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SUMMARY

Existing proofs of the passivity criterion for linear, time-invariant, distributed N -ports are either incorrect or too
involved, requiring the use of advanced mathematics such as distribution theory. This paper presents a simple but
completely rigorous proof using only basic real and complex analysis. For the sake of completeness we have included
simple proofs of the Paley-Wiener theorem and the Poisson formula for the half plane. We show that solvability, a
non-intuitive technical assumption made in rigorous theories of LTI passive networks, is virtually always satisfied.
Finally, we give a passivity criterion applicable to N-ports described by general co-ordinates, from which passivity
criteria for any specific representation (e.g. impedance, admittance, hybrid, transmission, scattering, etc.) can be
trivially derived.

1. INTRODUCTION

In 1954 Raisbeck' proposed a general definition of passivity which would apply to distributed as well as
lumped circuits and gave an informal proof that a linear time-invariant (LTI) N -port is passive if and
only if its impedance matrix is positive real. In 1958 Youla, Castriota, and Carlin published their classic
paper on linear passive circuit theory2 which included the first formal proof of this passivity criterion,
but the proof is fairly involved. Wohlers and Beltrami>* and Zemanian® gave simpler formal proofs using
the theory of distributions.

Despite the 1958 publication of a formal and correct proof” attempts persisted for ten years to formalize
Raisbeck’s original intuitive argument, and in fact several textbooks published after 1958 use Raisbeck’s
proof.®® In 1966 Resh® pointed out one error in the Raisbeck proof and proposed a correction; two
years later Kuo® found and corrected an error in Resh’s proof. But in fact there were deeper problems
with the Raisbeck proof than those addressed by Resh and Kuo. For example Poisson’s formula for the
half plane is incorrectly used.t

The primary purpose of this paper is to present a formal proof of the passivity criterion which is
straightforward, intuitive, and makes the minimum appeal to advanced mathematics; in particular, no
distribution theory is used. Much of the advanced mathematics used is condensed into a single theorem
which characterizes LTI causal bounded operators in the frequency domain. We have called this theorem
the Bochner-Paley-Wiener theorem since it is an easy consequence of their results, and give a self-
contained proof in the appendix.

Our second purpose is to discuss some of the intricacies of the problem. We examine the difference
between passive devices which satisfy |7, v*i dt =0 for all T and devices for which |5 v*i dt =0 which
we call weakly passive (the distinction is due to Wohlers; some authors have used weak passivity as their
definition of passivity). We show that a solvable N-port N is passive if and only if it is weakly passive
and has a causal scattering operator and give a weaker criterion for 4 to be weakly passive. For example,
consider a 1-port & with v(¢) = i(t)+3i(t+1). This & has an impedance Z(jw)=1+3 e’ which has the
analytic extension Z(s)=1+4e’ in the whole complex plane. Parseval’s relation or direct calculation
shows that if / is admissible and i€L,, then velL, and ]f,o vi dt =0, that is, N is weakly passive. Z (s),
though quite analytic, is far from positive real since Z(wj+1)=1-3 e <0, so this / is an example showing

1 1t is stated incorrectly by Guillemen."”
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that proofs of the criterion assuming only weak passivity are incorrect. We show that a reasonable
assumption implies that a device is either solvable or exhibits simple nullator behaviour.

Finally, we give a passivity criterion for a device described by general co-ordinates from which specialized
criteria in terms of any particular representation (e.g. admittance, hybrid, transmission, etc.) can be
trivially derived. '

We will use the following somewhat standard notation: W is the conjugate and w* the conjugate
transpose of we C", lw|=(w*w)"?; LY(LY(R)) is the set of (measurable) CV(R") valued functions of
a real variable f(¢) with {%, f*(t)f(¢) dt = ||f|* < (Lebesgue integral; functions which differ on a set of
measure zero identified); L, is L3. For fc L, f(jw) is its Fourier transform (=1.i.m. o, o [fA f(t) e dr);
if f(r) is CN-valued and T ¢ R, fr will denote the function which agrees with f(¢) for < T and which
vanishes for t=T; L}, (‘Extended L") is the set of all f with fre LY for all TeR; w(E) will denote the
Lebesgue measure of the (measurable) E € R, RHP will denote the open right half plane {z € C|Re z > 0}.

We will say that a function F(jw) defined only up to sets of measure zero has the analytic extension
F(s) in the RHP if F(s) is analytic in the RHP and lim, 0. F(o + jw) exists and equals F(jw) for almost
all w e R. We will routinely drop the qualifier ‘almost’ from ‘almost all’, trusting that the reader familiar
with measure theory will be able to supply it where necessary.

An N-admissible signal or signal pair will mean a real valued signal or signal pair in LY, which may
appear across N. T

2. DEFINITION OF PASSIVITY AND STATEMENT OF THE CRITERION
Following Youla ez al.® we say that ¥ is passive if for all A-admissible port current-voltage pairs (i, v)

T
foral TeR, J v*(0)i(t)dt=0 (1)

This integral exists since v, i € L}, by assumption.
The use of the scattering variablest (a, b), where a(t) = %v(t)+%i(t) and b(t) =3v(r)—3i(t) is central to
our argument, so we reformulate (1) as

T
forall TeR, J (a*a—b*b)dt=0 (2)

We say that A is solvable if the set of #-admissible a’s include all of LY(R) (see Reference 2, assumption
p-4).

Theorem 1 (Youla et al.)

A solvable N-port A is LTI and passive if and only if
(i),‘ A has a scattering matrix, i.e. the set of admissible (a, b) witha € LY (R) is precisely {(a, b)|a € L}(R)
and b (jw) = S(jw)d(jow)}.

(ii) $(jw) has the analytic extension S(s) in the RHP with I —S$*(s)S(s) positive semidefinite there.
We note that S(jw) is defined only up to sets of measure zero, so that statements involving S(jw) are
to be interpreted as true almost everywhere, whereas statements involving the analytic function S(s) are
true everywhere. Our assumption that 7, v and therefore a, b are real implies that S(—jw) = S( Jw); finally
let us note that (ii) implies that I —S*(jw)S(jw) is positive semidefinite for almost all w € R since it is
almost everywhere lim, .o+ (I — $*(o +jw)S(o + jo)).

# With only minor modification the entire theory may be formulated for complex signals, but we see no advantage.
¥ Here we assume port normalization impedances of 1 Q; in general

wol R 5oL R..
=V, I, = —l.
kKTaR, KT TR, T2
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3. PROOF OF NECESSITY OF (i) AND (ii)
Throughout this section let & be a passive solvable LTI N-port.

Lemma 1 ,
Suppose (a, b) is an admissible signal pair such that a(t)=0fort<T. Then b(t)=0for t<T.

Proof. Since N is pTassive I_Tco (@*(Na()—b*(t)b(1)) dt =0, so under the hypothesis of lemma 1,
— T 6*(0)b(1) dr = = [T |b(1)> dt =0. Thus b(£)= 0 for t< T, 0
This simple lemma has extremely profound consequences!

Corollary 1
To each a € Ly, there is a unique b such that (a, b) is admissible. Furthermore b € L} and [|b||<|la|.

Proof. Suppose a € LY. By solvability, we know there is at least one # with (a, b) admissible. Suppose
that (a, b) and (q, b') are both admissible. Since A is linear, (0, 5—-5") is admissible. By lemma 1,
b(t)=b'(1)=0for t<T and T arbitrary, so b = b’ By passivity, we have for all Te R

T
Jal?= [
which proves b € L} and ||b| </ a]. a

Thus we may define a linear operator & from LY(R ) into LY(R) by ¥(a)=b. The last conclusion of
Corollary 1 is that ¥ is a bounded operator.

T
a*a dtZJ. b*b dt

o)

Corollary 2

& is a causal operator, that is, if a(7) = a'(t) for t<T, then La(t)=Fa'(t) for t< T,

Proof. 1f a(t)=a'(t) for t < T, then (a —a', Fa — Fa ') satisfies the hypothesis of lemma 1. Thus Fa(t)=
Fa'(t) fort<T. a

Thus, &: LQ’(R)—)LQ’(R) is a linear time invariant bounded causal operator. It is worth mentioning
here that a causal operator from LY into LY hasa unique extension to a causal operator from L}, to LY.

By the Bochner-Paley-Wiener theorem (see Section 7) & has a representation as: %(jw) =S(jw)d(jw)
where the N XN matrix S(jw) has the bounded analytic extension S(s) in the RHP. We have shown

that A" has a scattering matrix S(jw); it remains to show that I — S$*(s)S(s) is positive semidefinite in the
RHP.

Lemma 2

For each ce CN, c*(I —S8*(jw)S(jw))c =0 for (almost all) w € R.
Note that this is weaker than I —8*(jw)S(jw) being positive semidefinite for (almost all) w e R.T

Proof. Suppose for some ceC Ne*(I = S*(jw)S( Jo))c <0 for w in some set A of positive measure. We
may take a subset A of A with 0 < u(A)<ooand Ae[0, ) or Ae (=90, 0] such that c*(I — $*(jw)S(jw))c <
—&e <0forweA. Then for —w e A, ¢*(I - S$*(jw)S(jw))é = c*(I —S$*(—jw)S(—jw))c < —e. Define d(jw) by

¢ weA
d(jw)=q¢ —-weA
0 elsewhere

Then ||d (jw)| = V[2u(A)]|c] <o, so de LY. Consequently d(jw) is the transform of an a(s)e LY, and
since d(—jw) =d(jw), a(t) e LY(R) and is thus admissible since all a(t) € LY(R) are admissible. Intuitively,

*Lemma 2 says YVce CV AN, ¢ R{(N,)=0 and wg N,>c*(I ~S5*(jw)S(jw))c =0} whereas this statement is IN <RVce
CN{u(N)=0and wENDc*(I - 8*(jw)S(jw))c =0}. We shall see later that the stronger statement is true.
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a(t) is a signal band limited to the set A where c*(I - S*(jw)S(jw))c <0. If we apply this signal to .V,
the Parseval relation yields

fo o]

J (a*a—b*b)dt=—1—J. Ei(jw)*(]—S*(jw)S(jw))d(jw)dw
o 27 )

27T A 2 A __77'

Since [*, (a*a —b*b) dt = limp.u i (a*a- b*b) dt, thereis a T, with [ (a*a — b*b) dt <0, contradict-
ing A”’s passivity. This establishes lemma 2. 0
Theorem 2

I —S*(s)S(s) is positive semidefinite in the RHP.

Proof. From our remarks after Corollary 2 we know that S(s) is bounded in the RHP. Hence Poisson’s
representation is valid (Reference 10; see Section 7 for proof): For s¢ = oo+ Jwo, >0

1(® o) .
$60=2 [ magrrey St do

Let c € CN. Then

_ l © To . <l * go .
IS(SO)C| B ,'n' J.—oo (w —wo)2+03 S(je) dw’ T J.oo (w —w0)2+a'3 ]S(]w)cl do

By lemma 2, ¢*(I - $*(jw)S(jw))c =|c|* - IS(jw)c|*=0 for (almost all) w € R, so |c|<|S(jw)c] for (almost
all) w e R and

1 ® T9
<lel=| —Z%  _do=
[S(so)e] |C|‘n’ J:oo (0 = wo)*+ a2 @ =le]

Thus [c|* ~|S(so)c|? = c*(I - $*(50)S (s0))c =0 establishing Theorem 2 and the necessity of (i) and (ii) in
Theorem 1. Incidentally, this last argument is equivalent to the following: ||S(s)|| is a bounded subharmonic
function in RHP which is bounded by 1 on the jw-axis. Consequently it is bounded by 1 in the whole
RHP, and this means I—S*(s)S (s) is positive semidefinite in the whole RHP.

4. SUFFICIENCY OF (i) AND (ii)

We assume now (i) and (ii), that is & has a scattering matrix S(jw) which has the analytic extension S(s)
in the RHP, and that I—5*(s)S(s) is positive semidefinite in the RHP. (i) includes the assumption that
N is solvable. (ii) implies that S(s) is bounded in the RHP, for if e, is the kth standard basis vector
0,...,1,...00* eX(I —-S*(s)S(s))er = 1 —Zj.il S (s)]* =0, so that |S;;(s)| <1 for s e RHP. By the Boch-
ner-Paley—Wiener theorem, S is the frequency domain representation of an LTI bounded causal operator
& LQ’(R)—»LS'(R) (see Section 7). It remains only to establish (2). If a € LY.(R) then

T

J' (a*a—-(.?a)*(S”a))dt=J (atar — (Fa)¥(Fa)r) dt

e o]

- j_ (a%ar — (Far)HSFar)r) dt

s o)

- j (atar - (Far)*(Sar)) dz+j (Par)*(Far) dt

T
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since & is causal. Note that the second integral exists since ar € L (R) and #: LY(R)~> LY(R)
1 2~
=5—] attje)I - $*(jw)S(j0))ar(jw) dw =0
since I — $*(jw)S(jw) is positive semidefinite for (almost all) w € R. This proves ¥ is passive and completes
the proof of Theorem 1. 0

5. DISCUSSION

In this section we examine the definition of passivity we have used, the restriction imposed by solvability,
and our proof of the passivity criterion. Let us first consider the energy integral (2). Several authors use
the alternative integral

J (@*a—b*p)dt=0 (3)

where a, b € LY(R) instead of the extended spaces LY.(R). Let us call an N-port ¥ weakly passive if it
satisfies (3) and is solvable. Wohlers®* points out that weak passivity has the advantage of being
independent of causality. We can prove a theorem analogous to Theorem 1 for weakly passive N-ports:

Theorem 3

A solvable N-port & is LTI and weakly passive if and only if

(i) N has a scattering matrix S(jw).

(ii) I ~S*(jw)S(jw) is positive semidefinite for (almost all) w € R.

The difference between this and Theorem 1 is that S (jw) need not have an analytic extension into the
RHP, and when it does I —S*(s)S (s) need not be positive semidefinite there (cf. example in Section 1).

Proof. Corollary 1 is easily checked for a LTI weakly passive N. Bochner’s theorem applies directly
and we conclude that & has a scattering matrix S(jw). If 1 —8*(jw)S(jw) were negative definite in some
set A of positive measure, we could construct a (measurable) d(jw) supported on AU-A with
d(jw)*d(jw)=1 and d(jo)*(I - S*(jw)S(jw))a(jw)<—e <0 for we AU—A where w(A)<o0 and A<
[0, ) or (-, 0], and d(—jw)=d(jw) as in Lemma 2. Then d(jw)e LY and corresponds to a(t)e LY(R)
for which

©

J (a*a—b*b) dt=% a*(jw)I —S*(jw)S(jw))d (jw) dw

—00

= ‘—E“(A) <0
T
which contradicts weak passivity (3).
The converse is easily proved, for suppose 4 has a scattering matrix S(jw) with I — .5*(jw)S(jw) positive
semidefinite for w € R. Then A is clearly LTI and S(jw) is bounded so if a € LY (R), b(jw)=S(jw)d(jw)e
LQ’, so b € LY. Furthermore

©

1 «©
J (a*a—-b*b)dt = . J a*(jw)I —S$*(jo)S(jw))d(jw) dw =0
—0 mJeo
So that ¥ is weakly passive. a
An example of a weakly passive but not passive (solvable) 1-port is A given by

* sin? 77
3 2 a(t_T)dT
7T

b(t)=I

—a0
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for which

1-lo], |o|=<1

S(f“’)={ 0, |w|>1

Note that S(jw) has no analytic extension into the RHP and that & is not a causal operator. Another
example is a —1H inductor, which has § (jw) = (1+jw)/(1 —jw). Itis weakly passive but not passive ; however
it is not solvable.

The relation between weak passivity and passivity is simple:

Theorem 4
A solvable N-port N'is passive if and only if it is weakly passive and its scattering operator & is causal.

Proof. If N is passive, then it is clearly weakly passive and we have seen in corollary 2 that its & is
causal. Conversely, if N is weakly passive then its & is a bounded operator and if it is causal then
(#(ar))r = (Fa)r.

Following the argument in Section 4, if a € L5, then ar € LY and

T o

j (a*a-—b*b)dt='|‘ (a’%ar—(yar)*(yar))dt+J (Far)*(Far) dt =0
—0 —00 T

Thus & is passive.

One final remark concerning weak passivity is in order. Any proof of the passivity criterion, Theorem
1, which has as hypothesis only weak passivity without the auxiliary assumption that & is causal is
incorrect. Mere analyticity of Z or § is not enough, though boundedness of S is (see Section 7,
Bochner-Paley-Wiener theorem; cf. References 7-9). Nor is the assumption that & is causal adequate
as the —1H inductor shows.t

We now turn to the technical assumption of solvability which, informally, says that there are ‘enough’,
admissible a’s. The obvious example of a passive but not solvable device is the 1-port nullator characterized
by v =i =0. We will show now that the nullator is the only reasonable passive 1-port which is not solvable.

Suppose the 1-port & is passive but not solvable. We assume that the set M of admissible a’s €L,(R)
is closed t M is a closed, translation invariant subspace of L,(R) which by a theorem of Bochner and
Wiener'! may be described by

M ={a e L,(R)|d(jw)=0 for (almost all) |w|e E}

for some E < [0, o). Thus the admissible a’s in L, are simply those whose spectrum vanishes on a certain
set E of frequencxes it can be shown that the corresponding b’s, also have spectra vanishing on E. It
follows that 4 =/ =0 on E, that is, ¥ acts as a frequency selective nullator.

We now make the observation that if a signal a(¢) which is not identically zero satisfies a(f)= 0 for
1 <0 (let us call such a signal positively supported) then d(jw) vanishes for w in a set of measure zero.
This is easily seen from the fact that d(jw) has an analytic extension in the RHP which would vanish
identically if d(jw) vanished on a set of positive measure, or from the well known version of the
Paley—Wiener theorem which asserts

dw <o

J |in| a(fw)H
o ltw

We conclude that the only positively supported a € M is 0. If there is no other a € M, then  is simply a
nullator. All other a € M have the curious property of having started in the infinite past (and in fact they

T It is interesting to note that Raisbeck’s original definition of passivity is what we call weak passivity together with the additional
assumption that Z is causal, so that his criterion is not quite right.

+ This is not a deep assumption since lemma 1 shows that & exists and is bounded, hence extends to the closure of its domain
uniquely and boundedly. An A with a non-closed domain is similar to the anlaytic function s — 1/s — 1 defined on C —{1}.
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must continue into the infinite future). This precludes any testing of the device in the laboratory (a
pathology shared by many non-causal devices). It is very natural, if not philosophically necessary, to
assume this cannot happen. Specifically, if we make the assumption:

There is a positively supported a € M, a # 0. o 4)

then we may conclude that A is solvable. :
A generalization to N-ports may be made even though the closed translation invariant subspaces of

LY are quite complicated.'*

There is a positively supported a # 0 such that
a(t)ex e M, k=1,2,...,N (5)

(5) implies that A is solvable, for our argument above indicates that each of the N sets {0} x. . . X Ly(R) X
... {0} = M, so by linearity LY(R) = M. We should mention here that when (5) is not satisfied, & can be
more complicated than a nullator—we might have for example M = {a € L3(R)|d1(jw) + d»(jw) =0 for
lw| € [0, 1]}. Our point is that the reasonable assumption (5) implies solvability.

The reader may have wondered why we have used the scattering representation as opposed to the
more common impedance representation, used for example in Raisbeck’s original informal argument.
There are two reasons: certain passive devices such as open circuits do not have an impedance representa-
tion, and more important, for a passive device the scattering operator ¥ is bounded whereas the impedance
operator & need not be. The recognition of the importance of the scattering representation for passive
networks is of course due to Youla et al.

The boundedness of & is crucial to our proof. First it allows us to use the Bochner-Paley-Wiener
theorem to show that a passive " has a scattering matrix S(s). Distribution theory must be used to prove
that & has an impedance matrix Z(s) (assuming it has an impedance representation). Even assuming
the existence of Z(s), as Raisbeck and Kuo do, it may be unbounded.

We can have Zig L}, even if i e L7, so that Parseval’s relation must be used with care. Furthermore
Poisson’srepresentation is not valid. For example, if ¥'is a (quite passive) 1 Hinductor, oojw/((w — wo)* + a-g)
is not even integrable (e.g. reference 1, line 16, reference 9, line 5). In the sufficiency proof we considered
ar, admissible since all of LY(R) was known to be admissible; this too was a consequence of the
boundedness of &. The same argument fails for &, since its domain may be a proper subset of LY(R).
With the inductor above, i+ need not be admissible since ir is generally not differentiable. This is only
a partial list, but we can say that arguments using & instead of & cannot be made formal without
considerable trouble.

6. PASSIVITY CRITERION WITH GENERAL CO-ORDINATES

In this section we consider the use of variables other than the scattering variables. Specifically, we consider

12 212
oeft ]

is a real invertible 2N x 2N matrix. We shall say a LTI N-port & has an Q-representation if for each
N-admissible £(¢) there is a unique A '-admissible n(¢), in other words there is an (LTI) operator A with
¢ =An. We assume neither that the domain of A includes LY (R) nor that A is bounded. For example

an inductor has an () = I, representation with An = Ln; we call this the impedance representation and A
the impedance operator. By suitable choice of €, this general framework includes the scattering, impedance,

where
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admittance, hybrid, and transmission representations. We will recast Theorem 1 into a form applicable
to N-ports having some general {)-representation; in the particular case of the impedance representation
this will be the original Raisbeck proposition.

Theorem 5

. Nis LTI passive and solvable and has an Q-representation if and only if f( jw) = A( jw)7 (jw) where
A(jw) has the meromorghic extensign A(s) in the RHP and D(s)+ D(s)* is positive semidefinitet in the
RHP, where D(s) =[aA(s)+b]*[cA(s) + d]. ‘

Proof. Suppose first ¥ is passive, solvable and has an Q-representation £=A. By Theorem 1 we know
N has a scattering matrixAS( jw) Awith analytic exten§ion $(s), I —S(s)*S(s) positive semidefinite in the
RHP. This and (6) imply ¢(jw) = A(jw)#(jw) where A( Jjw) has the meromorphic extension in the RHP

A(s)=[(a—B)S(s) +a +BI(y - 6)S(s) +y+8]"

Furthermore S(s)=[(a —c)A(s)+b—d]l(a+c)A(s)+b+d]™, so [(s+c)A(s)+b+d*[I - S(s)*S(s)]
(a+ c)ﬂ(s)-i— b+d]=D(s)+D(s)* is positive semidefinite in the RHP.

Conversely suppose & is solvable with D(s)+D(s)* positive semidefinite in the RHP. Solvability
implies ((a +d)/§(s)+b+d) is invertible except on a set E of isolated points (i.e. is invertible as a
meromorphic matrix). Moreover A has a scattering matrix S(jw) with meromorphic extension S(s) in the

RHP given by
S(s)=[(a—c)A(s)+b~dll(a+c)A(s)+b+d] ™.
For se RHP, s¢ E,
(@ +c)A(s)+ b +dT*[D(s)+ D(s)*I(a + )A(s) + b +d] " = I - S(s)*S(s)
is positive semidefinite; thus S(s) is bounded there and consequently analytic in the RHP. By Theorem
1 W is passive.
Corollary 3

Assuming that & is LTI, solvable, and has an impedance (Z), admittance (Y), or hybrid (H) representa-
' tion, then

(a) (Raisbeck proposition) ' is passive if and only if Z(s)+ Z(s)* is positive semidefinite in the RHP.

In this case we can show Z(s) is in fact analytic.

(b) W is passive if and only if Y(s)+ Y (s)* is positive semidefinite in the RHP. Y (s) is in fact analytic.

(c) W is passive if and only if

[ Hu+HY | H,+H% ]
Hy+HY | Hyp+HE,

is positive semidefinite in the RHP, where
o IO} _ _[0 0] A_[Hu le]
a=c [ﬂ— , b=d= 07 and A= 0o By )
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APPENDIX: PROOFS OF MATHEMATICAL THEOREMS

‘The following proofs can be found in the literature.'®® We have included them for the sake of
completeness only.

(A) Bochner—Paley—-Wiener theorem

& is an LTI bounded causal operator: L) -» LY if and only if /.9?( jo)=S8(jw)d(jw) where S(jw) has
a bounded analytic extension S(s) in the RHP.

This theorem characterizes a very important class of operators and is well known. It is usually proved
using distribution theory, where the boundedness conditions may be dropped. But the fact that the
scattering operator of a passive device is bounded allows us to use this (weaker) version which is easily
proved without distribution theory. It is a simple consequence of two classic theorems: the Bochner
theorem'" which states that I1: L>-> L, is LTI bounded if and only if fIa(jw) = T( Jw)d(jw) where T (jw)
is essentially bounded; and the Paley-Wiener theorem'? which states that a € L, and is positively supported
(a(t)=0,t<0) if and only if d(jw) has an analytic extension &(s) in the RHP such that for some k and
all =0,

oo

J' la(o +jo)f do <k (7

we will also use a corollary of the Paley-Wiener theorem due to Titchmarsh. For completeness we give
a sketch of the

Proof of Paley—Wiener theorem. Suppose first a € L, and is positively supported. It is then well known
that d(s)= j';o e “a(t)dr defines an analytic function for Re s >0 with lim, o+ a(o +jw) = d(jw) for
almost all w € R. Furthermore for o =0

[~ <] ao

e‘2°‘|a(t)|2dz=J Ie_”'a(t)lzdt=5LJ ld(o + jo)]? do
T J-o

—Q0

Jal?= [

-0

using the Parseval relation. Thus (7) holds for k = 2||a|>. Conversely suppose d(jw) has the analytic
extension d(s) in the RHP satisfying (7). In particular for o = 0 we have d( Jw) € L, and so is the Fourier
transform of an a(f)e L,. Since d(s) has a_domain of analyticity including the RHP, we conclude
e “a(t)e L, for all =0 and 4(c + jo)=e "'a(t)(jw) (we have used the fact that the extension 4 (s) is
unique). If a(r) were not positively supported, then for some —6 <0 [~2 |a(+)|* d¢ = ¢ >0. For o =0,

o0

3| _lao il do =l af = e laf a

—00

©
?J’ e—Zatla(t)lz dI?ezaas
-0

which contradicts (7) for o >1/28 In k/27e. g

Proof of Bochner-Paley-Wiener theorem. We wﬂl\ prove the theorem for N = 1; the generalization to
N >1is immediate. Suppose first & is defined by fa(jw)=S(jw)d(jw), S(jw) having a bounded analytic
extension S(s) in the RHP. It is obvious that # is linear and time invariant. S(jw) is essentially bounded
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since it is almost everywhere lim, .o+ S(o + jo). Thus forae L,, 4 € L, and

1 (%~ 1 (%, . .
5o | 1o do == [ laGu)fisto) d
277 —00 27 —~Q0
1 a0
<M [ 1aGo)f dw = Mol

27 )
where |S(s)|<M for se RHP. So %ac L, and |Fa|<M lall so that & is bounded (this was the easy half
of the Bochner theorem). It remains to show that & is causal. Suppose a(t) is positively supported. By
the Paley-Wiener theorem d4(jw) has the analytic extension d(s) satisfying (7). Since Za( jw)=
S(jw)d(jw), Fa(jw) has the analytic extension S(s)d(s) in the RHP. For 0 =0

©

J' IS(a+jw)&(a+jw)|2dwstj 16(0+jo)f dw < M2 alf?

By the Paley—-Wiener th/e\orem we conclude S(jw)d(jw) is the Fourier transform of a positively supported
element of L,, that is, ¥a(t)=0, t <0. Thus & is causal.

Suppose now & is LTI, bounded and causal: L,+ L,. By the (harder half of the) Bochner theorem,
ﬁ(jw)=$(jw)(z‘(jw) where |S(jw)|<M for (almost all) w € R. We must show S(jw) has a bounded
analytic extension into the RHP. Let 5o =0+ Jwo with o> 0. Consider

o S(jw
a(t)={e0 (jw)

ja) +§0-

= 1
20 Gy =—t soFalj)=

t<0 Jw + 8o
Since a(t) /1§ positively supported and & is causal, Fa is positively supported and so by the Paley-Wiener

theorem ¥a(jw) has the analytic extension Fa (s) in the RHP. Thus S(jw) has the analytic extension
Fa(s)(s + 5o) in the RHP, which must be independent of s, since it is unique. By the Titchmarsh theorem>

Fs )I—ij'w @(jw)dw_ij‘w S(jw) dw _ij‘” S(jw) dw
Ay -o So—jw 27 ) (S0—jw)(jw +50) 2 _000'(2)+(w—w0)2
Hence
PN M (< dw M
|Fa(so)| < . . _0'3_+ (w__— w‘o_)z = 7'0
So [S(so)| = IS//”a\ (So)(so+5o| = 20’01@ (so)| <M, that is, S(s) is bounded in the RHP. a

(B) Poisson’s formula for the half plane*°
Suppose S(jw) has a bounded analytic extension S(s) in the RHP. Let 5o = oo+ Jwo, 9> 0. Then

1[° 00S(jw)dw
Seoy=— [ D)o,

(s0) 7w (@ —wo)’ + 5
Again we prove this only for N = 1.

Proof. Consider the contours I', z oriented as shown in Figure 1. (1/(z —s0)—1/(z +350))S(2) is
meromorphic in the RHP, its only pole there at s, with residue S(so). By Cauchy’s theorem for ¢ <o

and R > s,
1 1 1 1 o0S(z)dz
27 er (z —So 2 +§0> (2)dz 7 Jr, x (2 —50)(z + 5o) §(s0)

Letting ¢ » 0 we conclude by Lebesque’s dominated convergence theorem

1 (% ooS(jw)de 1 ooS(z)dz
i [ vy e e i S(so

w=wo)+as m ) (z—s0)(z+5)
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Figure 1. The contour I',  used for proving Poisson’s formula

where yg is the semicircle of radius R centred at the origin and oriented positively. But

- ooMR
T (R=[So))?

iJ’ o0S(z)dz
R (Z *SO)(Z +§0)

wi

where |S(z)| <M in the RHP. Finally since oS j©)/ (@ —wo)* +3) is integrable

1 (® ooS(jw)dw 1J'°° oS (jw) dw
1 — e s T2 . ———— D
‘%Tl’ﬂj-x (@ =00’ +08 7)o (@ —wo)’ +02 S(so)

Note in particular that Poisson’s formula is not valid if |S(z)| grows as fast as |z| in the RHP.

N ==
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