IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

3795

Fast Path Planning Through Large Collections
of Safe Boxes

Tobia Marcucci ¥, Parth Nobel *, Russ Tedrake

Abstract—We present a fast algorithm for the design of smooth
paths (or trajectories) that are constrained to lie in a collection of
axis-aligned boxes. We consider the case where the number of these
safe boxes is large, and basic preprocessing of them (such as finding
their intersections) can be done offline. At runtime, we quickly gen-
erate a smooth path between given initial and terminal positions.
Our algorithm designs trajectories that are guaranteed to be safe
at all times, and detects infeasibility whenever such a trajectory
does not exist. Our algorithm is based on two subproblems that
we can solve very efficiently: finding a shortest path in a weighted
graph, and solving (multiple) convex optimal-control problems. We
demonstrate the proposed path planner on large-scale numerical
examples, and we provide an efficient open-source software imple-
mentation, fastpathplanning.

Index Terms—Collision avoidance, convex optimization, motion
and path planning, optimization and optimal control.

1. INTRODUCTION

autonomous system. Driverless cars, drones, autonomous
aircraft, robot manipulators, and legged robots are just a few
examples of systems that rely on a path-planning algorithm to
navigate in their environment. Path-planning problems can be
challenging on many fronts. The environment can be dynamic,
i.e., change over time, or uncertain because of noisy sensor
measurements [1], [2], [3], [4]. Computation might be subject to
strict real-time requirements [5], [6], [7]. Interactions between
multiple robots without central coordination can lead to game-
theoretic problems [8], [9], [10], [11]. In this article, we consider
problems where a single smooth path needs to be found through
an environment that is fully known and static, but potentially

PATH planning is a problem at the core of almost any

Manuscript received 2 January 2024; revised 7 June 2024; accepted 21 July
2024. Date of publication 26 July 2024; date of current version 12 August 2024.
This work was supported by the Office of Naval Research (ONR) under Grant
NO00014-22-1-2121. Indeed, this work is a direct consequence of the collabora-
tion fostered by this grant. The work of Parth Nobel was supported in part by
the National Science Foundation Graduate Research Fellowship Program under
Grant DGE-1656518. The work of Stephen Boyd was supported by ACCESS (Al
Chip Center for Emerging Smart Systems), sponsored by InnoHK funding, Hong
Kong SAR. This article was recommended for publication by Associate Editor
D. Panagou and Editor N. Amato upon evaluation of the reviewers’ comments.
(Corresponding author: Tobia Marcucci.)

Tobia Marcucci and Russ Tedrake are with the Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA (e-mail: tobiam@mit.edu).

Parth Nobel and Stephen Boyd are with the Department of Electrical Engi-
neering, Stanford University, Stanford, CA 94305 USA.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TR0O.2024.3434168, provided by the authors.

Digital Object Identifier 10.1109/TRO.2024.3434168

, Member, IEEE, and Stephen Boyd

, Fellow, IEEE

Fig. 1. Path planning for a quadrotor flying through a simulated village.
Top. The village, composed of buildings, trees, and bushes. The free space is
decomposed using more than ten thousand safe boxes. Bottom. A snapshot of the
quadrotor flight. The smooth path connects two opposite corners of the village
and is guaranteed to be collision free at all times. The online planning time is
only a few seconds.

very large and complicated to navigate through. For example,
this is the case for a mobile robot that transports products in a
large warehouse [12], a drone that delivers packages in a mapped
environment [13] (see also Fig. 1), a quadruped that inspects an
industrial plant [14], [15], or a robot arm that unloads packages
from many identical shelves and sorts them into bins [16].
Like previous methods [17], [18], we assume that the envi-
ronment (or configuration space) is described as a collection
of safe sets, through which our robot can move freely without
colliding with obstacles. Our problem is to find a smooth path
that is contained in the union of the safe sets, and connects given
initial and terminal points. We consider the case where the safe
sets are axis-aligned boxes and large in number (thousands or
tens of thousands). Focusing on boxes allows us to substantially
accelerate multiple parts of our algorithm. While the large num-
ber of boxes is necessary to adequately represent even highly
complex robot environments. Note that the decomposition of
the complex spaces into boxes can be approximate (conserva-
tive), and can be computed using simple variations of existing
algorithms [19], [20], [21], [22], [23], as well as methods tailored

1941-0468 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8249-0434
https://orcid.org/0000-0002-8228-7441
https://orcid.org/0000-0002-8712-7092
https://orcid.org/0000-0001-8353-6000
mailto:tobiam@mit.edu
https://doi.org/10.1109/TRO.2024.3434168

3796

to the configurations spaces of kinematic trees [24], [25], [26],
[27].

Our path-planning method is composed of an offline and an
online part. In the offline preprocessing, we construct a graph
that stores the intersections of the safe boxes and solve a convex
program to label the edges of this graph with approximate
distances. These computations are done only once, since the
environment is static, and they require from a fraction of a
second to a few tens of seconds, depending on the problem size.
In the online part, we first use the graph constructed offline to
design a polygonal curve of short length that connects the given
initial and terminal points. Then, we solve a sequence of convex
optimal-control problems to transform the polygonal curve into
a smooth path that minimizes a given objective function. The
online runtimes of our algorithm are dominated by these control
problems, which, however, are solvable in a time that increases
only linearly with the number of boxes traversed by the path [28].
This results in online planning times on the scale of a hundredth
of a second for medium-size problems and of a second for very
large problems. Consider that, for a problem like the quadrotor
flight in Fig. 1, existing techniques take seconds to optimize a
path through a few tens of safe boxes [18]. Within the same time,
our planner designs a path through more than 10 000 boxes.

The proposed algorithm is complete: it always finds a smooth
path connecting the initial and final positions if such a path exists,
and certifies infeasibility of the planning problem otherwise. In
addition, by using Bézier curves for the path parameterization,
our smooth trajectories are guaranteed to be safe at all times,
and not only at a finite number of sample points. Our method is
heuristic: although it designs paths that have typically low cost,
it is not guaranteed to solve the planning problem optimally, or
within a fixed percentage of the optimum.

The techniques of this article are implemented in a companion
open-source package, fastpathplanning.

A. Related Work

A wide variety of path-planning algorithms has been de-
veloped over the last 50 years. An excellent overview of the
techniques available in the literature can be found in [29, Part 2].
Here, we review the methods that are most closely related to ours.

The closest approach to the one presented here is graphs of
convex sets (GCS) from [18]. Similarly to our method, GCS de-
signs trajectories through collections of safe sets that are prepro-
cessed to form a graph. Leveraging the optimization framework
from [30], it formulates a tight convex relaxation of the planning
problem and it recovers a collision-free trajectory using a cheap
rounding strategy. Thanks to this workflow, GCS also provides
tight optimality bounds for the trajectories it designs. On the
other hand, by trying to solve the planning problem through
a single convex program, GCS has a few limitations. First, at
present, GCS does not efficiently handle costs or constraints on
the path acceleration and higher derivatives, which are a central
component of the problems analyzed in this article. Second, GCS
does not scale to the very large numbers of safe sets considered
here. The proposed algorithm is different in spirit from GCS:
it leverages fast graph search to heuristically solve the discrete

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

part of the planning problem and, only at a later stage, it uses
convex optimization to shape the continuous path. This division
sacrifices the optimality guarantees but retains the algorithm
completeness, and it allows us to quickly find paths of low cost
for planning problems of very large scale.

A natural approach for designing smooth paths that avoid ob-
stacles optimally is mixed-integer programming. Earlier mixed-
integer formulations dealt with polyhedral obstacles, and used
a binary variable for each facet of each obstacle to enforce
the constraint that a trajectory point is not in collision [31],
[32], [33]. Conversely, the formulation from [17] leverages the
algorithm from [22] to cover (all or part of) the collision-free
space with convex regions, and ensures safety by forcing each
trajectory segment to lie entirely in at least one convex region.
This makes the mixed-integer program more efficient, since
each trajectory segment requires only one binary variable per
safe set. The path planning problem considered in [17] is essen-
tially the same as ours, but our algorithm can solve dramatically
larger problems in a fraction of the time (see the comparison in
Section VII-D).

Two popular approaches for collision-free path planning are
local nonconvex optimization [34], [35], [36], [37], [38], [39]
and sampling-based algorithms [40], [41], [42]. The former
methods can handle kinematic and dynamic constraints, but
suffer from local minima and can often fail in finding a feasible
trajectory if the environment has many obstacles. Although
multiple strategies have been proposed to mitigate this issue [43],
[44],[45], sampling-based algorithms are typically more reliable
when the environment is complex (in fact, they are probabilisti-
cally complete). However, sampling-based methods can struggle
in high dimensions and are less suitable for the design of smooth
paths. Similar to [18], the approach we propose here can be
thought of as a generalization of sampling-based algorithms,
where collision-free samples are substituted with collision-free
sets. Instead of sampling the environment densely, we fill it with
large safe boxes. This reduces the combinatorial complexity and
allows us to plan through the open space using efficient convex
optimization [46]. (Specifically, given the offline preprocessing
of the safe boxes performed by our method, in this article, we
target the same applications as multiple-query sampling-based
planners, such as probabilistic roadmaps [40].)

Decompositions of the environment into safe sets (or cells) are
also common in feedback motion planning. There, a feedback
plan is constructed by composing a navigation function with a
piecewise-smooth vector field: the former decides the discrete
transitions between the cells and the latter causes all states in
a cell to flow into the next cell [29, Sec. 8.4]. In a similar
fashion, the method in [47] leverages discrete abstractions [48]
to generate provably correct control policies for planar robots
moving in polygonal environments. In robust motion planning,
funnels [37], [49], tubes [50], barrier functions [9], [51], and
positively invariant sets [52], [53], [54], [S5] are frequently
used to abstract away the continuous dynamics and reduce
the planning problem to a discrete search. While similar in
spirit to our algorithm, the methods presented in those papers
consider problems of different nature from our. We do not aim to
synthesize a feedback policy, nor do we reason about dynamics

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

MARCUCCI et al.: FAST PATH PLANNING THROUGH LARGE COLLECTIONS OF SAFE BOXES

and disturbances explicitly. Our goal is to design safe smooth
paths of low cost, and the main challenge in our problem is the
environment complexity (i.e., the number of safe boxes).

Last, in this article, we use Bézier curves to parameterize
smooth paths. These curves enjoy several properties that make
them particularly well suited for convex optimization, and have
been widely used in path planning and optimal control over the
last 15 years (see, e.g., [56], [57], [58]).

B. Outline

The rest of this article is organized as follows. In Section II, we
state the path-planning problem and give a high-level overview
of our algorithm. The algorithm can be broken down into three
parts, one offline and two online. The offline preprocessing,
which does not use either the endpoints of the path or the
specific objective function, is described in Section III. The first
online phase, illustrated in Section IV, finds a polygonal curve
of short length that is contained in the safe boxes and connects
the given path endpoints. The second online phase, described in
Section V, transforms the polygonal curve into a safe smooth
path of low cost. In Section VI, we summarize the main prop-
erties of our path planner. In Section VII, we evaluate the
performance of our algorithm through multiple numerical ex-
periments. Finally, Section VIII concludes this article.

II. PATH PLANNING

In this section, we state the path-planning problem and we
describe at a high-level the components of our algorithm.

A. Problem Statement

We consider the design of a smooth path in R from a given
initial point p™* € R to a given terminal point p™ € R?. We
represent the path as the function p : [0, 7] — RY, where T is
the time taken to traverse the path. In addition to the initial and
terminal-point constraints

p(0) = "™, p(T) = p°
we require that the path stay in a given set S C R of safe points
p(t) €S, te[0,T].

We assume that the safe set S is a union of K axis-aligned boxes

K
S=1| Bk
k=1
with
B.={zecR |y <zx<u}, k=1,....K.

Here, the inequalities are elementwise, and the box bounds
satisfy [, <wug fork=1,... K.

We considers paths with D continuous derivatives, and we
take our objective to be a weighted sum of the squared Ly norm
of these derivatives

D T
7= e [IO a 0
1=1

3797

where p(*) denotes the ith derivative of p, and o; are nonnegative
weights.
The path-planning problem is
minimize .J
subjectto p(0) = p™, p(T) = p*™)
pt) €S, tel0,T].

The optimization variable is the path p. The problem data are
the objective weights «;, the final time 7', the initial and terminal
points p™ and p*™, and the safe set S (specified by the box
bounds [, and wug). This statement includes only the essential
components of a path-planning problem. For example, here we
specify the initial and terminal positions, but do not constrain the
initial and terminal derivatives. In Section VIII, we will discuss
multiple of these simple extensions, and highlight the necessary
modifications to our method.

The path-planning problem (2) is infinite dimensional, but we
will restrict candidate paths to piecewise Bézier curves, which
are parameterized by a finite set of control points.

B. Safety Map

Problem (2) has convex quadratic objective, two linear equal-
ity constraints, and the safety constraint, which, in general, is
not convex. The safety constraint is an infinite collection of dis-
junctive constraints, that force the point p(t), foreach t € [0, T,
to lie in at least one of the boxes By,. Ensuring safety of a path p
is then equivalent to finding a function s : [0,7] — {1,..., K}
such that

p(t) € Bs(t)a te [OvT]

The value s(t) € {1,..., K} represents the choice of a safe box
for the path at time ¢, and the overall function s can be thought
of as a safety map for our path.

Our safety maps will have a finite number of transitions, i.e.,
will be of the form

s1 te [to,tl]

So te (tl, tg]
s(t) =4 3)

SN te (tN_l,tN]

where 0=ty <t;<---<ty=T. We will refer to
S$1,...,8N as the box sequence of the safety map s, and
tolTy =t —tg,..., Tn =ty — tn_1 as the traversal times.
In terms of the safety map, the path-planning problem is
minimize J
subjectto p(0) = p™, p(T) = p*™)
lsiry < p(t) < gy, t€l0,T]

where the variables are the path p and the safety map s. We
observe that if the box sequence s1, . . ., s is fixed, problem (4)
reduces to a nonconvex but continuous optimal-control problem,
with the path p and the traversal times 71, ...,Ty as decision
variables. If we also fix the traversal times, then the safety map
is entirely specified, and problem (4) becomes a convex optimal-
control problem with quadratic objective and linear constraints.

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

3798

C. Feasibility
We will say that a safety map is feasible if it satisfies

pinit c B pterm c B
S19 SN
By, NBg, #0, j=1,...,N -1, ©)

The first condition says that the first and last boxes in the box
sequence cover the initial and terminal points, respectively. The
second condition requires that every two consecutive boxes
intersect; thus the box sequence can be traversed by a continuous
path.

Importantly, the path-planning problem (4) is feasible if and
only if a feasible safety map exists. To see this, note that if
a path p and a safety map s are feasible for (4), then the
safety map must satisfy both conditions in (5). (In particular,
the second condition follows from the continuity of p, which
ensures that p(t;) € By, N B, forallj =1,..., N —1.) For
the other direction, suppose a safety map is feasible, and let
pj € Bs; N B, for j=1,...,N — 1. Then, the polygonal
curve with nodes p™ = pg, p1,...,pN—1,PN = P™ is en-
tirely contained in the safe set S. Through the following steps,
we construct a path p that has D continuous derivatives, and
moves along the polygonal curve (and so is safe). We select
any times 0 = tg < t; < --- < ty = T. We choose any smooth
time parameterization of the polygonal curve that satisfies the
interpolation conditions p(t;) = p; for j =0,..., N, as well
as the derivative constraints p(i)(tj) =0fori=1,...,D and
7 =1,..., N — 1. While the polygonal curve has kinks, the path
p is differentiable D times since it comes to a full stop at each
kink. By pairing this path with the feasible safety map, we have
a feasible solution of problem (4).

D. Method Outline

We give here a high-level description of the three phases in
our path-planning algorithm, with the details illustrated in future
sections.

Offline Preprocessing: The offline preprocessing uses only
the safe set S, i.e., the safe boxes B, .. ., Bx. In this phase, we
construct a line graph G whose vertices correspond to points in
the intersection of two boxes, and whose edges connect pairs of
points that lie in the same box. When considered as a subset of
R4, this graph lies entirely in the safe set, and it can be used to
quickly design safe polygonal curves that connect given initial
and terminal points. The points associated with the vertices are
called representative points, and are optimized to minimize the
total Euclidean length of the edges in the line graph. This serves
as a heuristic to reduce the length of the polygonal curves.

1: procedure OFFLINE PREPROCESSING

2 compute intersections of safe boxes By, ..., By
3: construct line graph G

4 optimize representative points

5

end procedure

Polygonal Phase: Here, we find a polygonal curve C that
connects pi“it to p'“™, is entirely contained in the safe set S,
and has small length. The curve is initialized by solving a

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

shortest-path problem in the line graph constructed offline. Then,
it is shortened through an iterative process, where we alternate
between minimizing the curve length for a fixed box sequence,
and updating the box sequence for a fixed polygonal curve.

procedure POLYGONAL PHASE
connect p™ to p'®™ with safe polygonal curve C
while not converged do
fix box sequence sq, . .., sy and shorten curve
fix curve and improve box sequence
end while
end procedure

A A S e

Smooth Phase: In this phase, we freeze the box sequence
s1,...,sy identified in the polygonal phase, and traversed by
the curve C. As observed above, this reduces problem (4) to a
continuous but nonconvex optimal-control problem. To solve
this control problem, we first use a simple heuristic to estimate
initial traversal times 77, ..., Tn. Then, we alternate between
two convex optimal-control problems. In the first, we fix the
traversal times (thus we specify the whole safety map s) and
optimize the shape of the path. In the second, we attempt to
improve the traversal times by solving a local convex approxi-
mation of the nonconvex optimal-control problem.

procedure SMOOTH PHASE
fix box sequence S1,...,S5N
estimate traversal times 77, . . .
while not converged do
fix traversal times and optimize path p
attempt improvement of traversal times
end while
end procedure

7TN

XRNDIN B RN

III. OFFLINE PREPROCESSING

In this section, we describe the offline part of our algorithm.
The steps below are also illustrated through a simple example at
the end of the section.

A. Line Graph

We start by computing the line graph associated with the safe
boxes. The vertices of this graph are pairs of safe boxes that
intersect, and the edges connect pairs of intersections that share
abox. Formally, the line graph is an undirected graph G = (V, £)
with vertices

and edges
E={H{v,w} SV |vNw#D v+#w}

The name line graph is motivated by the fact that G can be
equivalently defined as the line graph of the infersection graph
of our collection of boxes.

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

MARCUCCI et al.: FAST PATH PLANNING THROUGH LARGE COLLECTIONS OF SAFE BOXES

n O m
|

| I
u O

IS

Fig. 2.

3799

Offline preprocessing of the safe boxes. Left. Safe boxes. Center left. Pairwise intersections of the safe boxes. Center right. Line graph, with vertices in

the box intersections and edges connecting intersections that share a box. Right. Line graph with optimized representative points.

The line graph allows us to efficiently construct polygonal
curves that are guaranteed to be safe. Consider a path in the
line graph. For each vertex in this path, choose a point in R¢
in the corresponding box intersection. Then form the polygonal
curve passing through these points. Each line segment in this
curve is associated with an edge in the line graph, and therefore
with a safe box. By construction, this safe box contains the line
segment entirely. It follows that the whole polygonal curve is
safe.

Since computing the intersection of two boxes is a trivial op-
eration, we can construct the line graph G very efficiently, even
when the number K of boxes is very large. Our implementation
is based on the technique from [59, Sec. 2].

B. Representative Points

Our next step is to choose arepresentative point for each vertex
of the line graph, i.e., for each pair of intersecting boxes. As a
heuristic method to shorten the polygonal curves constructed as
described above, we position these points close to their neighbors
in the line graph. More formally, denoting with z,, € RY the
representative point of vertex v € V, we minimize the sum of
the Euclidean distances between all pairs of representative points
that are connected by an edge

minimize ., e 20 — Zwll2

subjectto x, € ByNB;, v={kl1}eV. ©)

Here, the variables are the representative points x,,, v € V. Each
of these points is constrained in the corresponding box intersec-
tion, which is itself an axis-aligned box. This is a convex opti-
mization problem that can be represented as a second-order cone
program (SOCP) and efficiently solved [46, Sec. 4.4.2], [60].

After optimizing the position of the representative points x,,
as in (6), each edge {v,w} of the line graph is assigned the
weight ||z, — Zyl|2.

C. Example

We illustrate the offline preprocessing on a small problem that
will serve as arunning example throughout the article. This prob-
lem has K =9 safe boxes in d = 2 dimensions and is depicted
in Fig. 2. The left figure shows the safe boxes, and the center left

figure shows their intersections (with some overlapping when
more than two boxes intersect). These intersections correspond
to the |V| = 11 vertices of the line graph. In the center right
figure, we show the |£] = 20 edges of the line graph as line
segments connecting the centers of the box intersections. The
right figure shows the optimized representative points, which
minimize the total Euclidean distance over the edges of the line
graph, i.e., a solution of (6). Note that some of the 20 edges
overlap in this figure. Observe also that the line graph, considered
as a subset of R2, is entirely contained in the safe set, since each
edge is in at least one safe box.

IV. POLYGONAL PHASE

We now describe the first online phase of our algorithm, where
we design a safe polygonal curve C of short length that connects
Pt to p'®™. An illustration of the steps below can be found at
the end of the section, where we continue our running example.

A. Shortest-Path Problem

We use the line graph G to initialize the polygonal curve
C. We augment the line graph with two new vertices with
representative points p™* and p'®™. An edge is added between
p"t and all the intersections of safe boxes that contain p™", i.e.,
all the vertices {k, [} € V such that p™ € By, or p™" € B;. An
analogous operation is done for p*™. As for the other edges
in the line graph, these new edges are assigned a weight equal
to the Euclidean distance between the representative points that
they connect. We then find a shortest path from the initial point
to the terminal point, and recover an initial polygonal curve C by
connecting the representative points along this path. As noted
above, this curve is safe because each of its segments is contained
in a safe box.

This shortest-path step determines whether or not our path-
planning problem is feasible. If there is no path in the augmented
line graph between the vertices associated with p™ and p'*™,
then the path-planning problem (4) is infeasible. Conversely, if
there is a path between these two vertices, then the path-planning
problem is feasible since a feasible trajectory can be constructed
as in Section II-C.

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

3800

S

Yj+1

By,

Fig. 3. Shortening of the polygonal curve C through the insertion of a new
box (B}, in green) in the current box sequence.

The problem of identifying all the safe boxes that contain the
initial and terminal points is known as stabbing problem and,
given the precomputations done to construct the line graph, it
takes negligible time [59]. Using an optimized implementation
of Dijkstra’s algorithm (e.g., the one provided by scipy [61]),
finding a shortest path is also very fast.

B. Shortening of the Polygonal Curve

Thanks to the optimization of the representative points in (6),
our initial polygonal curve C is typically short. However, the
online knowledge of the initial and terminal points, which were
unknown during the preprocessing, can allow us to shorten this
curve further. This is done iteratively: we alternate between
solving a convex program that minimizes the curve length for a
fixed box sequence, and improving the box sequence for a fixed
polygonal curve.

Optimization of the Polygonal Curve: Denote with C the
curve at the current iteration (initialized with the solution of
the shortest-path problem). Let /N be the number of segments
in C and 5o, ...,yn € R? be the curve nodes, with 3o = p™t
andyy = p™. Forj =1,..., N,letalso s; be the index of the
safe box that covers the line segment between y;_; and y;. We
fix the box sequence sy, ..., sy traversed by the current curve,
and we optimize the position of the nodes y; so that the length
of the curve is minimized. This leads to the problem

. N

minimize > .74 [|ly; — vl

subject to o = p™, yy = p™)
ijstmBSj_*_“]:17,N—1

with variables yg, ..., yn. This is a small SOCP with banded
constraints that can be solved very efficiently, in time that is only
linear in the number N of segments [28].

The optimal nodes from (7) define our new curve C. We will
assume that these nodes are distinct, since if two nodes coincide
we can always eliminate one.

Improvement of the Box Sequence: After solving problem (7),
the nodes yo, . . . , y vy minimize the curve length for the given box
sequence s, . .., Sy. However, as Fig. 3 illustrates, the insertion
of a new box can potentially give us room to further shorten our
polygonal curve. In our second step, we seek a new sequence of

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

boxes that contains the current curve and is guaranteed to yield
a length decrease. Since our safe sets are boxes, this step will be
extremely quick.

For all j =1,..., N — 1, we solve a stabbing problem to
find all the boxes By, that contain the curve node ;. Then, we
consider inserting the index k between s; and s;,1 in our box
sequence. As shown in Fig. 3, this insertion leads to a new
instance of problem (7), where the variable y; is replaced by
two variables

zlestﬁBk, 2o €BLNB

Sj+1°

Choosing z1 = 29 = y; gives us a feasible solution of this new
instance of (7), and does not change the length of our curve C.
Therefore, the insertion of By, leads to a shorter curve if and only
if this feasible solution is not optimal.

We fix 21 = 29 = y; and check if the optimality conditions
of the new instance of (7) can be satisfied. As explained in
Appendix, this check reduces to finding a vector A € R¢ that
satisfies the following inequalities:

[Allz <1, Li(A—21) >0,
Ur(h—21) <0,

La(A —22)

22) <0
Us(h—22)>0. &

IV IA

Here, the vectors A1, Ay € R are fixed and given by

Y Y Y1 Y,
= 77)\,2 — .
ly; —yi-1ll2 yj+1 — yjll2

The matrices L, and U; select the indices of the inactive
inequalities in the box constraint y; € By, N By, (L for the
lower bounds and U; for the upper bounds). Similarly, Lo and
U select the inactive inequalities in y; € By, N By, ;.

Checking if the inequalities in (8) are satisfiable is very quick.
In fact, since Lq, Lo, Uy, and Us are selection matrices, the
corresponding inequalities in (8) simply impose bounds on a
subset of the entries of A. We express these bounds as ¢; <
X < ¢, for two suitable vectors ¢; € (R U {—o00})¢ and ¢, €
(R U {oc})?. Then, the vector A of minimum Euclidean norm
that lies within these bounds can be computed as

A

2% = min{cy, max{cy,0}})

where the minimum and maximum are elementwise. We con-
clude that 1* has norm greater than one if and only if the system
of inequalities (8) has no solution, which is equivalent to the
insertion of the box By, shortening our curve C.

For eachindex j = 1,..., N — 1 such that the norm of A* is
greater than one, we insert a new box in our sequence. If multiple
boxes satisfy this condition for the same index j, we select one
for which the norm of 1* is largest (this heuristic is motivated in
Sec. A). After updating the box sequence, we optimize the curve
C by solving the new instance of problem (7). This process is
iterated until the condition above fails for every curve node j
and every box k.

C. Example

Fig. 4 continues our running example, and illustrates the
construction of the polygonal curve. The initial position p™" and
terminal position p*®™ are shown as black disks in the bottom

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

MARCUCCI et al.: FAST PATH PLANNING THROUGH LARGE COLLECTIONS OF SAFE BOXES

| |

Fig. 4.

Polygonal phase of the algorithm. Left. Line graph augmented with p'

3801

Cal | = !

IS —1

term term

and p'™, shown as black disks. Center left. Shortest path from p™ to p

Center right. The safe box sequence is fixed and the polygonal curve is shortened via convex optimization. Right. A new box (shown in green) is inserted in the
sequence and the curve is shortened a second time. Since no further shortening is possible, the polygonal phase converges in one iteration.

left and bottom right, respectively. The left figure shows the
augmented line graph, where these two points are connected to
their adjacent vertices. The initial point p™ has two adjacent
vertices, while the terminal point p'*™ has only one. The center
left figure shows the shortest path from the initial point to the
terminal point. In the center right figure, we fix the boxes that
the curve must traverse, and we minimize the curve length by
solving the SOCP (7). In the right figure, a new box is inserted
in the box sequence and the curve nodes are optimized again. In
this example, the polygonal phase converges in a single iteration.

V. SMOOTH PHASE

The smooth phase is the final phase of our algorithm. It starts
from the polygonal curve C and constructs a smooth path p that
is feasible for our planning problem, and has small objective
value. For the path parameterization, we use a piecewise Bézier
curve, i.e., a sequence of Bézier curves that connect smoothly.
(Sometimes, this is also called a composite Bézier curve.) We
start this section by reviewing some basic properties of this fam-
ily of curves. Next, we describe the optimal-control problems
that we solve to design our smooth path. Finally, we conclude
our running example.

A. Bézier Curves

A Bézier curve is constructed using Bernstein polynomials.
The Bernstein polynomials of degree M are defined over the
interval [a,b] C R, with b > q, as

n o M—-n
ﬁn(t)z(]\f) (2:3) (5_2) , n=0,..., M.

For t € [a, b] the Bernstein polynomials are nonnegative and,
by the binomial theorem, they sum up to one. Therefore, the
scalars By(t), ..., B (t) can be thought of as the coefficients
of a convex combination. Using these coefficients to combine a
given set of control points o, . . ., yar € R?, we obtain a Bézier
curve

V(t) = Z Bn(t)%r

T
O
Y4= y(b)
(1)
70::7(0) V3
O
V2
O

Fig.5. Bézier curve with control points yo, . . ., yar, M = 4. The curve starts
at y(a) = 7o, ends at v(b) = s, and is entirely contained in the convex hull
of the control points, shown shaded.

The Bézier curve 7 : [a,b] — R? is a polynomial function of
degree M. An example of a Bézier curve is shown in Fig. 5,
ford = 2 and M = 4. Below, we list some important properties
that we will use later in this section.

Endpoints: A Bézier curve starts at its first control point and
ends at its last control point, i.e.,
(10)

v(a) = o, Y(b) = vm-

With this property, a piecewise Bézier curve (our path) can be
made continuous simply by equating the last control point of
each curve piece with the first control point of the next piece.

Control Polytope: Since each point on a Bézier curve is a
convex combination of the control points, the entire curve is
contained in the convex hull of the control points

(1)

for all ¢ € [a, b]. This convex hull is called the control polytope
of the Bézier curve ~y. From this property, it follows that if all
control points lie in a convex set (in our case a box), then so does
the Bézier curve.

Derivatives: The derivative y!) of a Bézier curve 7 is also
a Bézier curve. It has degree M — 1 and its control points are
given by the difference equation

m_ M

Tn' = h— a(fYn-‘rl - ’Yn)a

A(t) € convi{zo, ., 7ar}

n=0,...,M—1. (12)

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

3802

Iterating this, we see that the derivative (") of any order i > 1
is a Bézier curve of degree M — i. Moreover, the derivatives of
a piecewise Bézier curve are also piecewise Bézier curves, and
their continuity can be enforced using the endpoint property (10).

Squared Lo Norm: The square of the Lo norm of a Bézier
curve vy can be expressed as a function of the control points
using the following expression [62, Sec. 3.3]

b
/Ih@M%ﬁzﬂb*Mthuva) (13)

where () is a convex quadratic function defined as

R R N I
Q(0,- .- 7Mm) = I Z Z Ay Ym n-

(mtn)

This formula allows us also to compute the squared Lo norm of
a piecewise Bézier curve and its derivatives.

m=0n=0

B. Nonconvex Optimal-Control Problem

In the smooth phase, we limit our attention to paths that are
piecewise Bézier curves and traverse the same box sequence
S1,---,8n as the curve C. This reduces the path-planning prob-
lem (4) to an optimal-control problem that is finite dimensional
and has only continuous variables, but is nonconvex. This section
illustrates this control problem, and the next section describes
our approach to its solution.

Variables: The variables in problem (4) are the safety map s
and the path p. Here, the box sequence is fixed, therefore, a safety
map is specified only through the traversal times 77, ..., Ty,
which are the first variables in our control problem. For the path
parameterization, we use a piecewise Bézier curve with NV pieces
(one per safe box that our path must traverse). Each piece, or
subpath, is a Bézier curve

pj:ltitj] > RY j=1,...,N.
These Bézier curves have degree equal to M, and their control
points

P00 ERY j=1,...,N (14)

are the second group of variables in our control problem.
For ¢ =1,..., D, the derivatives pg-l) of the subpaths are
Bézier curves of degree M — i. Our last set of variables are

the control points these derivatives

P b €RL i=1,...,D, j=1,... N. (15

)

For simplicity of notation, we will sometimes denote the control
pointsin (14) as p‘% RN p;?z)u’ where the superscript represents
the zeroth derivative.
Constraints: We assemble the constraints of our control
problem by leveraging the properties of the Bézier curves.
Using the endpoint property (10), the boundary conditions in
problem (4) are enforced simply as

__ init

Pio=p (16)

term
PN.M =P

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Similarly, the continuity and differentiability of our path are
enforced as

(@) (@)

Pimv—i =Pjy100 ¢=0,...,D,j=1,...,N—-1. (17

Property (11) tells us that a Bézier curve lies within its control
polytope. Therefore, to ensure that a subpath p; is entirely
contained in the corresponding safe box st , it is sufficient to
constrain its control points

ly, <Pjm <us;, j=1,....,N,n=0,...,M. (18

Since each subpath p; is constrained in a safe box, the whole
piecewise Bézier curve p will be safe.

The control points of the subpath derivatives need to satisfy a
difference equation analogous to (12)

(-1

h M—it1 i1
M _M-itl (pj,n+1—p§-,n).

DPjn = Tj

i=1,...,D,j=1,...,N,n=0,....,M —i. (19)

Note that these equality constraints are nonlinear, since both
the control points and the traversal times are variables in our
optimization problem.

Last, the traversal times need to be positive

T7,>0, j=1,...,N (20)
and sum up to the final time
N

ST =T. Q21
j=1

Objective Function: We split the integrals in our objective
function (1) into the sum of /N terms (one per subpath)

D N
J = ZO@ Z Ji,j-
i=1 j=1

We use (13) to express each term as a function of the control
points and the traversal times

tj . .)
Ty = [P OB =10 (. p0))
-1

fort=1,...,D and j=1,...,N. Note that the quadratic
function () is convex, but its product with the traversal time
T; makes our objective nonconvex.

Optimization Problem: Collecting all the components, we
obtain the optimization problem

minimize J

subject to constraints (16) to (21). (23)

This program has the structure of an optimal-control prob-
lem where the difference equation (19) acts as a dynamical
system that links the variables over time. Together with the
nonconvex objective terms (22), this nonlinear difference equa-
tion makes the problem nonconvex. However, similarly to its
infinite-dimensional counterpart (4), this problem simplifies to
a convex quadratic program (QP) [46, Sec. 4.4] if we fix the

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

MARCUCCI et al.: FAST PATH PLANNING THROUGH LARGE COLLECTIONS OF SAFE BOXES

traversal times. In fact, this makes the difference equation linear
and the objective function convex quadratic.

Curve Degree and Feasibility: If the degree of the sub-
paths satisfies M > 2D + 1, then problem (23) is guaran-
teed to be feasible. In fact, similarly to the discussion in
Section II-C, this minimum degree ensures that each subpath
can be a line segment, with the first D derivatives equal to zero
at the endpoints. The overall path p can then take the shape of
the safe polygonal curve C, while satisfying the differentiability
constraints. Note also that the degree M must be at least D + 1,
since the continuity and differentiability constraints (17) fix
the value of D + 1 control points per subpath. In the rest of
this article, we will use curves of degree M = 2D + 1, so that
problem (23) will always be feasible. Although, in practice, we
have found that also values of M closer to D + 1 almost always
yield feasible problems.

C. Solution Via Convex Alternations

We solve the nonconvex program (23) by alternating between
a projection problem and a tangent problem, both of which
are convex optimal-control problems. As the other parts of our
planning method, this step is heuristic: it is guaranteed to find a
feasible solution of (23), but this solution needs not to be optimal.

Initialization: We start by computing an initial estimate of
the traversal times 71, . .., Ty that satisfies the constraints (20)
and (21). To do so, we imagine travelling along the polygonal
curve C at constant speed. The window of time 7’; that we allocate
for the jth box is then equal to the distance between the nodes y;
and y;_1, divided by the total length of the curve C and multiplied
by the final time 7'.

Although this heuristic is very simple, we have found that it
works well for most problems. More precise initial estimates of
the traversal times are certainly possible but, in our experience,
they are rarely worth their increased complexity.

Projection Problem: In this step, we fix the current value of
the traversal times (initialized as just described) and we solve the
control problem (23). As observed above this is a convex QP,
which has the effect of projecting the current iterate onto the
nonconvex feasible set of (23). Thanks to their optimal-control
structure and their banded constraints, these QPs are solvable
in a time that grows only linearly with the number /N of boxes
traversed by our path [28].

Tangent Problem: In this step, we attempt to improve the es-
timate of the traversal times by solving a convex approximation
of (23).

Letus introduce auxiliary variables that represent the products
of the traversal times and the control points of the path derivatives

(24)
forer=1,...,D,75=1,...,N,and n =0,..., M — . Using

these variables, the nonlinear difference equation (19) becomes
linear

i . i1 i1
qj(y)z = (M —i+1) <p§,n+)1 - p§n))

3803

and the nonconvex objective terms (22) become quadratic over
linear [46, Sec. 3.2.6]

Q (q](f%, e ,qj(-,%,i)
Ji,j = .

iy

(Recall that quadratic-over-linear functions, with the numerator
convex and the denominator positive, are convex and repre-
sentable through a second-order cone [60, Sec. 2.3].)

The only nonconvexity left in our problem is the nonlinear

equality constraint (24), which we simply linearize around the
(%)

current traversal times 7} and control points ;.n (Obtained by
solving the projection problem)
(@) _ _p) =) 4 (@)
qjjn - jpjfn + ijjjn + ,ijjfn'

Since this linearization might be inaccurate away from the
nominal point, we also add a trust-region constraint
1 T}

<L <14k,
1+I€7Tj7 Th

j=1,...,N. (25)
This sets a limit of £ > 0 to the maximum relative variation of
the traversal times.

The resulting problem is an SOCP that approximates the
nonconvex program (23) locally, and tries to improve the current
solution by taking a step in the tangent space of the nonlinear
equation (24). Like the projection problem, it can be solved in a
time that increases only linearly with N. From its solution, we
only retain the optimal traversal times 17, ..., T, and then we
solve a new projection problem to obtain a new feasible path. If
the optimal objective value decreases, compared to the previous
projection problem, we accept the new times and update our
path. Otherwise we keep the previous times and path.

Trust Region Update: After each iteration, independently of
its success, we decrease the value of the trust-region parameter
k. A simple way to do so would be to divide « by a parameter
w > 1. However, using this rule, we might have that two con-
secutive iterations produce the same unsuccessful update of the
traversal times. Specifically, if one iteration is unsuccessful and
the transition times computed in the tangent problem are not at
the boundary of the trust region (25), then these times might still
be feasible (and thus optimal) after we shrink the trust region. To
prevent this phenomenon, we use a slightly more sophisticated
update

1 T Tt Tn T}
kT = = [max —1771,...,—N,7—N -1 <
w T T Ty Tn

Here, x and T are the current and the updated trust-region
parameters, respectively. The term in the parenthesis is the min-
imum value of « that, in hindsight, would have activated at least
one of the trust-region constraints (25). If one of these constraints
was already active, then this rule reduces to k™ = & Jw. If none
of the trust-region constraints was active, and the iteration was
unsuccessful, then the trust region is shrunk enough to make the
solution of the last tangent problem infeasible for the next.
Termination: The tangent problem has optimal value
smaller than or equal to its preceding projection problem. We
terminate our algorithm when this gap, normalized by the cost of

gl=

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

3804

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

3%
2.96
8% —H
0.30)
9%
- 4.16
27%],
2.77
120
0.06 -
— l — []

Fig. 6.

% 0%
0.13 0.07
1% —h % — 1
0.20 0.19
2% 5%
: 0.31 0.20
32%] 277!
0.56 0.52
() [y
11% ?)7(@] 13% %50/20]
0.01 ' 0.01 :
1 1

Smooth phase of our algorithm. Left. The curve from the polygonal phase with the corresponding sequence of safe boxes. Center left. The polygonal curve

is used to estimate initial traversal times and a first smooth path is optimized. For each box traversed by the path, the labels show the traversal time (normalized
by the final time) at the top, and the cost of the trajectory piece at the bottom. The red shaded sets are the control polytopes of the Bézier curves. Center right.
The traversal times are improved and the path is optimized a second time. Right. The path at the last (fourth) iteration, whose cost is within 0.01% of the global

minimum.

the projection problem, is smaller than a fixed tolerance £ > 0.
In which case, we solve one last projection problem and we
return the best path that we have found.

Choice of the Parameters: We have found that for most
problems the value of x can be simply initialized to one. Large
values of w (e.g., w = 5) tend to work well when our initial-
ization of the traversal times is accurate, while smaller values
(e.g., w = 2) are more effective otherwise. In the numerical
experiments discussed in this article, we use w = 3. For the
termination tolerance, a reasonable choice is ¢ = 10~2.

D. Example

We conclude our running example by illustrating the smooth
phase of the path-planning algorithm. We seek a path that is
D = 3 times continuously differentiable, and has total duration
T equal to one. We use Bézier curves of degree M = 2D + 1 =
7. We take objective weights vy = ao = 0 and a3 > 0, i.e., our
objective penalizes the squared Lo norm of the third derivative
(or jerk) of the path. To simplify the analysis, the weight a3 is
chosen so that the global minimum of the problem is equal to
one.

In the left of Fig. 6, we have the curve computed in the
polygonal phase, with the corresponding sequence of safe boxes
highlighted in cyan. In the center left of Fig. 6, we show the
path obtained by solving the first projection problem, with the
traversal times initialized using the constant-velocity heuristic.
Each box traversed by the path is labeled with two numbers: the
percentage on top is the ratio between the traversal time 7; of that
box and the final time 7'; the number at the bottom is the cost .J3 ;
of the subpath p;. The red shaded areas are the Bézier control
polytopes within each box. We solve the tangent problem, we
update the traversal times, and we solve the projection problem
a second time. The resulting path is depicted in the center right
of Fig. 6. After four iterations the smooth phase terminates, with
the resulting path depicted in the right of Fig. 6.

The initial path (center left) has cost 12.04. The path after the
first iteration (center right) has cost 1.27, which is 89% smaller.
The final path (right) has cost 1.0001, and is essentially the
global minimum of the problem. Although our simple heuristic
to initialize the traversal times was not accurate, our algorithm
converges in very few iterations.

VI. ALGORITHM EFFICIENCY AND GUARANTEES

We briefly summarize the main properties of our path-
planning method.

Completeness: Our algorithm is complete: it finds a safe
smooth path connecting the initial and final positions if such a
path exists, and it certifies infeasibility otherwise. Feasibility is
decided almost immediately with the solutions of the shortest-
path problem at the beginning of the polygonal phase. If this
problem is infeasible, then the initial and terminal points cannot
be connected by a continuous curve. Conversely, if the shortest-
path problem is feasible, then our algorithm can always recover
a smooth feasible path as described at the end of Section V-B.
Of course, if the safe boxes approximate a more complex space,
then the completeness of our method is up to the conservatism
of this approximation.

Suboptimality: Our algorithm is heuristic, and not guaran-
teed to solve problem (2) optimally (or within a fixed optimality
tolerance). In practice, the main source of suboptimality is the
choice of the box sequence, which is frozen after the polygonal
phase, and does not take into account the actual objective of our
path-planning problem. Solving the nonconvex problem (23) is
another source of suboptimality, and our alternating method in
Section V-C is designed to prioritize a low number of iterations
over the cost of the final path. Two other (milder) approxima-
tions are the path parameterization using Bézier curves, and the
sufficiency of the safety constraint (18).

Some heuristic steps in our path planner do not contribute
to the algorithm completeness, but can play an important role
in limiting the optimality losses just described. For example,

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

MARCUCCI et al.: FAST PATH PLANNING THROUGH LARGE COLLECTIONS OF SAFE BOXES

we could take the centers of the box intersections as represen-
tative points, instead of optimizing them as in (6). However,
the downstream shortest-path problem would typically select
less efficient box sequences with this choice. Two other main
heuristic components of our method are the iterative shortening
of the polygonal curve in Section I'V-B and the initialization of
the traversal times in Section V-C.

Runtimes: The offline and online runtimes of our method are
dominated by the convex optimization problems. The SOCP (6)
is the preprocessing step that takes most time, but is efficiently
solvable even for path-planning problems of very large scale. In
addition, we note that this subproblem only needs to be solved
to modest, or even low, accuracy. The SOCP (7) in the polygonal
phase takes negligible time, since it is very small and has banded
constraints. Furthermore, this phase usually converges within
four or five iterations. (More formally, the iterations of this
phase can be bounded by the number K of safe boxes; since
each iteration adds at least one box to our sequence, and box
repetitions are not optimal). The projection QPs and the tangent
SOCPs in the smooth phase can be large problems, but they take
atime thatis only linear in the number of traversed boxes and can
be solved to modest precision. Note also that the trust region (25)
shrinks geometrically during the iterations of the smooth phase.
Therefore, after a handful of iterations (typically four to eight
with the parameters given in Section V-C) the projection and the
tangent problems are essentially identical, and the smooth phase
terminates.

VII. NUMERICAL EXPERIMENTS

In this section, we analyze the performance of our method
through multiple numerical experiments. Every experiment was
run using the default values in our software implementation
fastpathplanning, which we briefly describe below. The
computations were carried out on a computer with 2.4 GHz
8-Core Intel Core 19 processor and 64 GB of RAM.

For code readability and fast prototyping, the current version
of fastpathplanning uses CVXPY [63] to construct the
convex optimization problems and pass them to the solver. This
introduces an overhead that for some problems can be even a
few times larger than the actual solver times. Since by com-
municating directly with the solver this overhead can be made
negligible, the time spent within CVXPY has been eliminated
from the runtimes reported in this article.

A. Software Package

The algorithm presented in this article is implemented in the
open-source Python software package fastpathplanning,
which is available at https://github.com/cvxgrp/
fastpathplanning. For the graph computations (e.g., the
construction of the line graph) we use NetworkX 3.2 [64].
For the solution of the shortest-path problem in the line graph, we
use scipy 1.11.3 [61]. The convex optimization problems
are specified using CVXPY 1.4.1 [63], and solved with the
Clarabel 0.6.0 solver [65].

The following is a basic example of the usage of fastpath-
planning.

3805

| import fastpathplanning as fpp
2
3# offline preprocessing

4L = # lower bounds of the safe boxes
50 = # upper bounds of the safe boxes
6S = fpp.SafeSet (L, U)

7

8 # online path planning

9p_init = # initial point

10 p_term = # terminal point

11T =1 # final time

12 alpha = [1, 1, 5] # cost weights
13p = fpp.plan(S, p_init, p_term, T,
14

15 # evaluate solution

16t = 0.5 # sample time

17p_t = p(t)

alpha)

The matrices L and U contain the lower bound [;, and the
upper bound wuy, of each safe box B, k = 1,..., K. These have
dimension K x d, and are not explicitly defined in the code
above. In line 6, they are used to instantiate the safe set S (as the
object S). This line is where the offline preprocessing is done,
i.e., we construct the line graph and optimize the representative
points. In line 13, the function plan finds a smooth path p,
given the safe set, initial and terminal points, final time, and
objective coefficients. The number D of continuous derivatives
that our path will have is equal to the length of the listalpha. By
default, the degree of the Bézier curves is set to M = 2D + 1.
The path object p can be called like a function by passing a time
t € [0,T] as in line 17. (It also contains other attributes such as
the list of Bézier control points and the safe boxes s1,...,sy
that the path traverses.)

B. Scaling Study

In our first example, we consider path-planning problems in
d = 2 dimensions, and analyze the performance of our algorithm
as a function of the number K of safe boxes.

We generate an instance of problem (2) as follows. We con-
struct a square grid with P? points with integer coordinates
{1,..., P}2. We let each point in this grid be the center of a
safe box By,. Each box elongates either horizontally or vertically,
with equal probability. The short and long sides of a box are
drawn uniformly at random from the intervals [0, 0.5] and [0, 2],
respectively.

We use this procedure to generate six feasible path-planning
problems with grids of side P = 5, 10, 20, 40, 80, 160. The num-
ber of boxes in these problems is then

K = P? =25, 100, 400, 1,600, 6400, 25 600.

The final time is taken to be 7" = P and the cost weights
are a; = 0 and oo = a3 = 1. The path is continuously differ-
entiable D = 3 times, and the Bézier curves have degree M =
2D + 1 = 7. The initial position is the center of the bottom-left
box, p™Mt = (1,1), and the terminal position is the center of the
top-right box, p'™* = (P, P). The largest of these instances (with
K = 25,600 safe boxes) is depicted in Fig. 7.

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

https://github.com/cvxgrp/fastpathplanning
https://github.com/cvxgrp/fastpathplanning

3806

Fig. 7. Largest problem instance in the scaling study, with K = 25,600 safe
boxes and final path shown.

102 g
] —@— Offline preprocessing
10t] —0— Polygonal phase
L i —@— Smooth phase
3]
£ 100+
c]
Be]
©
5 107! 5
Qo
IS
o
(@) 10 -2 |
10_3 T T R RN T T
101 102 103 10* 10°
Number of boxes K
Fig. 8. Computation times for the scaling study, broken down into offline

preprocessing, polygonal phase, and smooth phase.

The computation times are shown in Fig. 8, broken down into
offline preprocessing, polygonal phase, and smooth phase. The
smaller instances are solved in a few hundredths or tenths of
seconds. For the largest instance in Fig. 7 the offline processing
time is 25 s, while the online polygonal and smooth phases take
0.12and 3.4 s, respectively. Accounting for some fixed overhead,
we see that the preprocessing times grow almost linearly with
the number of boxes K (unit slope in the log-log plot), while
the online runtimes grow even more slowly. Table I shows the
number of vertices |V| and edges |£] in the line graph G and
the number of boxes N traversed by the final path, for all the
problems in this analysis.

We report that for both the polygonal and the smooth phase
the number of iterations is essentially unaffected by the size of

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

TABLE I
SIZE OF THE INSTANCES IN THE SCALING STUDY
Total boxes K 25 100 400 1600 6400 25 600
Vertices |V| 38 179 804 3298 12 816 52 308
Edges |&| 127 708 3583 15613 58351 241348
Path boxes N 7 12 35 53 113 241

the problem. In the polygonal phase, the number of iterations
ranges between 1 and 4, in the smooth phase between 5 and 6.

C. Large Example

In our second example, we plan a path for a quadrotor in
an environment with many obstacles. The configuration space
of a quadrotor is six dimensional: three coordinates specify the
position of the center of mass, and three coordinates specify the
orientation. However, given any path for the center of mass that
is differentiable four times, a dynamically feasible trajectory for
the quadrotor’s orientation, together with the necessary control
thrusts, can always be reconstructed [66]. This convenient prop-
erty is called differential flatness, and it allows us to plan the
flight of a quadrotor by solving a path-planning problem in only
d = 3 dimensions.

The quadrotor environment is shown at the top of Fig. 1,
and it resembles a village with multiple buildings and dense
vegetation. This village is constructed over a square grid with
P? =502 = 2,500 points, which divide the ground into (P —
1)? square cells of unit side. The cell indexed by (i,j) €
{1,..., P — 1}*hasbottom-left coordinate (i, j) € R?and top-
right coordinate (i + 1,j + 1) € R?. Each cell contains one of
the following obstacles: a building, a bush, or a tree. There are a
total of 92 = 81 buildings. The cells that each building occupies
are identified through a random walk of length 5 that starts in
the cell withindex (4, j) € {5, 10, ..., 40, 45}?. Therefore, each
building can cover up to six cells, and neighboring buildings can
potentially be connected. The buildings are constructed so that
the quadrotor, whose collision geometry is overestimated with
a sphere of radius 0.1, cannot collide with them while flying in
another cell. The height of each building is equal to 5.0. In the
cells that are not occupied by a building, we have either a bush
or a tree, with equal probability. Bushes and trees are positioned
in the center of their cells. A bush has square base of side chosen
uniformly at random between 0.2 and 0.7, and its height is twice
the side of its base. The foliage of a tree is represented as a cube
of side 0.8. The center of the foliage has height that is drawn
uniformly at random between 1.0 and 4.5. The trunk of a tree
has square section with side 0.2.

To construct the safe set S, we decompose the free space in
each cell independently using axis-aligned boxes. The buildings
occupy their cells entirely, so for these cells we do not use any
safe box. The free space around a bush is decomposed using five
safe boxes: four around the bush and one on top. Similarly, for a
tree we have four safe boxes around the trunk and one safe box on
top of the foliage. These boxes are appropriately shrunk to take
into account the collision geometry of the quadrotor. The total
number of safe boxes needed to decompose the environment in

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

MARCUCCI et al.: FAST PATH PLANNING THROUGH LARGE COLLECTIONS OF SAFE BOXES

Fig. 1 using this method is K = 10,150. The resulting line graph
has |V| = 70,907 vertices and |€| = 1,022,782 edges.

As shown in [66], a natural objective function when planning
the path of a quadrotor is the squared Lo norm of the fourth
derivative (or snap). Thus, we set our cost weights to a; =
ag = ag = 0 and oy = 1. We design a path that is continuously
differentiable D = 4 times, and we use Bézier curves of degree
M = 2D + 1 = 9. The final time is taken to be 7" = P = 50.
The quadrotor takes off at the bottom left of the environment
p™ = (1,1,0),andlands in the top right p™* = (P, P, 0). Using
the results from [66], it can be seen that for the quadrotor to
start and stop horizontally, with zero translational and angular
velocity, the following boundary conditions are necessary:

p(i)(o) :p(z‘)(T) =0, i=1,...,3.

The small modifications necessary for our algorithm to handle
these constraints are described in Section VIII.

The offline preprocessing of the safe boxes takes 101 s, with
the representative points in (6) computed using the commercial
solver MOSEK 10.0. The polygonal phase takes 0.22 s, and it
converges in 5 iterations. The smooth phase takes 7.5 s and 8
iterations. The number of boxes in the final path is 135. The
bottom of Fig. 1 shows the quadrotor flying along the path
generated by our algorithm. A video of the quadrotor flight can
be found at https: //youtu.be/t9UWI1i9INyxM.

In this example, as well as in any other problem, where we
only penalize the path snap, our initial guess of the traversal
times is quite inaccurate, and the initial trajectory has very high
cost. However, the first iteration of the smooth phase is already
sufficient to reduce the cost by 84.3%, and the final trajectory
has a cost that is 99.3% smaller than the initial one.

D. Comparison With Mixed-Integer Optimization

A very natural approach to solving problem (2) is mixed-
integer (global) optimization [17]. We conclude our experiments
with a comparison of our method with these techniques. As a
benchmark, we use our simple running example illustrated in
Sections III-V, since the mixed-integer approach is impractical
for larger problems.

To solve problem (2) using mixed-integer optimization, we
parameterize a path as a piecewise Bézier curve with N sub-
paths of equal duration 7; = T/N, j =1,..., N. We write a
mixed-integer program that is identical to problem (23), except
for the traversal times T’ that here have fixed value, and the safety
condition (18) that is substituted with a disjunctive constraint.
This disjunctive constraint requires that each subpath p; be
contained in at least one safe box By, and is encoded using the
binary variableso; , € {0,1},j=1,...,Nandk =1,..., K.
Since our safe sets are axis-aligned boxes, this constraint takes
the following simple form:

K K
E lkoje <pjn < E UROj
k=1 =1

3807
Y% Ours —@— CPLEX
—0— Gurobi —@— MOSEK
1.30
%0
1.25
1.20 - L1y
= F13 =
2]
8 1.15 4 2
< S
& —14§
1.10 - S
- 12
1.05 4 [
- 15
1.00 1%¢
T

T T L T
100 10* 10?

Planning time (s)

10-2 101

Fig.9. Comparison of our algorithm with mixed-integer optimization, in terms
of planning time and cost of the designed path. The yellow star represents our
method. The three curves show the performance of different commercial mixed-
integer solvers (CPLEX, Gurobi, and MOSEK) as the number IV of subpaths
used in the path parameterization increases. The value of N corresponding to
each mixed-integer program can be read on the vertical axis on the right.

forj=1,...,Nand n =0,..., M. The binary variables are
also subject to the “one-hot” constraint

K
E ok =1
k=1

for j =1,...,N. The resulting problem is a mixed-integer
quadratic program (MIQP).

We solve a sequence of MIQPs for an increasing number of
subpaths in our piecewise Bézier curve: N =9,...,18. The
minimum value N = K =9 is chosen since the optimal path
might have to visit each safe box. Setting the degree of the
Béziercurvesto M = 2D + 1 = 7, we then have that the mixed-
integer approach features the same completeness guarantee as
our method, i.e., the MIQP is feasible if and only if the original
planning problem (2) is feasible. Larger values of N yield a
more flexible path parameterization and can decrease the MIQP
optimal value. However, they also increase the MIQP solution
times, which in the worst case are proportional to the number
KN of possible assignments of the binary variables. Note that,
since N > K, this worst-case runtime is super-exponential in
the number K of boxes.

The path designed by our method for the running example
is illustrated in the right of Fig. 6, has cost 1.0001, and is
essentially the global minimum of the problem (which has unit
cost). The offline preprocessing (see Fig. 2), the polygonal phase
(see Fig. 4), and the smooth phase (see Fig. 6) of our algorithm
take 1.0, 1.7, and 14.5 ms, respectively. The sum of these three
times (17.2 ms) and the cost of our path are reported in Fig. 9
with a yellow star.

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

https://youtu.be/t9UWIi9NyxM

3808

For the solution of the MIQPs, we consider three state-of-the-
art commercial solvers: CPLEX 22.1.1, Gurobi 10.0,
andMOSEK 10. 0. Fig. 9reports the solution times and the path
costs for these solvers, as functions of the number N of subpaths.
For N =9, the MIQP has an optimal value of 1.27, which is
higher than our method since the duration of each subpath is fixed
in the MIQP, and the solver cannot finely optimize the traversal
times. The fastest solver is CPLEX which takes 124 ms, and is
six times slower than our approach. The number of subpaths
that leads to the MIQP of lowest optimal value is N = 15. This
optimal value is 1.01, which is closer to but still larger than the
cost of the path found with our method. CPLEX is the fastest
solver also in this case, and takes 439 ms (26 times slower than
our algorithm).

As expected, the mixed-integer approach becomes quickly
impractical as the problem size grows. For instance, by solv-
ing via MIQP the smallest problem in the scaling study in
Section VII-B (with N = K and M = 2D + 1), we get a path
that is approximately three times cheaper than ours. However,
our planner takes only 43 ms (including the offline preprocess-
ing), while CPLEX takes 584 s to solve the MIQP, and 25 s of
branch and bound before finding a feasible path with cost lower
than ours. The other solvers are even slower.

VIII. EXTENSIONS

We conclude by briefly mentioning how the techniques pre-
sented in this article can be extended to more general path-
planning problems.

Initial and Final Derivatives: Our method handles boundary
values on the path derivatives very easily. We only need to
specify them in problem (23) using the control points p%
and p%)M_i, with 7 € {1,..., D}, as done for the endpoint
constraints in (16).

An additional modification to our algorithm that is useful in
presence of boundary conditions on the derivatives concerns the
estimate of the traversal times in Section V-C. Instead of initial-
izing the traversal times by traveling the whole polygonal curve
C at constant speed, we travel at constant speed only the central
part of C, and in the first and last segments we set to a constant
the smallest derivative that gives us enough variables to satisfy
the boundary conditions and the differentiability constraints. For
example, in the quadrotor problem in Section VII-C, we need
constant seventh derivative in the initial and final segments of
C to find a time parameterization whose first three derivatives
vanish at the endpoints, and that is continuously differentiable
four times.

Finally, we note that with boundary conditions on the deriva-
tives the degree of the first and last Bézier curves might need to
be increased to preserve the completeness of our algorithm. For
example, if the initial position is close to a boundary of the safe
set, and the initial velocity points outwards, we may need many
control points to design a sharp turn that does not leave the safe
set.

Convex Safe Sets: The assumption that the safe sets are
axis-aligned boxes is very convenient in the offline part of our al-
gorithm, since the pairwise intersections between a collection of

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

boxes can be found very efficiently [59]. We also leveraged this
assumption in the polygonal phase, specifically in the multiple
stabbing problems and in the improvement of the box sequence
in Section IV-B. In case of more generic convex safe sets these
computations are more demanding and can significantly slow
down our algorithm. For example, checking if two convex sets
intersect requires solving a convex optimization problem, e.g.,
a linear program when the sets are polyhedra. However, if each
convex safe set is equipped with an axis-aligned bounding box,
part of the efficiency of our approach can be recovered.

Unspecified Final Time: In some applications specifying a
fixed final time 7" is not straightforward, and it is preferable
to let the planning algorithm select this value automatically. In
these cases, we also add a penalty on 7" (e.g., a linear cost a7’
with fixed weight aig > 0) that prevents our original objective .J
from making the final time arbitrarily large. Our approach can be
extended to these problems very naturally. In the initialization
of the traversal times in Section V-C, we now require an initial
guess also for the total duration of the path. This guess is then
improved by solving the tangent problem in Section V-C, where
the final time 7" is now a variable in the linear constraint (21),
and the cost function includes the time penalty (e.g., agT).

Derivative Constraints: Convex constraints on the path
derivatives are also easily incorporated in our framework. In fact,
the path derivatives are piecewise Bézier curves, and, similarly
to the safety constraints in (18), they can be forced to lie in a
convex set at all times by constraining their control points. If
the final time 7' is fixed, the addition of these constraints breaks
the completeness of our algorithm. Specifically, the feasibility
argument in Section II-C does not hold anymore, and the opti-
mization of our piecewise Bézier path in (23) might be infeasible
even if the original path-planning problem is feasible. However,
if we let 7" be an optimization variable as described above,
then the algorithm completeness is recovered. This because any
derivative constraint (that contains the origin in its interior) can
be satisfied by travelling along a curve sufficiently slowly.

Multiple Waypoints: In some path-planning problems, we
need to design a single smooth path that interpolates or passes
through a given sequence of intermediate waypoints in order.
To extend our approach to these problems, the steps in the
polygonal phase are repeated to connect each pair of consecutive
waypoints, yielding a single polygonal curve that satisfies all
the interpolation constraints. Similarly, in the smooth phase, we
concatenate multiple problems of the form (23) into a single
program, where each piecewise Bézier curve has fixed endpoints
and is constrained to connect smoothly with its neighbors. The
time at which the overall path visits each waypoint is then
automatically selected by the smooth phase. Finally, periodic
trajectories that visit all the waypoints can be generated by ask-
ing our path to satisfy p()(0) = p()(T), i =0,..., D. These
conditions translate immediately to linear constraints on the
control points of the initial and final Bézier subpaths.

Dynamic and Unknown Environments: This article ad-
dresses the problem of computing smooth trajectories quickly
through a known environment that is mostly static, and where
only the initial and terminal points change on each query. Such
problems are of great industrial interest, and are relevant to a

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

MARCUCCI et al.: FAST PATH PLANNING THROUGH LARGE COLLECTIONS OF SAFE BOXES

variety of robotic systems, e.g., mobile robots, unmanned aerial
vehicles, and robot arms. If the environment is dynamic but the
motion of the obstacles is known or predictable (as it is often
the case, e.g., in aerospace applications), then a variant of our
method can be used to design paths through a decomposition of
the space-time into boxes or convex sets. If the environment is
partially unknown, we can consider using techniques similar to
those developed in sampling-based motion planning [67], [68]
to rapidly adjust our collection of safe sets in response to online
observations. Specifically, if a new obstacle appears, then we can
shrink or prune the safe sets that intersect with it. Conversely, if
an obstacle disappears, then we can let a new safe region take
its place. However, computing the safe regions from perception
data at real-time rates remains an active area of research.

APPENDIX

In this appendix, we derive the inequalities (8), which are used
in the polygonal phase to improve the box sequence traversed
by the curve C.

To simplify the notation, in this appendix, we let a = y;_1,
b = y;+1, and y = y;. In addition, we denote with [and v the
lower and upper bounds that delimit the axis-aligned box B, N
B, - Similarly, we let [; and u; delimit the box By, N By, and
l2 and ug delimit the box By N Bs, . We compare the optimal
values of the two problems illustrated in Fig. 3. The first is

minimize
subject to

ly —all2 + b = yll2
I<y<u

where the only variable is y. The second is

minimize ||z — al|2 + ||z2 — z1|]2 + ||b —
subjectto 1} <2z <wuy, los <z <wug

222 (26)

where the variables are z; and zs. Let y* be the solution of the
first problem, which is known to us since we have solved (7).
We want to check if choosing z; = zo = y* is optimal for the
second problem. To do so, we look for Lagrange multipliers of
problem (26) that satisfy complementary slackness and are dual
feasible [46, Sec. 5.5].

Complementary slackness reads

v —)TV = (g — 1) v =0
— (uz —y*) T3 =0

Al

Hy —aHz (
A b—

_b—y* . R\T
2= oy (W= YY)

where the multipliers A1, Ao € R? are paired with the first
and last objective terms in (26), v;", v; € R with the lower
and upper limits in the first box constraint, and v, v, € R?
with the second box constraint. The constraints of the dual of
problem (26) are

Vfr, vy, l/;r, vy >0
A2, IAall2s [[A2flz <1
A=M+vi+vy =h—A+vf +vy =0

where the multiplier A € R is paired with the second cost term
in (26).

We let Ly and U; be the matrices that select the entries,
where [y < y* and y* < wuy, respectively. We let Lo and U,
be defined similarly but for the limits /5 and ug. After a few

3809

manipulations, the two sets of conditions above reduce to the
inequalities in (8). The only variable is A, since the values of Ay
and X are fixed (and known) by the complementary slackness
conditions.

Finally, we observe that the norm of the Lagrange multiplier
A* in (9) can be interpreted as the elastic force exchanged
between the points z; and zo in Fig. 3, and is indicative of the
cost decrease that we incur by letting these points separate. This
motivates our heuristic of inserting the box for which the vector
A* has largest norm.

REFERENCES

[1] S. LaValle and R. Sharma, “On motion planning in changing, partially
predictable environments,” Int. J. Robot. Res., vol. 16, no. 6, pp. 775-805,
1997.

[2] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760772,
1998.

[3] S.Pettiand T. Fraichard, “Safe motion planning in dynamic environments,”
in Proc. IEEE/RJS Int. Conf. Intell. Robots Syst., 2005, pp. 2210-2215.

[4] N.D. Toit and J. Burdick, “Robot motion planning in dynamic, uncertain
environments,” IEEE Trans. Robot., vol. 28, no. 1, pp. 101-115, Feb.
2011.

[5] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning for
agile autonomous vehicles,” J. Guidance, Control, Dyn., vol. 25, no. 1,
pp. 116-129, 2002.

[6] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban driv-
ing,” IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1105-1118,
Sep. 2009.

[7] C.Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time motion
planning methods for autonomous on-road driving: State-of-the-art and
future research directions,” Transp. Res. Part C: Emerg. Technol., vol. 60,
pp. 416442, 2015.

[8] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions,” in Proc. Robot.:
Sci. Syst., Ann Arbor, MI, USA, 2016, vol. 2, pp. 1-9.

[9] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for

collisions-free multirobot systems,” IEEE Trans. Robot., vol. 33, no. 3,

pp. 661-674, Jun. 2017.

A. Liniger and J. Lygeros, “A noncooperative game approach to au-

tonomous racing,” IEEE Trans. Control Syst. Technol., vol. 28, no. 3,

pp. 884-897, May 2020.

R. Spica, E. Cristofalo, Z. Wang, E. Montijano, and M. Schwager, “A

real-time game theoretic planner for autonomous two-player drone racing,”

IEEE Trans. Robot., vol. 36, no. 5, pp. 1389-1403, Oct. 2020.

N. V. Kumar and C. S. Kumar, “Development of collision free path

planning algorithm for warehouse mobile robot,” Procedia Comput. Sci.,

vol. 133, pp. 456463, 2018.

T. Benarbia and K. Kyamakya, “A literature review of drone-based package

delivery logistics systems and their implementation feasibility,” Sustain-

ability, vol. 14, no. 1, 2021, Art. no. 360.

M. Hutter et al., “Towards a generic solution for inspection of indus-

trial sites,” in Proc. Field Service Robot.: Results 11th Int. Conf., 2018,

pp. 575-589.

C. Gehring et al., “ANYmal in the field: Solving industrial inspection of an

offshore HVDC platform with a quadrupedal robot,” in Proc. Field Service

Robot.: Results 12th Int. Conf., 2021, pp. 247-260.

N. Correll et al., “Analysis and observations from the first Amazon picking

challenge,” IEEE Trans. Automat. Sci. Eng., vol. 15, no. 1, pp. 172-188,

Jan. 2018.

R. Deits and R. Tedrake, “Efficient mixed-integer planning for UAVs in

cluttered environments,” in Int. Conf. Robot. Automat., 2015, pp. 42-49.

T. Marcucci, M. Petersen, D. v. Wrangel, and R. Tedrake, “Motion planning

around obstacles with convex optimization,” Sci. Robot., vol. 8, no. 84,

2023, Art. no. eadf 7843.

J.-M. Lien and N. Amato, “Approximate convex decomposition of poly-

gons,” in Proc. 20th Annu. Symp. Comput. Geometry, 2004, pp. 17-26.

N. Ayanian and V. Kumar, “Abstractions and controllers for groups of

robots in environments with obstacles,” in Proc. Int. Conf. Robot. Automat.

2010, pp. 3537-3542.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

3810

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Ghosh, N. M. Amato, Y. Lu, and J.-M. Lien, “Fast approximate convex
decomposition using relative concavity,” Comput.-Aided Des., vol. 45,
no. 2, pp. 494-504, 2013.

R. Deits and R. Tedrake, “Computing large convex regions of obstacle-free
space through semidefinite programming,” in Algorithmic Foundations of
Robotics XI. Berlin, Germany: Springer, 2015, pp. 109-124.

P. Werner, A. Amice, T. Marcucci, D. Rus, and R. Tedrake, “Approximating
robot configuration spaces with few convex sets using clique covers of
visibility graphs,” 2023, arXiv:2310.02875.

A. Amice, H. Dai, P. Werner, A. Zhang, and R. Tedrake, “Finding and
optimizing certified, collision-free regions in configuration space for robot
manipulators,” in Algorithmic Foundations of Robotics XV. Berlin, Ger-
many: Springer, 2022, pp. 328-348.

M. Verghese, N. Das, Y. Zhi, and M. Yip, “Configuration space de-
composition for scalable proxy collision checking in robot planning
and control,” IEEE Robot. Automat. Lett., vol. 7, no. 2, pp. 3811-3818,
Apr. 2022.

H. Dai, A. Amice, P. Werner, A. Zhang, and R. Tedrake, “Certified
polyhedral decompositions of collision-free configuration space,” Int. J.
Robot. Res., 2023, doi: 10.1177/02783649231201437.

M. Petersen and R. Tedrake, “Growing convex collision-free re-
gions in configuration space using nonlinear programming,” 2023,
arXiv:2303.14737.

Y. Wang and S. Boyd, “Fast model predictive control using online opti-
mization,” IEEE Trans. Control Syst. Technol., vol. 18, no. 2, pp. 267-278,
Mar. 2010.

S. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake, “Shortest paths in
graphs of convex sets,” SIAM J. Optim., vol. 34, no. 1, pp. 507-532, 2024.
T. Schouwenaars, B. D. Moor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in Proc. Eur. Control Conf.,
2001, pp. 2603-2608.

A. Richards, J. Bellingham, M. Tillerson, and J. How, “Coordination and
control of multiple UAVS,” in Proc. AIAA Guid., Navigation, Control Conf.
Exhibit, 2002, pp. 4588-4598.

D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
Proc. IEEE Int. Conf. Robot. Automat., 2012, pp. 477-483.

F. Augugliaro, A. Schoellig, and R. D’ Andrea, “Generation of collision-
free trajectories for a quadrocopter fleet: A sequential convex program-
ming approach,” in [EEE/RJS Int. Conf. Intell. Robots Syst., 2012,
pp. 1917-1922.

J. Schulman et al., “Motion planning with sequential convex optimiza-
tion and convex collision checking,” Int. J. Robot. Res., vol. 33, no. 9,
pp. 1251-1270, 2014.

X. Liuand P. Lu, “Solving nonconvex optimal control problems by convex
optimization,” J. Guidance, Control, Dyn., vol. 37, no. 3, pp. 750-765,
2014.

A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feed-
back motion planning,” Int. J. Robot. Res., vol. 36, no. 8, pp. 947-982,
2017.

R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “GuSTO: Guaranteed
sequential trajectory optimization via sequential convex programming,” in
Proc. IEEE 2019 Int. Conf. Robot. Automat., 2019, pp. 6741-6747.
X.Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision avoid-
ance,” IEEE Trans. Control Syst. Technol., vol. 29, no. 3, pp. 972-983,
May 2021.

L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, ‘“Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566-580,
Aug. 1996.

S. LaValle, “Rapidly-exploring random trees: A new tool for path plan-
ning,” Computer Science Department, Iowa State University, Ames, IA,
USA, Tech. Rep. TR 98-11, 1998.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, 2011.
N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in Proc. IEEE Int.
Conf. Robot. Automat., 2009, pp. 489-494.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in 201/
IEEE Int. Conf. Robot. Automat., 2011, pp. 4569-4574.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

K. Hauser, “Learning the problem-optimum map: Analysis and application
to global optimization in robotics,” IEEE Trans. Robot., vol. 33, no. 1,
pp. 141-152, Feb. 2017.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

C. Belta, V.Isler, and G. J. Pappas, “Discrete abstractions for robot motion
planning and control in polygonal environments,” IEEE Trans. Robot.,
vol. 21, no. 5, pp. 864-874, Oct. 2005.

R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proc. IEEE, vol. 88, no. 7, pp. 971-984,
Jul. 2000.

R. Tedrake, I. Manchester, M. Tobenkin, and J. Roberts, “LQR-trees:
Feedback motion planning via sums-of-squares verification,” Int. J. Robot.
Res., vol. 29, no. 8, pp. 1038-1052, 2010.

S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online
motion planning via contraction theory and convex optimization,” in 2017
IEEE Int. Conf. Robot. Automat., 2017, pp. 5883-5890.

A.D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “‘Control barrier function
based quadratic programs for safety critical systems,” IEEE Trans. Autom.
Control, vol. 62, no. 8, pp. 3861-3876, Aug. 2017.

A. Weiss, F. Leve, M. Baldwin, J. R. Forbes, and I. Kolmanovsky, “Space-
craft constrained attitude control using positively invariant constraint
admissible sets on SO(3) x R3.” in 2014 Amer. Control Conf., 2014,
pp. 4955-4960.

A. Weiss, C. Petersen, M. Baldwin, R. S. Erwin, and I. Kolmanovsky, “Safe
positively invariant sets for spacecraft obstacle avoidance,” J. Guidance,
Control, Dyn., vol. 38, no. 4, pp. 720-732, 2015.

K. Berntorp, R. Bai, K. F. Erliksson, C. Danielson, A. Weiss, and S.
D. Cairano, “Positive invariant sets for safe integrated vehicle motion
planning and control,” IEEE Trans. Intell. Veh., vol. 5, no. 1, pp. 112-126,
Mar. 2020.

C. Danielson, K. Berntorp, A. Weiss, and S. D. Cairano, “Robust motion
planning for uncertain systems with disturbances using the invariant-
set motion planner,” IEEE Trans. Autom. Control, vol. 65, no. 10,
pp. 44564463, Oct. 2020.

J. -w. Choi, R. Curry, and G. Elkaim, “Path planning based on bézier
curve for autonomous ground vehicles,” in Proc. Adv. Elect. Electron.
Eng.-IAENG Special Ed. World Congr. Eng. Comput. Sci. 2008, pp. 158—
166.

M. Flores, “Real-time Trajectory Generation for Constrained Nonlin-
ear Dynamical Systems Using Non-Uniform Rational B-Spline Basis
Functions”. California Institute of Technology, Pasadena, CA, USA,
2008.

B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion planning for
mobile robots using splines,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2009, pp. 2427-2433.

A.Zomorodian and H. Edelsbrunner, “Fast software for box intersections,”
in Proc. 16th Annu. Symp. Comput. Geometry, 2000, pp. 129-138.

M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of
second-order cone programming,” Linear Algebra Appl., vol. 284, no. 1-3,
pp. 193-228, 1998.

P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific com-
puting in Python,” Nature Methods, vol. 17, pp. 261-272, 2020.

R. Farouki and V. Rajan, “Algorithms for polynomials in Bernstein form,”
Comput. Aided Geometric Des., vol. 5, no. 1, pp. 1-26, 1988.

S. Diamond and S. Boyd, “CVXPY: A python-embedded modeling lan-
guage for convex optimization,” J. Mach. Learn. Res., vol. 17, no. 83,
pp. 1-5, 2016.

A. Hagberg, D. Schult, and P. Swart, “Exploring network structure, dy-
namics, and function using NetworkX,” in Proc. 7th Python Sci. Conf., G.
Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008,
pp. 11-15.

P. J. Goulart and Y. Chen, “Clarabel: An interior-point solver for conic
programs with quadratic objectives,” 2024, arXiv:2405.12762.

D. Mellinger and V. Kumar, “Minimum snap trajectory generation and con-
trol for quadrotors,” in Proc. Int. Conf. Robot. Automat., 2011, pp. 2520—
2525.

L. Jaillet and T. Siméon, “A PRM-based motion planner for dynamically
changing environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2004, vol. 2, pp. 1606-1611.

J. V. D. Berg, D. Ferguson, and J. Kuffner, “Anytime path planning and
replanning in dynamic environments,” in proc. IEEE Int. Conf. Robot.
Automat., 2006, pp. 2366-2371.

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1177/02783649231201437

MARCUCCT et al.: FAST PATH PLANNING THROUGH LARGE COLLECTIONS OF SAFE BOXES

Tobia Marcucci received the B.S.E. and M.S.E. de-
grees in mechanical engineering from the University
of Pisa, Pisa, Italy, in 2013 and 2015, respectively.
From 2015 to 2017, he was the Ph.D. student
with the Research Center “E. Piaggio” and the Is-
tituto Italiano di Tecnologia (IIT). Since 2017, he has
been with the Computer Science and Artificial Intel-
ligence Laboratory (CSAIL), Massachusetts Institute
of Technology, Cambridge, MA, USA, to continue
his Ph.D. studies. Between 2022 and 2023, he has
also spent one year with the Department of Electrical
Engineering, Stanford University, Stanford, CA, USA, as a Graduate Visiting
Researcher. His research lies at the intersection of convex and combinatorial op-
timization, with applications to robotics, motion planning, and optimal control.

Parth Nobel received the B.S. degree in electrical
engineering and computer science from UC Berkeley,
Berkeley, CA, USA, in 2021. He is currently working
toward the Ph.D. degree in electrical engineering with
Stanford University, Stanford, CA, USA.

Since 2022, he has been a Visiting Scholar in
electrical engineering and computer science with UC
Berkeley. His research centers on applying convex
optimization and randomized numerical linear alge-
bra to statistics, signal processing, and various other
application areas.

3811

Russ Tedrake (Member, IEEE) received the B.S.E.
degree in computer engineering from the University
of Michigan, Ann Arbor, MI, USA, in 1999, and the
Ph.D. degree in electrical engineering and computer
science from the Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, in 2004.

After graduation, he joined the MIT Brain and
Cognitive Sciences Department as a Postdoctoral
Associate. During his education, he has also spent
time at Microsoft, Microsoft Research, and the Santa
Fe Institute. He is currently the Toyota Professor of
electrical engineering and computer science, aeronautics and astronautics, and
mechanical engineering with MIT, working with Sebastian Seung, and the
Director of the Center for Robotics with CSAIL, and the leader of Team MIT’s
entry in the DARPA Robotics Challenge.

Dr. Russ is currently the Toyota Professor of Electrical Engineering and
Computer Science with the Massachusetts Institute of Technology, the Director
of Center of Robotics with the Computer Science and Artificial Intelligence
Laboratory, and the Vice President of Robotics Research with the Toyota
Research Institute, Los Altos, CA, USA.

Stephen Boyd (Fellow, IEEE) received the A.B. de-
gree in mathematics from Harvard University, Cam-
bridge, MA, USA, in 1980, and the Ph.D. degree
in electrical engineering and computer science from
the University of California, Berkeley, Berkeley, CA,
USA, in 1985.

He is currently the Samsung Professor of engineer-
ing, and a Professor of electrical engineering with
Stanford University, Stanford, CA, USA. His current
research focus is on convex optimization applications
in control, signal processing, machine learning, and

finance.

Dr. Boyd is a member of US National Academy of Engineering (NAE), a
foreign member of the Chinese Academy of Engineering (CAE), and a foreign
member of the National Academy of Engineering of Korea (NAEK).

Authorized licensed use limited to: Stanford University. Downloaded on August 15,2024 at 17:52:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

