Online Appendix for "Bargaining with Arrival of New Traders" by William Fuchs and Andrzej Skrzypacz

Proof of Claims in Section III.C. \(\Pi (v_1) \) can be re-written as:

\[
\Pi (v_1) = \gamma v_1 + (1 - \gamma) \left(\int_0^{v_1} x f(x) d(x) + (1 - F(v_1)) v_1 \right)
\]

Hence,

\[
\Pi'(v_1) = \gamma + (1 - \gamma) (v_1 f(v_1) + (1 - F(v_1)) - f(v_1) v_1)
\]
\[
= \gamma + (1 - \gamma) (1 - F(v_1))
\]
\[
= 1 - F(v_1) + F(v_1) \gamma
\]

Therefore:

\[
\frac{\partial \Pi'(v_1)}{\partial \gamma} = F(v_1) > 0
\]

Therefore, the larger \(\gamma \) the larger \(\Pi'(v) \) \(\forall v \) and from Proposition 2 this implies that delay is decreasing in the number of different buyer classes. (ii) and (iii) follow from noting that \(\Pi(v_1) \) is decreasing in \(n \) since the second term of \(\Pi(v_1) \) is smaller than \(v_1 \) and using equations (8) and (9) which respectively characterize the seller’s value and prices.

Proof of Lemma 1 (Section IV). For \(k > V^* \), \(p_A(k) \) is a solution to the F.O.C.:

\[
p = \frac{F(k) - F(p)}{f(p)} = V^*
\]

Now, the LHS is decreasing in \(k \).\(^1\) We claim that it is increasing in \(p \) if the marginal revenue is downward sloping. The derivative of the LHS with respect to \(p \) is:

\[
1 - \frac{-f^2(p) - (F(k) - F(p)) f'(p)}{f^2(p)} = 2 + \frac{(F(k) - F(p)) f'(p)}{f^2(p)}
\]

which if \(f'(p) > 0 \) is positive for all \(k \) and if \(f'(p) \) is \(< 0 \) it is the smallest for \(k = 1 \), but then this expression is positive by assumption.

Hence the LHS of the F.O.C. is increasing in \(p \) for all \(k \) and decreasing in \(k \), which implies that \(p_A(k) \) is strictly increasing.

For \(k \leq V^* \) the seller cannot get more than \(V^* \), which he can guarantee by offering \(p_A(k) = V^* \) and trading with probability 0. \(\blacksquare \)

\(^{1}\)Hence, if \(p_A(k) \) is strictly increasing, the problem (19) is supermodular in \(k \) and \(p \), guaranteeing that the F.O.C. is sufficient.