]$$

$$= - \lim_{T \to \infty} \beta^T F_x (x_t^*, x_{t+1}^*) [x_t^* - x_t]$$

$$\geq 0$$

- The first step follows from concavity (Assumption 4) and differentiability (Assumption 3) and is strict inequality if we have strict concavity.
- The next two steps are rearranging.
- The following step uses that $x_0^* - x_0 = 0$ because both plans start from the same point and that the Euler equation holds for plan \bar{x}^*.
- The final step follows from the fact that $F_x \geq 0$ (Assumption 1), the transversality condition holds for plan \bar{x}^* and $x_t \geq 0$ (Assumption 1).
• Remarks
 – SLP prove a weaker version of this (Theorem 4.15).
 * We didn’t require bounded F (useful because often unbounded), just finite value of plan \bar{x}.
 – The exact form of the transversality condition depends on the problem
 * E.g. it’s different if you don’t assume 1
 – We have proved (2) and (3) are sufficient, not that they are necessary.
 * Easy to see Euler is necessary
 * Necessity of transversality condition requires a bit more work
 – The result is valid even for nonstationary problems, i.e. when F and Γ also have t as an argument

3 Examples

3.1 Neoclassical Growth Model

• We had
 \[F(x_t, x_{t+1}) \rightarrow u(f(k_t) + (1 - \delta)k_t - k_{t+1}) \]

• Euler equation is
 \[-u'(f(k_t) + (1 - \delta)k_t - k_{t+1}) + \beta u'(f(k_{t+1}) + (1 - \delta)k_{t+1} - k_{t+2}) [f'(k_{t+1}) + (1 - \delta)] = 0 \]
 which is a second-order difference equation in k_t

• Note that using the resource constraint
 \[k_{t+1} = f(k_t) + (1 - \delta)k_t - c_t \]
 we get back to our usual equation in terms of consumption:
 \[-u'(c_t) + \beta [f'(k_{t+1}) + (1 - \delta)] u'(c_{t+1}) = 0 \]

• If we find a path for k_t such that
 \[\lim_{t \to \infty} k_t = k_{ss} \]
 then the transversality condition is satisfied and we know that this is the unique optimal path.
3.2 A consumption problem with borrowing constraints and CRRA utility

- Problem:

\[
\max_{t=0} \infty \sum \beta^t u(c_t)
\]

s.t.

\[
a_{t+1} = y - c_t + (1 + r) a_t
\]

\[
a_{t+1} \geq -B
\]

\[
a_0 \text{ given}
\]

where

\[
u(c) = \frac{c^{1-\sigma}}{1-\sigma}
\]

- Here:

 - \(x_t \to a_t\)
 - \(F(x_t, x_{t+1}) \to u((1 + r) a_t + y - a_{t+1})\)
 - \(\Gamma(x_t) = [-B, y + (1 + r) a_t]\)

- This doesn’t meet assumption 2 but it’s easy to transform the problem such that is does:

 - \(z_t \equiv a_t + B\)
 - Budget constraint becomes

\[
z_{t+1} - B = y - c_t + (1 + r) (z_t - B)
\]

\[
z_{t+1} = y - rB - c_t + (1 + r) z_t
\]

 - \(F(z_t, z_{t+1}) = u((1 + r) z_t + y - z_{t+1} - rB)\)
 - \(\Gamma(z_t) = [0, y - rB + (1 + r) z_t]\)

- Euler:

\[
F_y \left(x_t^*, x_{t+1}^*\right) + \beta F_x \left(x_{t+1}^*, x_{t+2}^*\right) = 0
\]

\[
-u'((1 + r) z_t + y - z_{t+1} - rB) + \beta u'((1 + r) z_{t+1} + y - z_{t+2} - rB) (1 + r) = 0
\]

which, using the budget constraint, becomes

\[
u'(c_t) = \beta (1 + r) u'(c_{t+1})
\]
• Using CRRA:
\[
\frac{c_{t+1}}{c_t} = \left[\beta (1 + r) \right]^{\frac{1}{\sigma}}
\]

• Exercise: transversality condition

4 A Recursive Approach

• Define
\[
V^* (x_0) \equiv \sup_{\{x_t\}} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1})
\]
\[
s.t.
\]
\[
x_{t+1} \in \Gamma(x_t) \quad \forall t
\]
\[
x_0 \text{ given}
\]

• Break up the infinite dimensional problem into 2-period problems

• Informal logic:
 - Suppose we have reached period 1, having chosen the optimal \(x_1 \). The value from then on would be \(V^* (x_1) \)
 - The overall value would then be
\[
F(x_0, x_1) + \beta V^* (x_1)
\]
 - Then we should be able to find the optimal plan by solving
\[
\sup_{x_0, x_1} F(x_0, x_1) + \beta V^* (x_1)
\]
\[
s.t.
\]
\[
x_1 \in \Gamma(x_0)
\]
 - (But for this we would need to know the function \(V^* \))
 - But the original value should then satisfy
\[
V^* (x_0) = \sup_{x_0, x_1} F(x_0, x_1) + \beta V^* (x_1)
\]
\[
s.t.
\]
\[
x_1 \in \Gamma(x_0)
\]
• Functional equation:

\[V(x) = \sup_{x,y} F(x, y) + \beta V(y) \]

subject to

\[y \in \Gamma(x) \]

(4)

• Questions:

1. Does (4) have a solution?
2. Is it unique?
3. Is it the case that \(V^* \) (defined from the sequence problem) satisfies (4)?
4. (When) is it the case that a solution to (4) is \(V^* \)?
5. If \(\tilde{x}^* \) solves (1), is it the case that it maximizes the RHS of (4), i.e.

\[V^*(x_t^*) = F(x_t^*, x_{t+1}^*) + \beta V^*(x_{t+1}^*) \]

?

6. If \(\tilde{x}^* \) maximizes the RHS of (4), i.e.

\[V^*(x_t^*) = F(x_t^*, x_{t+1}^*) + \beta V^*(x_{t+1}^*) \]

then is it the case that it attains the supremum of problem (1)?