1 The model

1.1 Preferences and endowments

- Consumers:
 - Preferences
 \[u = c_0 + c_1 + c_2 \]
 - Endowment: Deep pockets

- Entrepreneurs:
 - Preferences:
 \[u = c_2 \]
 - Endowment: \(n \) at \(t = 0 \)

1.2 Technology

- "Traditional" (like gatherers in K&M):
 - Invest \(k \) at \(t = 1 \)
 - Dividend \(F(k) \) at \(t = 2 \)
 - \(F'(k) \in [q, 1] \)
 - Consumers can operate this technology

- "Entrepreneurial":
 - Invest \(k_0 \) (choose scale) at \(t = 0 \)
 - Dividend \(x_s k_0 \) at \(t = 1 \).
* \(s \in \{H, L\} \) is the state of the world.
* \(x_L < 0 \). Paper explains it in terms of a need for reinvestment as in H&T. This is one of the several unnecessary ingredients in the model

- Opportunity to sell \(k \) or build more \(k \) between periods 1 and 2
- Dividend \(Ak_1 \) at \(t = 2 \)

1.3 Financial Contracts

- There is a spot market for capital at \(t = 1 \). The price is \(q_s \).
- A contract is \(\{d_0, d_{1s}, d_{2s}, d_{2H}, d_{2L}, d_{2H}\} \)

- Notation convention:
 - \(d_0 \) is what a consumer gives the entrepreneur at \(t = 0 \)
 - \(d_{ts} \) is what the entrepreneur pays back at time \(t \) if the state \(s \) is realized

- Imperfect enforcement / commitment:
 - \(d_{1s} + d_{2s} \leq (\theta x_s + q_s) k_0 \)
 * threat to renegotiate + entrepreneur has bargaining power
 * dispersed debt may increase lenders’ bargaining power Diamond and Rajan [2001],
 Diamond [2004], Kurlat [2012]
 * alternatively: threat to run away with \((1 - \theta) x_s \)
 - \(d_{2s} \leq \theta Ak_{1s} \)
 - \(d_{1s} + d_{2s} \geq 0 \)
 - \(d_{2s} \geq 0 \)

2 Entrepreneur’s Problem

- Reparametrize financial contracts by

 \[
 b_{1s} = \frac{d_{1s} + d_{2s}}{k_0} \]
 \[
 b_{2s} = \frac{d_{2s}}{k_1} \]
• Program:

\[\max_{d_0,b_1,b_2} \sum_s \pi_s (A - b_2s) k_0 \]

\[k_0 \leq n + \left[k_0 \sum_s \pi_s b_1s \right] \quad \text{(term in brackets is } d_0) \]

\[q_s k_{1s} \leq (q_s + x_s - b_{1s}) k_0 + b_{2s} k_{1s} \]

\[0 \leq b_{1s} \leq \theta x_s + q_s \]

\[0 \leq b_{2s} \leq \theta A \]

• FOC w.r.t. \(b_{1s} \):

\[k_0 \pi_s \lambda_0 - \lambda_{1s} k_0 \]

• Borrowing against state \(s \) depends on comparing the multipliers on the \(t = 0 \) constraint and the multiplier on the \(t = 1 \) state \(s \) constraint.

• How much is wealth in state \(s \) worth?

 – Buy capital
 – Cost is \(q_s \)
 – Borrow \(\theta A \). Net cost is \(q_s - \theta A \)
 – Get dividend (net of debt repayment) of \((1 - \theta) A \)
 – Per unit of wealth, you get dividend of

\[\frac{(1 - \theta) A}{q_s - \theta A} \]

 – Therefore

\[\lambda_{1s} = \pi_s \frac{(1 - \theta) A}{q_s - \theta A} \]

\[z_{1s} = \frac{\lambda_{1s}}{\pi_s} = \frac{(1 - \theta) A}{q_s - \theta A} \]

 – Value of wealth in state \(s \) depends on how cheap it will be to buy capital in state \(s \).

 – Other things being equal, you want to carry wealth into states of the world where there are good deals available. Something like this was also happening in the Geanakoplos model.

• How much is wealth at \(t = 0 \) worth?
– Build capital
– Cost is 1
– Borrow \(\sum s \pi_s b_{1s} \). Net cost is \(1 - \sum s \pi_s b_{1s} \)
– Dividend-plus-capital (net of debt repayment) will be worth \([q_s + x_s - b_{1s}]\)
– Per unit of initial wealth, this plan gives you
\[
\frac{q_s + x_s - b_{1s}}{1 - \sum s \pi_s b_{1s}}
\]
in state \(s \)
– Wealth in state \(s \) is worth \(z_{1s} \)
– Therefore wealth at \(t = 0 \) is worth
\[
z_0 = \frac{\sum s \pi_s z_{1s} (q_s + x_s - b_{1s})}{1 - \sum s \pi_s b_{1s}}
\]

• Overall: \(b_{1s} = 0 \) if \(z_1 > z_0 \) and \(b_{1s} = \theta x_s + q_s \) if \(z_1 < z_0 \)

3 Equilibrium

• Assume parameters are such that entrepreneurs cannot absorb \(x_L < 0 \) without selling capital
• Sell capital to consumers in state \(L \)
• Demand for capital
• \(q_L = F'(k_0 - k_{1L}) < 1 \)
• Supply of capital

\[
k_{1L} \leq (q_L + x_L - b_{1L}) k_0 + b_{2L} k_{1L}
\]
\[
q_L k_{1L} \leq (q_L + x_L - b_{1L}) k_0 + \theta A k_{1L}
\]
\[
k_{1L} = \frac{(q_L + x_L - b_{1L}) k_0}{q_L - \theta A}
\]
\[
k_0 - k_{1L} = \left[1 - \frac{(q_L + x_L - b_{1L})}{q_L - \theta A} \right] k_0
\]
\[
= \frac{b_{1L} - x_L - \theta A}{q_L - \theta A} k_0
\]

• Supply is DECREASING in price. This is quite common in models where you need to sell to reach some fixed amount of cash.
• Depending on functional forms, there could be multiple equilibria.

• “Pecking order”
 – Borrow against state H as a first priority
 – Borrow against state L as a second priority

4 A Constrained Planner’s Problem

• Planner chooses how much entrepreneurs borrow

• Repayment $\sum_s \pi_s b_{1s}$ can be different than amount borrowed intially
 – or equivalently we allow for transfers to/from consumers
 – this is to make consumers indifferent
 – which is necessary because the traditional technology produces rents and the planner
 might change them

• Result: “overborrowing” (or rather overinvestment)
 – (in cases where you only borrow against state H)

• Pareto improvement comes about like this:
 – Reduce investment by a small amount s.t. asset prices in state L rise by dq
 – Increase in wealth is $dq(k_0 - k_L)$ - exact loss of consumers
 – Compensate consumers by giving them more consumption at $t = 0$
 – For entrepreneurs, the gain is
 $$\pi_L (z_{1L} - z_0) (k_0 - k_L) dq$$
 – This is positive because $z_{1L} > z_0$
 – This is a way to indirectly increase the amount of insurance through prices
 – (We learnt about this in Econ 212)
5 What is going on?

- Are borrowing constraints important?
 - (Which ones? Entrepreneur’s? Consumers? Who wants to save and borrow?)
- Is uncertainty important?
- How do we interpret overborrowing?
 - Investment vs. borrowing
 - Comparison with First Best

6 Another Model with some Similar Forces

- You might remember this from your problem sets last year
- There are two periods, 0 and 1.
- There are two types of agents, A and B. There is a measure 1 of each type.
- A-agents have preferences
 \[u^A(c_0 + c_1) = c_0 + \beta c_1 \]
 with \(\beta < 1 \), and an endowment of 1 unit of labour at \(t = 1 \).
 - These will be a bit like consumers in Lorenzoni
- B-agents have preferences
 \[u^B(c_0 + c_1) = c_0 + c_1 \]
 and an endowment of \(e \) goods at \(t = 0 \).
 - These are a bit like entrepreneurs in Lorenzoni
- The available technology allows agents to convert goods into capital one-for-one at \(t = 0 \)
 and then combines capital and labour to produce goods at \(t = 1 \) according to the constant-
 returns-to-scale production function
 \[F(K, L) \]
- There are competitive factor markets for capital and labour at \(t = 1 \) but no markets for
 borrowing and lending between periods 1 and 2.
• Assume that

\[F_K(e, 1) < 1 \]

1. Set up the problem of the B-agents and find the first order condition for the \(t = 0 \) consumption choice.

\[
\max_{c_0, c_1, K} c_0 + c_1 \\
\text{s.t. } (\lambda_0) : \quad c_0 + K \leq e \\
(\lambda_1) : \quad c_1 \leq RK \\
(\eta_0) : \quad c_0 \geq 0 \\
(\eta_1) : \quad c_1 \geq 0 \\
(\eta_K) : \quad k \geq 0 \\
\]

FOCs:

\[
1 - \lambda_0 + \eta_0 = 0 \\
1 - \lambda_1 + \eta_1 = 0 \\
-\lambda_0 + R\lambda_1 + \eta_K = 0 \\
\]

Therefore

\[
R > 1 \quad \Rightarrow \quad c_0 = 0, \quad c_1 = Re \\
R < 1 \quad \Rightarrow \quad c_0 = e, \quad c_1 = 0 \\
R = 1 \quad \Rightarrow \quad \text{indifferent} \\
\]

2. What must be the level of \(t = 1 \) capital? (this can be defined implicitly). Denote this level by \(K^* \).

\[
F_K(K^*, 1) = 1 \\
\]

(because higher \(K \) means \(R < 1 \) so \(B \) types won’t save and lower \(K \) means \(R > 1 \) so \(B \) types want to save entire endowment, but \(F_K(e, 1) < 1 \))

3. What is the shadow interest rate faced by A-agents? What is the shadow interest rate faced by B-agents?

Recall that shadow interest rates are the interest rates such that, if there was a market for borrowing and lending (which there isn’t), would make a household not want to trade in that market.

(a) For A types, the shadow interest rate is \(\frac{1}{\beta} \)

(b) For B types, the shadow interest rate is 1
4. Express the utility of A-agents and B-agents as a function of \(K \) and compute\(\frac{du^A(K)}{dK} \bigg|_{K=K^*} \) and \(\frac{du^B(K)}{dK} \bigg|_{K=K^*} \):

\[
\begin{align*}
 u^A &= \beta F_L(K, 1) \\
 u^B &= F_K(K, 1) K + e - K
\end{align*}
\]

so

\[
\begin{align*}
 \frac{du^A(K)}{dK} \bigg|_{K=K^*} &= \beta F_{LK}(K^*, 1) \\
 \frac{du^B(K)}{dK} \bigg|_{K=K^*} &= F_{KK}(K^*, 1) + F_K(K^*, 1) - 1
\end{align*}
\]

5. Compute \(\frac{du^A(K)}{dK} \bigg|_{K=K^*} + \frac{du^B(K)}{dK} \bigg|_{K=K^*} \) and argue that the equilibrium allocation is constrained inefficient.

\[
\begin{align*}
 \frac{du^A(K)}{dK} \bigg|_{K=K^*} + \frac{du^B(K)}{dK} \bigg|_{K=K^*} &= \beta F_{LK}(K^*, 1) + F_{KK}(K^*, 1) + F_K(K^*, 1) - 1 \\
 &= -(1 - \beta) F_{LK}(K^*, 1) + [F_{LK}(K^*, 1) + F_{KK}(K^*, 1)] \\
 &\quad + [F_K(K^*, 1) - 1] \\
 &= -(1 - \beta) F_{LK}(K^*, 1) < 0
\end{align*}
\]

This says that the sum of utilities could be higher if the economy could accumulate less capital. This means that the economy is not on the constrained Pareto frontier.

• Interpretation:
 - There are gains from trade if A agents could find a way to give up \(t = 1 \) goods in exchange for \(t = 0 \)
 - Just like in Lorenzoni there are gains from trade if consumers could find a way to give up state \(L \) goods in exchange for \(t = 0 \) goods
 - But A agents cannot borrow, just like consumers cannot borrow in Lorenzoni (and in H&T)
 - An indirect way to get these trades to take place is to lower the price of the stuff that A is selling at \(t = 1 \). In this case, since \(A \) is selling labour, the way to do it is to reduce investment to lower wages.
 - In Lorenzoni, consumers in state \(L \) are selling goods in exchange for capital, so lowering the relative price of goods is raising the price of capital. Hence we want to reduce investment.
References

Douglas W Diamond. Presidential address, committing to commit: Short-term debt when enforce-

Douglas W. Diamond and Raghuram G. Rajan. Liquidity risk, liquidity creation, and financial
