
Code Generation for Receding Horizon Control

Jacob Mattingley Yang Wang Stephen Boyd∗

August 27, 2010

Abstract

Receding horizon control (RHC), also known as model predictive control (MPC), is
a general purpose control scheme that involves repeatedly solving a constrained opti-
mization problem, using predictions of future costs, disturbances, and constraints over
a moving time horizon to choose the control action. RHC handles constraints, such
as limits on control variables, in a direct and natural way, and generates sophisticated
feed-forward actions. The main disadvantage of RHC is that an optimization prob-
lem has to be solved at each step, which leads many control engineers to think that
it can only be used for systems with slow sampling (say, less than one Hz). Several
techniques have recently been developed to get around this problem. In one approach,
called explicit MPC, the optimization problem is solved analytically and explicitly, so
evaluating the control policy requires only a lookup table search. Another approach,
which is our focus here, is to exploit the structure in the optimization problem to solve
it efficiently. This approach has previously been applied in several specific cases, using
custom, hand written code. However, this requires significant development time, and
specialist knowledge of optimization and numerical algorithms. Recent developments
in convex optimization code generation have made the task much easier and quicker.
With code generation, the RHC policy is specified in a high-level language, then au-
tomatically transformed into source code for a custom solver. The custom solver is
typically orders of magnitude faster than a generic solver, solving in milliseconds or
microseconds on standard processors, making it possible to use RHC policies at kilo-
hertz rates. In this paper we demonstrate code generation with four simple control
examples. They show a range of problems that may be handled by RHC. In every
case, we show a speedup of several hundred times from generic parser-solvers.

∗The authors are with the Information Systems Laboratory, Electrical Engineering Department, Stanford
University, CA 94305-9510 USA. Email: {jacobm,yw224,boyd}@stanford.edu.
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1 Introduction

Receding horizon control (RHC), also known as model predictive control (MPC) [KH05,
Whi82, GSD05, Mac02] is a form of feedback control system that first became popular in the
1980s. With RHC, we solve an optimization problem at each time step to determine a plan
of action over a fixed time horizon, and then apply the first input from this plan. At the next
time step we repeat the planning process, solving a new optimization problem, with the time
horizon shifted one step forward. The optimization problem takes into account estimates of
future quantities, based on available measurements and data at each time step. Thus the
control policy involves feedback, where real-time measurements are used to determine the
control input.

RHC is a nonlinear control policy that handles input constraints, output constraints, and
a variety of control objectives. Using RHC, systems can be controlled near their physical
limits, obtaining performance superior to linear control. RHC has been successfully applied
in a wide range of practical settings, including industrial and chemical process control [QB03],
supply chain management [CTHK03], stochastic control in economics and finance [Her05],
and revenue management [TR04].

One drawback of RHC is that an optimization problem must be solved at each time step.
Using conventional numerical optimization techniques, the time taken to solve this problem
is often much longer compared with, for example, the time taken to compute the control
action for a linear controller. This means that applications of RHC have been mostly limited
to systems with sample times measured in seconds, minutes or hours.

Many methods can be used to speed up the solution of the optimization problems that
arise in RHC. When the numbers of states, inputs, and constraints are small, one approach
is explicit MPC [BF04, BMDP02], where a closed-form expression for the solution of the
optimization problem, as a function of the current state, is computed offline and stored.
The online algorithm then reduces to a lookup table search, followed by a linear control
law evaluation, which can be computed extremely quickly. Another method, applicable
to a problem of any size, is to custom code online optimization solvers that exploit the
problem structure in RHC applications [WB08, DFS+02, ÅkerbladH04, RWR04]. These
custom solvers can yield computation times that are several orders of magnitude faster than
generic solvers, but developing them requires time-consuming hand coding, and significant
expertise in optimization algorithms and numerical computation.

In this paper, we describe advances that make it much easier to develop custom RHC
solvers. By combining a high-level specification language for optimization and recently-
developed code generation tools, a user of RHC can quickly specify and generate fast, re-
liable custom code. Since a user does not need any expertise in optimization, many more
practitioners can use RHC, even in settings involving kilohertz sample rates.

We do not claim that RHC always outperforms traditional control methods. In many
cases, a skilled designer can achieve similar performance by carefully tuning a conventional
linear controller such as a proportional-integral-derivative (PID) controller, suitably modified
to handle constraints (for example by saturating control inputs that are outside their limits).

The main advantage of RHC is the simple and transparent design process, which requires
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much less intuition and control expertise. In RHC, the designer specifies the objective and
constraints as part of an optimization problem, whereas in a conventional design process, the
designer adjusts controller gains and coefficients to indirectly handle constraints, often by
trial and error. Thus RHC, combined with automatic code generation, offers an attractive
framework for rapid design of sophisticated controllers for a wide range of problems, including
those that require fast sample rates.

In the remainder of the paper, we give a high-level overview of RHC, briefly explain
code generation for RHC using the software package CVXGEN [MB10b], and illustrate the
ideas with four examples. The examples are simple, and chosen to show the variety of
problems that can be addressed. In our discussions we avoid unnecessary detail, so we refer
the interested reader to [BV04] for a more detailed account of convex optimization, [GBY06]
for more on disciplined convex programming, and [MB09, MB10a] for a discussion of code
generation for convex optimization.

We restrict attention to systems with linear dynamics, convex objective functions and
constraints, for several reasons. First, many real systems can be reasonably modeled in this
restricted form. Secondly, standard linearization techniques can be used to extend these
methods to many nonlinear systems. (For example, almost all commercial MPC systems
for process control rely on linearization around an operating point.) Finally, many of the
techniques we discuss could be applied to general nonlinear systems. For nonlinear control,
a sequence of linear RHC problems is solved at each time step. For some work in this area,
see [RS07], which describes the software package NEWCON; see [OK02] for an example of
automatic code generation applied to nonlinear RHC, or [Oht04] for an application to a
two-link robot arm. Also see the ACADO toolbox [HF08], which is a software package for
solving nonlinear RHC problems.

2 Formulating RHC problems

2.1 System dynamics and control

System dynamics. We consider a discrete-time linear dynamical system of the form

xt+1 = Atxt + Btut + ct,

where xt ∈ Rn is the system state, ut ∈ Rm is the control input, and ct ∈ Rn is an
exogenous input. The matrices At ∈ Rn×n and Bt ∈ Rn×m are the dynamics and input
matrices, respectively. The subscripts on At, Bt, and ct indicate that they may change with
time, but in many applications these matrices are constant and known.

Constraints and objective. The state and input must satisfy some constraints, expressed
abstractly as

(xt, ut) ∈ Ct,

where Ct ⊆ Rn × Rm is the constraint set. The instantaneous cost depends on both the
current state and control action, and is denoted ℓt(xt, ut). We judge the quality of control
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by the average cost,

J = lim
T→∞

1

T

T−1
∑

t=0

ℓt(xt, ut),

where we assume the limit exists. If ℓt(xt, ut) is a random variable, we replace ℓt(xt, ut) with
its expected value E ℓt(xt, ut). As with the dynamics data, we subscript the constraint set
and objective function with the time t, to handle the case when they vary with time.

Information available for control. The control input ut is determined using the infor-
mation available to the controller at time t, including estimates of quantities that are not
known, based on information that is known. We denote these estimates as

Âτ |t, B̂τ |t, ĉτ |t, Ĉτ |t, ℓ̂τ |t, x̂t|t,

where the notation ẑτ |t denotes the estimate of zτ , based on information available at time t,
where τ ≥ t. ‘Information available at time t’ includes conventional data in a control system,
such as those available from sensor measurements, or known quantities and functions. The
available information can also include other relevant information that is not typically used
in a traditional control system, such as historical usage patterns, weather, price trends, and
expert forecasts.

These estimates can be obtained in many ways. In the simplest case, we know the
quantity being estimated, in which case we replace the estimates with the known value. For
example, if the system dynamics matrices At and Bt have known and constant values A and
B, we take Âτ |t = A and B̂τ |t = B. If the controller has access to the current state xt, we
take x̂t|t = xt.

A traditional method for obtaining the estimates is from a statistical model of the un-
known data, in which case the estimates can be conditional expectations or other statistical
estimates, based on the data available at time t. For example, the additive terms ct are often
modeled as independent zero mean random variables, with natural estimate ĉτ |t = 0.

However, the estimates need not be derived from statistical models; for example, future
prices could be obtained from a futures market, or from analysts who predict trends. Another
example arises when the system to be controller is nonlinear. In this case Âτ |t, B̂τ |t, and ĉτ |t
can be a linearization of the nonlinear dynamics, along a trajectory.

Controller design problem. The controller design problem is to find a control policy that
chooses the input ut as a function of the quantities known at time t, so that the constraints
are satisfied, and the average cost J is made small.

We have not fully specified the uncertainty model, so this description of the control
problem is informal, and we cannot really define an optimal control policy. But when we
give a full mathematical description of the uncertainty, for example as a statistical model, we
can define the optimal control policy, which is the policy that minimizes J , among all policies
that map the information available into a control action while respecting the constraints.
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2.2 Receding horizon control

The basic RHC policy works as follows. At time t, we consider a time interval extending T
steps into the future: t, t+ 1, . . . , t+ T . We then carry out the following steps:

1. Form a predictive model. Replace all unknown quantities over the time interval with
their current estimates, using data available at time t.

2. Optimize. Solve the problem of minimizing the objective, subject to the dynamics and
constraints. Here, the objective, dynamics and constraints are estimates, based on
information available at time t.

3. Execute. Choose ut to be the value obtained in the optimization problem of step 2.

Steps 1 and 2. The RHC optimization problem in step 2 takes the form

minimize 1
T+1

∑t+T
τ=t ℓ̂τ |t(x̂τ , ûτ )

subject to x̂τ+1 = Âτ |tx̂τ + B̂τ |tûτ + ĉτ |t,

(x̂τ , ûτ ) ∈ Ĉτ |t, τ = t, . . . , t+ T
x̂t = x̂t|t,

(1)

with variables x̂t, . . . , x̂t+T+1 and ût, . . . , ût+T . The data in this RHC optimization problem
are the estimates

Âτ |t, B̂τ |t, ĉτ |t, Ĉτ |t, ℓ̂τ |t,

for τ = t, . . . , t + T , and the current state estimate, x̂t|t. (In many applications, we can use
known, exact values for many of the parameters.) We can interpret û⋆

t , . . . , û
⋆
t+T , the optimal

values from the RHC optimization problem (1), as a plan of action for the next T steps.

Step 3. We then choose ut = û⋆
t to be the RHC action. At the next time step, the process

is repeated, with (possibly) updated estimates of the current state and future quantities.

Comments. We make a few comments about the RHC policy. First, it is common to
add a final state constraint or a final state cost, to the RHC problem. In the former case,
we add an equality constraint of the form xT+1 = xfinal, or a final constraint set condition
xT+1 ∈ Cfinal. In the latter case, we add V (xT+1) to the objective, where V is a cost
function for the final state. This can allow simpler, shorter-horizon controllers to approximate
the behavior of controllers with longer horizons. Indeed, one can often obtain very good
control performance with horizon T = 0, with a carefully chosen terminal constraint function
[WB09]. In this case the control policy is also known by other names, such as control-
Lyapunov policy or approximate dynamic programming (ADP) policy, and can be evaluated
on timescales measured in tens of microseconds, allowing control at rates exceeding tens of
kilohertz [WB10].

We assume that Ĉt and ℓ̂t are convex, which means that the RHC problem (1) is a convex
optimization problem. We can solve these optimization problems efficiently using standard
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convex optimization tools [BV04]. Problems with nonconvex objective and constraints can
be handled using sequential convex optimization, where a sequence of convex problems is
solved to find good local solutions of the nonconvex problem.

The RHC policy is generally not an optimal policy, even when we have a formal model
of the uncertainty. Instead, RHC is merely a sophisticated heuristic, which works very well
in many applications.

2.3 Comparison with traditional feedback controller

The RHC controller is very similar to a classical feedback controller, which processes sensor
signals and commands to produce the control input at each step. The RHC controller
processes sensor signals, commands, and also possibly other nontraditional signals, such as
future prices or weather predictions, which are used to form estimates. One major difference
is that the RHC policy requires solving an optimization problem in each time step, and is
therefore considerably more complex than a traditional feedback control law.

Several other aspects of the RHC controller are reminiscent of standard linear feedback
controllers. The RHC controller can be conceptually divided into two parts: An estimator,
that makes predictions about the future based on the information available, and an optimizer,
which calculates an optimal plan of action assuming the estimates are correct. This archi-
tecture is just like the classical linear-quadratic-Gaussian (LQG) estimated-state feedback
controller. In the case of LQG the celebrated separation principle tells us the architecture
is actually optimal [AM71]. In the general RHC application, however, the separation prin-
ciple does not hold; instead, the RHC controller is simply a very sophisticated suboptimal
controller.

The RHC controller has a natural interpretation in cases when the RHC controller prob-
lem is a quadratic program (QP). In this case, the RHC control policy can be expressed
as a piecewise affine (linear plus constant) function of the state. (Indeed, this is the basic
principle behind explicit MPC [BMDP02, BF04].) Thus the RHC controller can be thought
of as a collection of traditional linear controllers; the RHC controller switches between them
depending on the current state.

3 Designing and implementing RHC controllers

3.1 Designing an RHC controller

To specify an RHC policy, we must describe three things: the method for estimating unknown
quantities from current data, including, in particular, the system model; the horizon T ; and
the terminal costs and constraints, if any. For a given choice of these, the closed-loop system
is simulated to judge the performance, and if needed, some of the design choices can be
modified. Simulation of an RHC system requires solving an optimization problem in each
time step. Even a basic simulation will require the solution of many optimization problems.
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Many convenient software tools [L0̈4, GB08, MB08] are available for rapidly formulating
and solving convex problems. These parser-solvers take a high-level specification, and per-
form the necessary transformations for solution by a standard convex optimization solver, for
example, [TTT99, TTT03, Stu99]. This allows the designer to easily change the objective or
constraints in the RHC optimization problem and immediately see the effects in simulation.
Parser-solvers are very convenient, but can lead to slow solve times, since each problem in-
stance is parsed and transformed separately. During RHC controller development, however,
solver speed is generally not a critical issue; if necessary, simulations can run slower than
the required sample rate.

3.2 Implementing an RHC controller

The RHC solver implementation must, of course, run faster than the sample rate. If the
solver speed is much faster than the sample rate, we can use a less powerful processor, or run
the optimization on a processor performing other tasks. For applications with a slow sample
time (measured, for example, in minutes), a parser-solver may be fast enough. However,
for many applications a much faster solver is required. Even when a parser-solver is fast
enough for real-time implementation, we may prefer a simpler solver, involving few external
libraries, simpler memory management (for example, no dynamic memory allocation), and
a known maximum execution time.

The traditional route to develop such a solver is custom code development, either using
a toolbox (see [WB08], or the references in [Bem06]), or from scratch. This process is very
difficult for many users, especially those without a numerical optimization background. In
addition if the problem statement changes, for example by adding a new objective term, all
code modifications must be made laboriously, by hand. Even small changes in the formulation
can lead to dramatic changes in the code, which must be re-written and re-tested.

Another approach is automatic generation of custom solver code, directly from a high
level description of the problem family. The user describes the problem to be solved in a
convenient high level format; a solver code generator then generates source code for a fast
custom solver of problem instances from the given family. This source code is then compiled,
yielding a custom solver.

Automatic code generation typically yields a solver that is much faster and simpler than
a parser-solver, for several reasons. First, many algorithm choices such as the transformation
to cannonical form or elimination ordering in the linear equation solver can be made at code
generation time. Second, the generated code can be split into an initialization part, where
memory is allocated, and a real-time part, which involves no further memory allocation. The
generated code has few branches, so the compiler can perform extensive code optimization.
Finally, a hard limit on the number of iterations can be imposed, which translates into a
known maximum execution time.

In the examples presented in this paper we use the automatic code generation software
CVXGEN [MB10a], which incorporates all the above features of automatic code generation.
CVXGEN handles problems that can be transformed to convex quadratic programs (QPs).
The software generates custom code for transforming the original problem data to the QP
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format, solving the QP using a primal-dual interior-point method, and transforming the
solution of the QP back to the solution of the original problem.

3.3 Outline

In the remainder of the paper, we describe four typical RHC application examples. For each
one we describe the model, our method for predicting future quantities, the objective and
constraints, and the horizon choice. We give CVXGEN code for each one. The speed of the
solvers generated by CVXGEN are collected together and reported in Table 2.
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4 Examples

4.1 Pre-ordering

Problem statement. We consider the problem of meeting a fluctuating demand for a
perishable commodity, by pre-ordering it with different lead times and also purchasing it on
the spot market, all at (possibly) different prices. When we place an order, we will specify
delivery for between 1 and n periods in the future. Faster delivery typically incurs a higher
unit cost. Let ut ∈ Rn

+ represent new orders, where (ut)i is the amount, ordered in period
t, to be delivered in period t + i. Our state will be the order book xt ∈ Rn

+, where (xt)i is
the quantity scheduled to arrive in period t+ i− 1; in particular, (xt)1 is the stock at hand.
The system dynamics are xt+1 = Axt + But, where A is a matrix with ones on the upper
diagonal and zeros everywhere else, and B = I. The constraint has the form ut ≥ 0, which
is convex. (In our general model, we take Ct = Rn ×Rn

+.) Thus, in this example, there is
no uncertainty in the dynamics or constraints.

Our stage cost has two terms: The cost of placing orders for future delivery (which we
recognize immediately), and the cost of making up any unmet demand by purchasing on the
spot market. The first term has the form pTt ut, where (pt)i ≥ 0 is the price of ordering one
unit of the commodity for delivery in period t+ i. The unmet demand is (dt− (xt)1)+, where
dt ≥ 0 is the demand in period t, and (·)+ denotes the positive part. The cost of meeting the
excess demand on the spot market is pspott (dt − (xt)1)+, where pspott ≥ 0 is the spot market
price at time t. Thus the overall stage cost is

ℓt(xt, ut) = pTt ut + pspott (dt − (xt)1)+,

which is a convex function of xt and ut. Typically the prices satisfy p
spot
t > (pt)1 > · · · > (pt)n,

i.e., there is a discount for longer lead time.
We consider the simple case in which the pre-order and spot market prices are known

and do not vary with time (i.e., pt = p ∈ Rn
+, p

spot
t = pspot ≥ 0), and demand is modeled as

a stochastic process. We assume that demand is a stationary log-normal process, i.e., log dt
is a stationary Gaussian process with

E log dt = µ, E((log dt − µ)(log dt+τ − µ)) = rτ ,

so the mean demand is E dt = exp(µ+ r0/2).
In period t, the controller has access to the current order book xt, and the current and

last N values of demand, dt, dt−1, . . . , dt−N , in addition to the various constants: the prices
p and pspot, the log demand mean µ, and the log demand autocovariances rτ . The orders
made in period t are based on this information.

Receding horizon policy. Our RHC policy requires estimates of future stage cost, which
depends on the (unknown) future demand. We will take

d̂τ |t = expE(log dτ |dt, . . . , dt−N),
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i.e., the exponential of the conditional mean of log demand, given the previous N demand
values. (We know the current demand, so we can take d̂t|t = dt.) Since we have assumed the
demand is a stationary log-normal process, the conditional expectation of log dτ is an affine
(linear plus constant) function of log dt, . . . , log dt−N :

d̂τ |t = exp
(

aTτ−t(log dt, . . . , log dt−N) + b
)

, . . . ,

for τ = t + 1, . . . , t + T , where aj ∈ RN+1 and b ∈ R can be found from the data µ and
r0, . . . , rN+T+1.

For this example we will also add a terminal constraint, 1T x̂t+T+1 = nE dt, where E dt =
exp(µ + r0/2). This ensures we do not myopically reduce cost by exhausting inventory at
the end of the horizon. The RHC optimization problem (1) becomes

minimize 1
T+1

∑t+T
τ=t p

T ûτ + pspot(d̂τ |t − (x̂τ )1)+
subject to x̂τ+1 = Ax̂τ + ûτ , τ = t, . . . , t+ T

ûτ ≥ 0, τ = t, . . . , t+ T
1T x̂t+T+1 = nE dt, x̂t = xt,

with variables x̂t, . . . , x̂t+T+1 and ût, . . . , ût+T . This is a convex optimization problem, and
can be reduced to a linear program (LP).

Constant order policy. We will compare the RHC policy with a simple policy: At each
time t, we let ut = (0, . . . , 0, ū), i.e., we order a constant amount with the maximum delivery
time. We will use ū = E dt = exp(µ + r0/2), i.e., we order with maximum lead-time
(presumably, at the lowest price) an amount equal to the average demand.

4.1.1 Related work

Much work has been done on supply chain planning. For an overview of the field, though
without the optimization component, see [Mil02]. For the application of RHC to the supply
chain, see [SWR06], or [CTHK03] which covers multi-factory supply chains. In [BP00], the
authors use extensive simulation of MPC to test the sensitivity of various policies, while
[MTA06] explores various levels of decentralization. Finally, for supply chain optimization
with mixed-integer constraints see [PLYG03], and for planning under uncertainty see [GM03].

4.1.2 Numerical example

Our example has n = 5 order lead times, with prices

pspot = 1, p = (γ, γ2, γ3, γ4, γ5),

with γ = 0.7. (Thus, we get a constant 30% discount for each period of lead time.) The
demand process data are µ = 0, and rτ = 0.1(0.95τ ). Our RHC controller will use horizon
T = 30, and we estimate future demand using the last N = 100 demands.

10



dimensions

T = 30; n = 5

end

parameters

A (n,n); p (n,1)

d[t], t=0..T

pspot positive; ubar

x[0] (n)

end

variables

x[t] (n), t=1..T+1

u[t] (n), t=0..T

end

minimize

(1/(T+1))*sum[t=0..T](p'*u[t]

+ pspot*pos(d[t] - x[t][1]))

subject to

x[t+1] == A*x[t] + u[t], t=0..T

u[t] >= 0, t=0..T

sum(x[T+1]) == n*ubar

end

Figure 1: CVXGEN code segment for the pre-order example.

Results. We simulate both the RHC and constant ordering policies for 1000 steps (with the
same demand realization). The constant order policy incurs an average cost J = 0.37, while,
as expected, the RHC policy performs considerably better, with an average cost J = 0.28.
Some example trajectories are shown in Figure 2. We compare the costs incurred by the
RHC policy (blue) and constant policy (red), over 500 time steps. The plots show demand,
pre-order cost and spot market costs, and overall stage cost.

In Figure 3 we show the log-demand trajectories for a selected time frame. The vertical
lines show exp(log d̂t|220 ± σt), where σt = (E(log dt − log d̂t|220))

1/2. We see that while the
predicted trajectory captures the general trend, the prediction error is large. Nevertheless,
RHC performs very well, even with inaccurate predictions.

The CVXGEN code takes up to 250 µs to solve at each time step, which is 4000×
faster than with plain CVX. Although this speed is much faster than needed for many
applications, the extra speed is useful for testing different scenarios and ordering strategies,
which require extensive Monte-Carlo simulation. Computational performance details are
collected in Table 2.
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Figure 2: Comparison of RHC policy (blue) and constant order policy (red) for the pre-order
example. From top to bottom: demand (dt), pre-order cost (pTut), spot market cost (pspot(dt −
(xt)1)+), and stage cost (ℓ(xt, ut)).
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Figure 3: Black: log dt; Blue: log d̂t|220 for the pre-order example. Vertical lines show prediction
error.
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4.2 Active suspension control

Problem statement. We consider an active vehicle suspension system, where the control
system applies force to a suspension system in real-time, using a preview of the terrain height
profile obtained from sensors or maps. For simplicity, we consider a scalar problem, with a
single, scalar vehicle height, and one actuator. (A more accurate model would incorporate
different heights and actuator forces for each wheel, and more complicated dynamic coupling
between them.)

Let ht ∈ R denote the terrain height, yt ∈ R the vehicle height, and et = yt − ht the
suspension extension, at discrete time period t. The extension is offset, with the suspension
at rest when et = 0. The suspension has minimum extension Emin < 0 and maximum
extension Emax > 0, so we always have

Emin ≤ et ≤ Emax,

The vehicle dynamics are
xt+1 = Axt + but + vt,

where A ∈ Rn×n and b ∈ Rn are known dynamic model coefficients, xt ∈ Rn is the vehicle
dynamic state, vt ∈ Rn is the exogeneous force applied to the vehicle by the changing terrain,
and ut ∈ R is the active suspension actuator force, which must satisfy

Fmin ≤ ut ≤ Fmax,

where Fmin < 0 and Fmax > 0 are given minimum and maximum active suspension forces.
The vehicle’s height yt and vertical acceleration at are given by

yt = cTxt, at = dTxt + gTut + wt,

where c, d and g ∈ Rn are known model coefficients, and wt ∈ R is a linear function of the
terrain height and gradient at time t.

Our goal is to minimize a weighted sum of the squared acceleration, the squared active
suspension force, and a penalty term that returns the suspension to equilibrium. This can
be thought of as a measure of the ‘ride roughness’, penalized to avoid excessive suspension
effort. Our cost function is

ℓ(xt, ut) = a2t + ρu2
t + µe2t ,

where the parameters ρ > 0 and µ > 0 control the effort and extension penalties.

Receding horizon policy. At time t, the controller has access to an estimate of the
current vehicle state x̂t|t, and a preview of upcoming terrain, i.e., ĥτ |t for τ = t, . . . , t + L,
where L is the look-ahead time. It also has access to exogenous input estimates v̂τ |t and ŵτ |t,
which are formed using the terrain height estimates, along with estimates of the terrain’s
gradient. The actuator force to apply at the current time step, ut, is determined from these
data. In our RHC formulation, we add the terminal constraint xt+T+1 = 0, which means
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our suspension returns to a neutral position at the end of the look-ahead interval. The RHC
optimization problem (1) becomes

minimize 1
T+1

∑t+T
τ=t

(

a2τ + ρu2
τ + µ(yτ − ĥτ |t)

2
)

subject to xτ+1 = Axτ + buτ + v̂τ |t, yτ = cTxτ , aτ = dTxτ + guτ + ŵτ |t,

Emin ≤ yτ − ĥτ |t ≤ Emax, Fmin ≤ uτ ≤ Fmax, τ = t, . . . t+ T
xt+T+1 = 0, xt = x̂t|t,

with variables xτ , . . . , xτ+T ∈ Rn, yτ , . . . , yτ+T ∈ R, aτ , . . . , aτ+T ∈ R, and uτ , . . . , uτ+T ∈ R.
This is a convex optimization problem, and can be solved as a QP.

Uncontrolled policy. We will compare the RHC policy to the performance of the uncon-
trolled mass-spring-damper system.

4.2.1 Related work

Active suspension control is used in a range of production vehicles, although with less so-
phisticated control algorithms [Wil97]. In [MAH+97], a similar model that also incorporates
an unsprung mass is used, and the problem solved as a QP. A number of authors consider
semi-active suspension to reduce cost, including [GBTH05] and [CMN06], which use MPC
to control passive damping, and [DSL05], which uses H∞ control.

4.2.2 Numerical example

Our example has a sampling rate of 20 Hz, and a horizon T = 20, which corresponds to a one-
second lookahead. To determine A, b, c, d and g, we use a quarter-vehicle model, with mass
2000 kg, damping coefficient 5 kNs/m and spring constant 30 kN/m. This gives a natural
frequency of 0.6 Hz, and a light damping coefficient of 0.3. We assume forces are held constant
during each time interval, and use an exact discretization via the matrix exponential. We
set the negative and positive extension limits to Emin = −0.1 and Emax = 0.1 m, and restrict
our maximum actuator force to 3 kN. We set ρ = 10−4, and µ = 5. Figure 4 shows CVXGEN
code for this example.

Results. Figure 5 shows vehicle and suspension behavior for a 5-second journey over terrain
with a single, large bump. The RHC control system reduces the the vehicle’s root-mean-
square acceleration value by approximately 70%. Note that the uncontrolled system exceeds
the extension limits twice, which is avoided by the RHC controller.

The CVXGEN code always takes less than 1 ms to solve at each time step, even on a
low-power (2 W) processor. This is much faster than required for the 20 Hz sample rate. The
extra speed means that RHC could be one of multiple jobs handled on a single computer with
a suitable real-time operating system. Further performance details are collected in Table 2.
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dimensions

n = 2

T = 20

end

parameters

A (n,n); B (n,1)

C (1,n); D

h[t], t=0..T+1

v[t] (n), t=0..T

w[t], t=0..T

rho positive; mu positive

Fmin; Fmax; Emin; Emax

x[0] (n)

end

variables

u[t], t=0..T

x[t] (2), t=1..T+1

a[t], t=0..T

end

minimize

sum[t=0..T](square(a[t]) + rho*square(u[t]) + mu*square(x[t][1] - h[t]))

subject to

x[t+1] == A*x[t] + B*u[t] + v[t], t=0..T

a[t] == C*x[t] + D*u[t] + w[t], t=0..T

Fmin <= u[t] <= Fmax, t=0..T

Emin <= x[t][1] - h[t] <= Emax, t=1..T

end

Figure 4: CVXGEN code segment for the suspension example.
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Figure 5: (From top) Vertical position (m), suspension extension (m), suspension force (kN) and
acceleration (ms−2). RHC (blue), open loop (red). Dashed lines indicate the terrain profile (top)
and constraints.
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4.3 Processor speed control

Problem statement. In this example, a single processor handles jobs from a set of n
queues. At each time step the processor adjusts the work rate for each queue. The total work
rate determines the processor (clock) speed, which in turn determines the power dissipated
by the processor. The goal is to adjust the rates to optimally balance average processor
power dissipation and queue length.

We use a discrete-time formulation, with state xt ∈ Rn
+ and input ut ∈ Rn

+, where (xt)i
is the amount of work to be done in queue i, and (ut)i is the work rate (expressed as effective
speed) for queue i, at time t. The dynamics are xt+1 = xt − ut + at, where at ∈ Rn

+ denotes
the new work arriving in each queue between time periods t and t + 1. At each time we
cannot process more than the available work in each queue, so we must have ut ≤ xt. The
total work rate of the processor, over all queues, is 1Tut.

The processor speed at time t is a function of the work rate vector ut:

st = max{Smin,1Tut},

where Smin is the minimum allowed processor speed. The processor has a maximum allowed
processor speed, st ≤ Smax, which translates to the constraint 1Tut ≤ Smax. The processor
power dissipation is modeled as αs2t , where α > 0.

With each queue we associate a quadratic-plus-linear cost ci(xt)i + di(xt)
2
i , where ci and

di are positive weights. We can interpret ci as relative queue priorities, when the queues are
small, and ci/di as the queue length at which the cost is twice the linear cost alone. When
the queue lengths have some probability distribution, the expected value of the queue cost
is ci times the mean queue length, plus di times the mean square queue length.

The overall stage cost is

ℓ(xt, ut) = αmax{Smin,1Tut}
2 + cTxt + dTx2

t ,

where x2
t is interpreted elementwise. This is a convex function.

For this example the dynamics matrices, constraints, and stage costs are all known. The
only uncertainty is the arrivals at, which we assume has the form

(at)i = exp(λi sin(2πt/M − θi) + (wt)i), i = 1, . . . , n,

where M is the period, λi, θi are known constants, and wt is IID gaussian with mean µ and
covariance Σ.

In period t, the controller chooses the work rates ut based on knowledge of the current
state xt, as well as the data Smin, Smax, α, a, b, λ, θ, µ Σ, M .

Receding horizon policy. In the RHC policy, our estimates of the arrivals are

(âτ |t)i = E(at)i = exp(λi sin(2πt/M − θi) + µi + 0.5Σii), i = 1, . . . , n, τ = t, . . . , t+ T.
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The RHC optimization problem becomes

minimize 1
T+1

∑t+T
τ=t αmax{Smin,1T ûτ}

2 + cT x̂t + dT x̂2
t

subject to x̂τ+1 = x̂τ − ûτ + âτ |t, τ = t, . . . , t+ T
0 ≤ ûτ ≤ x̂τ , 1T ûτ ≤ Smax, τ = t, . . . , t+ T
x̂t = xt,

(2)

where the variables are x̂t, . . . , x̂t+T+1, ût, . . . , ût+T . This is a convex optimization problem,
which can be transformed into a QP.

Proportional policy. A simple policy is to set the work rates to be proportional to the
amount of work left in each queue. Specifically, we take

(ut)i = min{(xt)i, ((xt)i/1
Txt)S

max}.

Here we take the minimum to ensure ut ≤ xt is satisfied. The constraint st ≤ Smax is also
satisfied by this policy.

4.3.1 Related work

For an overview of power-aware design, see one of the survey papers [IP05, SSH+03, DM06].
Closely related work appears in [WAT09], which uses a dynamic speed scaling scheme, mo-
tivated by queueing theory, to balance energy consumption and mean response time in a
multi-processor system. The problem is formulated as a stochastic dynamic program, with
an upper bound used instead of an exact solution. In [MBM+09] the authors consider a
related problem, where the goal is to maximize processing speed while respecting system
temperature limits.

4.3.2 Numerical instance

We consider a simple numerical example with n = 3 queues, and problem data

Smin = 1, Smax = 5, α = 2, c = (1, 1, 1), d = (0.5, 0.5, 0.5),

and

λ = (3, 3.5, 3.2), θ = (0, 1, 2), µ = (−2,−2,−2), Σ = diag((0.04, 0.04, 0.04)).

Typical arrivals trajectories are shown in Figure 6. For the RHC policy we will use horizon
T = 30.

Results. We simulate both policies for 1000 time steps (with the same arrival realization).
The RHC policy incurs an average cost of J = 71.3, while the proportional policy achieves
J = 95.3, which is around 34% worse. Figure 8 shows some sample trajectories. We compare
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Figure 6: Sample trajectories for (at)1 (blue), (at)2 (red), and (at)3 (black).

the RHC policy (blue) with the simple proportional policy (red). The plots are (from top to
bottom): (xt)1, (xt)2, (xt)3, and stage cost ℓ(xt, ut).

The CVXGEN code takes at most 0.9 ms to solve at each time step, which is 5000×
faster than with CVX. This means that a dedicated processor can adjust work rates at 1
kHz using RHC. Alternatively, the same processor could use 1% of its processing power to
adjust its own rates at 10 Hz. Further computational performance details are collected in
Table 2.
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dimensions

n = 3; T = 30

end

parameters

ahat[t] (n), t=0..T

alpha positive

lambda positive

c (n)

D (n,n) psd diagonal

x[0] (n)

Smin positive

Smax positive

end

variables

x[t] (n), t=1..T+1

u[t] (n), t=0..T

end

minimize

alpha*sum[t=0..T](sum(square( pos(max(Smin, sum(u[t]))) )))

+ sum[t=0..T+1](c'*x[t]) + sum[t=0..T+1](quad(x[t], D))

+ lambda*sum[t=0..T](sum(square(u[t])))

subject to

x[t+1] == x[t] - u[t] + ahat[t], t=0..T

u[t] >= 0, t=0..T

u[t] <= x[t], t=0..T

sum(u[t]) <= Smax, t=0..T

end

Figure 7: CVXGEN code segment for the processor speed control example.
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Figure 8: Sample trajectories for processor speed control example. From top to bottom: (xt)1,
(xt)2, (xt)3, and stage cost ℓ(xt, ut), for RHC policy (blue) and proportional policy (red).
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4.4 Energy storage

Problem statement. We consider an energy storage system that can be charged or dis-
charged from a source with varying energy price. A simple example is a battery connected to
a power grid. The goal is to alternate between charging and discharging in order to maximize
the average revenue.

Let qt ≥ 0 denote the charge in the energy store at time period t. The energy store has
capacity C, so we must have qt ≤ C. We let uc

t ≥ 0 denote the amount of energy taken
from the source in period t to charge the energy store, and we let ud

t ≥ 0 denote the amount
of energy discharged into the source from our energy store. (For the problem we consider,
at most one of these will be positive; that is, we will never charge and discharge the store
simultaneously.) The charging and discharging rates must satisfy

uc
t ≤ Cmax, ud

t ≤ Dmax,

where Cmax and Dmax are the maximum charge/discharge rates.
Charging increases the energy in our store by κcut, where κc ∈ (0, 1) is the charge

efficiency; discharging decreases the energy in our store by ut/κ
d, where κd ∈ (0, 1) is the

discharge efficiency. In each time period the energy store leaks, losing energy proportional
to its charge, with leakage coefficient η ∈ (0, 1). Incorporating all these effects, the system
dynamics are

qt+1 = ηqt + κcuc
t − ud

t /κ
d.

In the context of our general framework, the dynamics matrices are A = η and B =
(κc, 1/κd)T , with ut = (uc

t , u
d
t ).

The revenue in period t is given by pt(u
d
t − uc

t), where pt is the energy price at time t.
To discourage excessive charging and discharging, we add a penalty of the form γ(uc

t + ud
t ),

where γ ≥ 0 is a parameter. (An alternative interpretation of this term is a transaction cost,
with bid-ask spread γ: We buy energy at price pt + γ, and sell energy back at price pt − γ.)
Our stage cost (i.e., negative revenue, to be minimized) is thus

ℓt(qt, ut) = pt(u
c
t − ud

t ) + γ(uc
t + ud

t ) = (pt + γ)uc
t − (pt − γ)ud

t ,

which can be interpreted as the profit, at time t.
We will model the energy price as a stationary log-normal process with

E log pt = µ, E(log pt − µ)(log pt+τ − µ) = rτ .

At time period t the controller has access to the current charge level qt, the data C, Cmax,
Dmax, κc, κd, η, γ, the current and last N prices pt, pt−1, . . . , pt−N , as well as the mean and
autocovariance, µ and rτ . The future prices are not known.

Receding horizon policy. To implement the receding horizon policy, we take our esti-
mates of the future prices to be

p̂τ |t = expE(log pτ |pt, . . . , pt−N), τ = t+ 1, . . . , t+ T,
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which is an affine function of log pt, . . . , log pt−N . (Note that this is not the same asE(pτ |pt, . . . , pt−N),
which can also be computed and used as estimates of future prices.) Our estimates of the
stage costs are

ℓ̂t(q̂τ , ûτ ) = (p̂τ |t + γ)ûc
τ − (p̂τ |t − γ)ûd

τ .

Thus, the RHC optimization problem becomes

minimize
∑t+T

τ=t ℓ̂t(q̂τ , ût)
subject to q̂τ+1 = ηq̂τ + κcûc

τ − ûd
τ/κ

d,
0 ≤ ûc

τ ≤ Cmax, 0 ≤ ûd
τ ≤ Dmax,

τ = t, . . . , t+ T
0 ≤ q̂τ ≤ C, τ = t, . . . , t+ T + 1
q̂τ = qt,

(3)

with variables q̂t, . . . , q̂t+T+1, û
c
t , . . . , û

c
t+T , û

d
t , . . . , û

d
t+T . This is a convex optimization prob-

lem, and can be written as an LP.

Thresholding policy. We will compare the receding horizon policy with a simple thresh-
olding policy, which works as follows:

uc
t =

{

min(Cmax, C − q) pt ≤ pthc
0 otherwise,

ud
t =

{

min(Dmax, q) pt ≥ pthd
0 otherwise.

In other words, we charge at the maximum rate if the price is below a threshold pthc, and
we discharge at the maximum rate if the price is above a threshold pthd. If the price is in
between we do nothing. We take the minimum to ensure we do not charge above the capacity
or discharge below zero.

4.4.1 Related work

In [HNPWHH07], the authors consider a distributed energy system where individual grid-
connected households use an RHC controller to control micro combined heat and power
plants. For more on distributed generation and variable pricing, see, respectively, [HNNS06]
and [Bra05]. On the generation side, [KS09] applies MPC to wind turbinees with batteries
in order to smooth the power produced. The paper includes a case study with real data.
A related application is to hybrid vehicles, where multiple power sources are available. See
[KY06] or [PBK+07], or for a vehicle with multiple different energy storage units see [WBS03].

4.4.2 Numerical example

We look at a particular numerical instance with η = 0.98, κc = 0.98, κd = 0.98, Cmax = 10,
Dmax = 10, C = 50, γ = 0.02, q0 = 0, µ = 0, rτ = 0.1(0.99τ cos(0.1τ)). For the receding
horizon policy we used a time horizon of T = 50 steps, and N = 100 previous prices to
estimate future prices.
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dimensions

T = 50

end

parameters

eta; kappac; kappad; Cmax; Dmax

gamma; C; p[t], t=0..T; q[0]

end

variables

q[t], t=1..T+1

uc[t], t=0..T

ud[t], t=0..T

end

minimize

sum[t=0..T]((p[t] + gamma)*uc[t] - (p[t]

- gamma)*ud[t])

subject to

q[t+1] == eta*q[t] + kappac*uc[t]

- (1/kappad)*ud[t], t=0..T

0 <= q[t] <= C, t=1..T+1

0 <= uc[t] <= Cmax, t=0..T

0 <= ud[t] <= Dmax, t=0..T

end

Figure 9: CVXGEN code segment for the storage example.
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Results. The simulations were carried out for 1000 time steps. Figure 10 shows the cu-
mulative profit,

rt =
t

∑

τ=0

pτ (u
d
τ − uc

τ )− γ(ud
τ + uc

τ ),

for the RHC policy (blue) and the simple thresholding policy (red), over 500 time steps. For
the thresholding policy, we adjusted the charge/discharge thresholds via trial and error to
achieve good performance. The final thresholds we used are pthc = 0.8, pthd = 1.3. Clearly,
the RHC policy outperforms the thresholding policy. The average profit achieved for the
RHC policy is 0.23 per-period, whereas thresholding achieves a profit of 0.029 per-period
(averaged over 1000 time steps).

Figure 11 shows the actual (black) and predicted (blue) log-price trajectories starting at

t = 150. The vertical lines show exp(log p̂t|150 ± σt), where σt = (E(log pt − log p̂t|150))
1/2.

The CVXGEN code takes up to 360 µs to solve at each time step, which is 3500× faster
than with CVX. Further computational performance details are collected in Table 2.
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Figure 10: Comparison of RHC policy (blue) and thresholding policy (red) for the storage exam-
ple. From top to bottom: price (pt), charge (qt), cumulative profit (rt).
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Figure 11: Black: log pt; Blue: log p̂t|150 for the storage example. Vertical lines show prediction
error.

5 CVXGEN performance

To give a rough guide to CVXGEN’s performance, we test the CVXGEN code for each
example on three different computers. The given timings should not be taken too seriously,
since there are many things that could easily improve performance, often reducing speed by
an order of magnitude or more. First, single-precision floats could be used in place of double-
precision, since the scale of data is known ahead of time. Secondly, the time-horizon selected
for the examples is relatively long. With a suitable choice of final state cost (see [WB09]),
the horizon could be reduced, giving a speedup proportional to the horizon. Finally, we
solve the problems to high accuracy, which requires up to 15-20 steps. With a small amount
of tuning, adequate control performance could easily be achieveable using a fixed step limit
of (say) 5 steps [WB08]. Thus, all of the numerical results should be taken as preliminary
upper bounds on performance.

We summarize computer properties in Table 1. We use gcc-4.4 on each processor, with
the compiler optimization flag -Os.

In each case, we ensure the computer is idle, then solve the optimization problem in-
stances continuously for at least one second. We calculate the maximum time taken to solve
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OS Processor Cache size Max speed Max power

Computer 1 Linux 2.6 Intel Atom Z530 512 kB 1.60 GHz 2 W

Computer 2 Linux 2.6 Intel Core Duo T2300 2 MB 1.66 GHz 31 W

Computer 3 OS X 10.6 Intel Core i7-860 8 MB 3.46 GHz 95 W

Table 1: Computer properties

preorder storage suspension proc_speed

Variables, original 310 153 84 112

Variables, transformed 341 153 104 279

Constraints, transformed 373 357 165 465

KKT matrix nonzeros 1116 1121 636 1960

KKT factor fill-in 1.64 1.45 2.25 1.65

Max steps required 10 16 7 19

CVXGEN, Computer 1 (ms) 2.34 4.01 0.99 7.80

CVXGEN, Computer 2 (ms) 0.96 1.98 0.39 3.64

CVXGEN, Computer 3 (ms) 0.25 0.36 0.11 0.85

CVX (ms) 970 1290 2570 4190

Table 2: CVXGEN performance

any instance, ensuring that each problem is solved to sufficient optimality so that control
performance is not affected. To get a rough idea of the speed of a traditional parser solver,
we also test the performance of CVX on the fastest computer, Computer 3, using Matlab
7.9 and CVX 1.2. For preorder and storage we set the solver used by CVX to Sedumi 1.2;
for suspension and proc_speed we select SDPT3 4.0. All results are shown in Table 2.

6 Conclusions

In this paper we have shown that receding horizon control offers a simple and transparent
method for designing feedback controllers that deliver good performance while respecting
complex constraints. A designer specifies the RHC controller by specifying various compo-
nents (objective, constraints, prediction method and horizon), each of which has a natural
choice suggested directly by the application. In more traditional approaches, such as PID
control, a designer tunes the controller coefficients, often using trial and error, to handle
the objectives and constraints indirectly. A PID control designer needs much intuition and
experience; an RHC designer needs far less.

In addition to the straightforward design process, we have seen that RHC controllers
can be implemented in real-time at kilohertz sampling rates. These speeds are useful for
both real-time implementation of the controller, as well as rapid Monte-Carlo simulation for
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design and testing purposes. Thus, receding horizon control should no longer be considered
a slow, computationally intensive policy. Indeed, RHC can be applied to a wide range of
control problems, including applications involving fast dynamics.

With recent advances in automatic code generation, RHC controllers can now be rapidly
designed and implemented. The RHC optimization problem can be specified in a high-
level description language, and custom solvers for the problem family can be automatically
generated by a software tool, such as CVXGEN. The generated code is optimized for the
specific problem family, and is often orders of magnitude faster than a general optimization
solver (such as sedumi or SDPT3). In addition, the generated code has few external library
dependencies, which facilitates implementation on different real-time platforms.

We believe that receding horizon control, combined with automatic code generation,
should form a new framework for designing and implementing feedback controllers. This
framework will allow designers with little optimization expertise to rapidly design and im-
plement sophisticated high-performance controllers for a wide range of real-time applications.
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