ADMM
The alternating direction method of multipliers (ADMM) is an algorithm that
solves convex optimization problems by breaking them into smaller pieces, each
of which are then easier to handle. It has recently found wide application in a
number of areas. On this page, we provide a few links to to interesting
applications and implementations of the method, along with a few primary
references.
ADMM is used in a large number of papers at this point, so
it is impossible to be comprehensive here. We only intend to highlight a few
representative examples in different areas. To keep the listing light, we have
only listed more detailed bibliographic information for papers that are not
easy to find online; in any case, the information given should be more than
enough to track down the papers.
Main references
- Distributed optimization and
statistical learning via the alternating direction method of multipliers
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, 2011
- Proximal algorithms
N. Parikh and S. Boyd, 2014
Software
Classic papers
- On the numerical solution of heat conduction problems
in two and three space variables
J. Douglas and H. H. Rachford, Transactions of the American Mathematical Society,
1956
- Sur l'approximation, par éléments finis d'ordre un, et la résolution, par
pénalisation-dualité d'une classe de problèmes de Dirichlet non linéares
R. Glowinski and A. Marrocco, Revue Française d'Automatique, Informatique, et Recherche Opérationelle, 1975
- A dual algorithm for the solution of nonlinear
variational problems via finite element approximations
D. Gabay and B. Mercier, Computers and
Mathematics with Applications, 1976
- Splitting algorithms for the sum of two nonlinear operators
P. L. Lions and B. Mercier, 1979
- On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal monotone operators
J. Eckstein and D. Bertsekas, Mathematical Programming, 1992
Generic problems
- Alternating direction augmented Lagrangian methods for semidefinite programming
Z. Wen, D. Goldfarb, and W. Yin, 2010
- Block splitting for distributed optimization
N. Parikh and S. Boyd, 2014
- Operator splitting for conic optimization via homogeneous
self-dual embedding
B. O'Donoghue, E. Chu, N. Parikh, and S. Boyd, 2014
Applications
- Robust Principal Component Analysis?
E. J. Candès, X. Li, Y. Ma, and J. Wright, 2009
- An alternating direction method for dual MAP LP relaxation
O. Meshi and A. Globerson, 2011
- An augmented Lagrangian approach to constrained MAP inference
A. Martins, M. Figueiredo, P. Aguiar, N. Smith, and E. Xing, 2011
- Dual decomposition with many overlapping components
A. F. T. Martins, N. A. Smith, P. M. Q. Aguiar, and M. A. T. Figueiredo, 2011
- Decomposition methods for large scale LP decoding
S. Barman, X. Liu, S. Draper, and B. Recht, 2011
- Scaling MPE inference for constrained continuous Markov random fields with consensus optimization
S. Bach, M. Broecheler, L. Getoor, and D. O'Leary, 2012
- Distributed robust multicell coordinated beamforming with imperfect CSI: an ADMM approach
C. Shen, T.-H. Chang, K.-Y. Wang, Z. Qiu, and C.-Y. Chi, 2012
- Design of optimal sparse feedback gains via the alternating direction method of multipliers
F. Lin, M. Fardad, M. R. Jovanovic, 2013
- Tensor completion for estimating missing values in visual data
J. Liu, P. Musialski, P. Wonka, J. Ye, 2013
- A lasso for hierarchical interactions
J. Bien, J. Taylor, and R. Tibshirani, 2013
- Statistical estimation and testing via the sorted norm
M. Bogdan, E. van den Berg, W. Su and E. J. Candès, 2013
- The joint graphical lasso for inverse covariance estimation across multiple classes
P. Danaher, P. Wang, and D. Witten, 2013
- Distributed robust power system state estimation
V. Kekatos and G. B. Giannakis, 2013
- A splitting method for optimal control
B. O'Donoghue, G. Stathopoulos, and S. Boyd, 2013
- Dynamic network energy management via
proximal message passing
M. Kraning, E. Chu, J. Lavaei, and S. Boyd, 2014
Theory and variations
- On the convergence rate of the Douglas-Rachford alternating direction method
B. He and X. Yuan, 2012
- Fast alternating direction optimization methods
T. Goldstein, B. O'Donoghue, S. Setzer, and R. Baraniuk, 2012
- Augmented Lagrangian and alternating direction methods for convex optimization: a tutorial and some illustrative computational results
J. Eckstein, 2012
|