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Ahtruct- Motivated by applications to sensor, peer-to- 
peer and ad hoc networks, we study distributed asyn- 
chronous algorithms, also known as gossip algorithms, for 
computation and information exchange in an arbitrarily 
connected network of nodes. Nodes in such networks 
operate under limited computational, communication and 
energy resources. These constraints naturally give rise to 
"gossip" algorithms: schemes which distribute the compu- 
tational burden and in which a node communicates with 
a randomly chosen neighbor. 

We analyze the averaging problem under the gossip con- 
straint for arbitrary network, and find that the averaging 
time of a gossip algorithm depends on the second largest 
eigenvalue of a doubly stochastic mairix characterizing the 
algorithm. Using recent results of Boyd, Diaconis and Xiao 
(2003), we show that minimizing this quantity to design 
the fastest averaging algorithm on the network is a semi- 
definite program(SDP). In general, SDPs cannot be solved 
distributedly; however, exploiting problem structure, we 
propose a subgradient method that distrihutedly solves the 
optimization problem over the network. 

The relation of averaging time to the second largest 
eigenvalue naturally relates it to the mixing time of a 
random walk with transition probabilities that are derived 
from the gossip algorithm. We use this connection to 
study the performance of gossip algorithm on two popular 
networks: Wireless Sensor Networks, which are modeled 
as Geometric Random Graphs, and the Internet graph 
under the so-called Preferential Connectivity Model. 

I .  INTRODUCTION 

The advent of sensor, wireless ad hoc and peer-to-peer 
networks has necessitated the design of asynchronous, 
distributed and fault-tolerant computation and informa- 
tion exchange algorithms. This is mainly because such 
networks are constrained by the following operational 
characteristics: (i) they may not have a centralized entity 
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for facilitating computation, communication and time- 
synchronization, (ii) the network topology may not be 
completely h o w n  to the nodes of the network, (iii) 
nodes may join or leave the network (even expire), 
so that the network topology itself may change, and 
(iv) in the case of sensor networks, the computational 
power and energy resources may be very limited. These 
constraints motivate the design of simple asynchronous 
decentralized algorithms for computation where each 
node exchanges information with only a few of its 
immediate neighbors in a time instance (or, a round). 
The goal in this setting is to design algorithms so that 
the desired computation and communication is done as 
quickly and efficiently as possible. 

We study the problem of averaging as an instance 
of the distributed computation problem, A toy example 
to explain the motivation for the averaging problem is 
sensing temperature of some small region of space by 
a network of sensors. For example, in Figure 1 ,  sensors 
are deployed to measure the temperature T of a source. 
Sensor i ,  i = 1,. . . 4 measures T; = T + vi, where the 

are IID, zero mean Gaussian sensor noise variables. 
The unbiased, minimum mean squared error (MMSE) 
estimate is the average P = - Thus, to combat 

= T  

Fig. 1. Sensor nodes deployed to measure ambient 
temperature. 
minor fluctuations in the ambient temperature and the 
noise in sensor readings, the nodes need to average their 
readings, 
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Distributed averaging arises in many applications such 
as coordination of autonomous agents, estimation and 
distributed data fusion on ad-hoc networks, and de- 
centralized optimization. ' Fast distributed averaging 
algorithms are also important in other contexts; see 
Kempe et a1 [KDGO3], for example. For an extensive 
body of related work, see [KK02],EKKDOlI, [HHLW, 
[GvRBOl 1, [KEWO2], [MFHHOZ], [vROO], EGHK991, 
EIEGH021, [KSSVOOa], [SMKfOl I, RFH+OI]. 

This paper undertakes an in-depth study of the design 
and analysis of gossip algorithms for averaging in an 
arbitrrrril!l connected network oE nodes. (By gossip algo- 
rithm, we mean specifically an algorithm in which each 
node communicates with no more than one neighbour in 
each time slot.} Thus, given a graph G, we determine 
the averaging time, Tave, which is the time taken for 
the value at each node to be close to the average 
value (a more precise definition is given later). We find 
that the averaging time depends on the second largest 
eigenvalue of a doubly stochastic matrix characterizing 
the averaging algorithm: the smaller this eigenvalue, the 
faster the averaging algorithm. The fastest averaging 
algorithm is obtained by minimizing this eigenvalue over 
the set of allowed gossip algorithms on the graph. This 
minimization is shown to be a semi-definite program, 
which is a convex problem, and therefore can be solved 
efficiently to obtain the global optimum. 

The averaging time, Tave, is closely related to the 
mixing time, Tmix, of the random walk defined by 
the matrix that characterizes the algorithm. This means 
we can study also averaging algorithms by studying 
the mixing time of the corresponding random walk on 
the graph. The recent work of Boyd et al [BDX03] 
shows that the ratio of the mixing times of the natural 
random walk to the fastest-mixing random walk can 
grow without bound as the number of nodes increases; 
correspondingly, therefore, the optimal averaging algo- 
rim can perform arbitrarily better than the one based 
on the natural random walk. Thus, computing the op- 
timal averaging algorithm is important: however, this 
involves solving a semi-definite program, which requires 
a knowledge of the complete topology. Surprisingly, we 
find that we can exploit the problem structure to devise a 
distributed subgradient method to solve the semidefinite 

'The theoretical framework developed in this paper is not merely 
restricted to averaging algoriths. It easily extends to the computation 
of other functions which can be computed via pair-wise operations: 
e.g.. the maximum, minimum or product functions. It can also be 
extended for analyzing information exchange algorithms, although 
this extension is not as direct. For concreteness and for stating 
our results as precisely as possible, we shall consider averaging 
algorithms in the rest of the paper. 

program and obtain a near-optimal averaging algorithm. 

Finally, we study the performance of gossip algorithms 
on two network graphs which are very important in 
practice: Geometric Random Graphs which are used to 
model wireless sensor networks, ilod the Internet graph 
under the preferential connectivity model. We find that 
for geometric random graphs, the averaging time of 
the natural is the same order as the optimal averaging 
algorithm, which, as remarked earlier, need not be the 
case in a genera1 graph. 

We shall state our main results after setting out some 
notation and definitions in the next section. 

A. Problenr Fonnutation and Dejnirions 

Consider a connected graph G = (V ,E) ,  where the 
vertex set V contains n nodes and E is the edge set. The 
it' component of the vector s(0) = [z1(0), ..., xn(0)lT 

L i X i i 0 )  represents the initial value at node i. Let zave = 
be the average of the entries of z(0) and the goal rs to 
compute xave in a distributed and asynchronous manner. 

Asynchronous time model: Each node has a 
clock which ticks at the times of a rate 1 Poisson 
process. Thus, the inter-tick times at each node are 
rate 1 exponentials, independent across nodes and 
over time. Equivalently, this corresponds to a single 
clock ticking according to a rate n, Poisson process 
at times Zk ,k  2 1, where {Zr,+l - Zr,} are ID 
exponentials of rate 'n. Let I k  E { 1, ..., 'IZ} denote 
h e  node whose clock ticked at time Z k .  Clearly, 
the J k  are IID variables distributed uniformly 
over { 1 ,  . . . , n} .  We discretize time according 
to clock ticks since these are the only times at 
which the value of x(+) changes, Therefore, the 
interval [Zk, Zk+1) denotes the kth time-slot and, 
on average, there are n clock ticks per unit of 
absolute time, Lemma 1 states a precise translation 
of clock ticks into absolute time. 

Synchronous time model: In the synchronous time 
model, time is assumed to be slotted commonly 
across nodes. In each time slot, each node contacts 
one of its neighbors independently and (not neces- 
sarily uniformly) at random. Note that in this model 
all nodes communicate simultaneously, in contrast 
to the asynchronous model where only one node 
communicates at a given time. On the other hand, 
in both models each node contacts only one other 
node at a time. 
This paper uses the asynchronous time model 
whereas previous work, notably that of [KSSVOObl, 
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[KDG03], considers the syncfironous time model. 
The qualitative and quantitative conclusions are 
unaffected by the type of model; we choose the 
asynchronous time model for convenience. 

Algorithm A(P):  We consider a class of algo- 
rithms, denoted by A. An algorithm in this class is 
characterized by an n x n, matrix Y = (Pij] of non- 
negative entries with the condition that Pij > 0 only 
if ( i , j )  E E. For technical reasons, we assume that 
P is a stochastic matrix with its larsesl eigenvalue 
equal to 1 and at1 the remaining st?. - 1 eigenvalues 
are strictly less than 1 in magnitude. (Such a matrix 
can always be found if the underlying graph G 
is connected and non-bipartite. We will assume 
that the network graph G satisfies these conditions 
for the remainder of the paper.) The algorithm 
associated with P, denoted by d(P), is described 
as follows: 
In the kth time-slot, let node 2's clock tick and let 
it contact some neighboring node j with probability 
Pij. At this time both nodes set their values equal 
to the average of their current values. Formally, let 
r c ( l c )  denote the vector of values at the end of the 
time-slot k.  Then, 

% ( I ; )  = W ( k ) X ( k  - 1): (1) 

where with probability APij (i is the probability 
that the i th node's clock ticked and Pij is the chance 
that it contacted node j )  the random matrix W { k )  
is 

where e; = [ O . . .  0 1 O . - - O ] *  is an n x 1 unit 
vector with the i th component equal to 1. 

Quantity of Interest: Our interest is in determining 
the time (number of clock ticks) it  takes for z ( k )  
to converge to s,l, where 1 is the vector of all 
ones. 
Definition 1: For any 0 < e < 1, the E-averaging 
time of an algorithm A(P)  is denoted by T,,,(E, P )  
and equals 

(3) 
where llvll denotes the 12 norm of the vector U .  

Thus the €-averaging time is the smallest number of 
clock ticks it takes for x(-) to get within E of z,l 

with high probability, regardless of the initial value 

The following lemma relates the number of clock ticks 
to absolute time. 

Lemma I: For any 6 2 1, E[Zk] = k/.n. Further, for 

4 0 ) .  

a n y b > O ,  

PmoJ By definition, E[ZkJ = C i = l E ( Z ,  - 
Zj-11 = cj=l 1 / 7 7  = k / n .  Equation (4) foIlows directly 
from Cramer's Theorem (see [DZ99], pp. 30 & 35). 

As a consequence of the Lemma 1, for k 2 'U, 

k 

with high probability (i.e.probability at least 1 - l/n2j. 
In this paper, all the results about e-averaging times 
are at least n., Hence, dividing the quantities measured 
in term of the number of clock ticks by 71 gives the 
corresponding quantities when measured in absolute time 
(for an example, see Corollary 2). 

B. Previoiis Resu 1r.s 

A general lower bound for any graph G and any 
averaging algorithm was obtained in [KSSVOOa] in the 
synchronous setting. Their result is: 

771eorenz 1: For any gossip algorithm on any graph 
G and for 0 < E < 0.5, the 6-averaging time (in 
synchronous steps) is lower bounded by S1(logn). 

For a complete graph and a synchronous averaging 
algorithm, [KDG03] obtain the following result. 

Theorevtz 2: For a complete graph, there exists a gos- 
sip algorithm such that the l/n-averaging time of the 
algorithm is 0 (log 11) . 

The problem of (synchronous) fast distributed averag- 
ing on an arbitrary graph without the gossip constraint 
is studied in [XB03]; here, W ( t )  = W for all t;  i.e., the 
system is completely deterministic. Distributed averag- 
ing has also been studied in the context of distributed 
load balancing ([RSW98]), where an analysis based on 
Markov chains is used to obtain bounds on the time 
required to achieve averaging (upto the integer con- 
straint) upto a certain accuracy. However, each iteration 
is governed either by a constant stochastic matrix, or a 
fixed sequence of matchings is considered. Some olher 
results on distributed averaging can be found in [BS03], 
[Mur03], [LBFM], [OSMO4], [JLSO3J. 
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Not much is known about good randomized gossip 
algorithms for averaging on arbitrary graphs. The algo- 
rithm of [KDG03] is quite dependent on the fact that the 
underlying graph is a complete graph, and the general 
result of KSSVOOa] is a non-constructive lower hound. 

C. Our Resrrlts 

In this paper, we design and characterize the perfor- 
mance of averaging algorithms for arbitrary graphs. Our 
main result is the following theorem, which we shall 
later (in Section IV) apply to specific types of graphs 
that are of interest in applications. 

Tlreorein 3: The averaging time, Taye(E,P), of the 
algorithm A(P)  is bounded as follows: 

where 

and D is the diagonal matrix with entries 
R 

j=  1 

Theorem 3 is proved in Section 11. 
In Section 111 we show that the problem of finding 

the fastest averaging algorithm can be formulated as a 
semidefinite program (SDP). In general, it is not possible 
to solve a semidefinite program in a distributed fashion. 
However, we exploit the structure of the problem to 
propose a completely distributed algorithm that solves 
the optimization problem on the network, based on a 
subgradient method. The description of the algorithm 
and proof of convergence are found in Section 111-A. 

Section N relates averaging time of an algorithm on 
a graph G with the mixing time of an associated random 
walk on G, and uses this result to study applications of 
our results in the context of two networks of practical 
interest: wireless networks, and the Internet. 

11. PROOF OF THEOREM 3 

We prove bounds ( 5 )  and (6) in Lemmas 2 and 3 on 
the number of discrete times {or equivalently clock ticks) 
required to get within E of XaiJel  (analogous to ( 5 )  and 
(6)). 

A. Upper Bound 

n:(O),  for I; 2 K * ( E ) ,  
L e m m  2: For algorithm A ( P ) ,  for any initial vector 

where 

Proufi Recall that under algorithm A ( P ) ,  from (1) 
and (21, 

a(k + 1) = W ( k  4- 1)2(6), (91 

where with probability $P;j the random matrix W ( k )  is 

First note that W(k) are doubly stochastic matrices for 
all ( i , j ) .  For doubly stochastic matrices, the vector k1 
is the eigenvector corresponding to the largest eigenvalue 
:L. With this observation, and with our assumptions on 
P, it can be shown that x(k) - aavel. Our interest is 
in finding out how fast i t  converges. In particular, we 
would like to obtain bounds on the error random vector 
. y ( Q  

~ ( k )  ~ ( k ) - z a v e I .  (11) 

Note that, p(k) 1. 1 since ~ ( k ) ~ 1  = 0. 
Consider the evolution of y(,): 

g ( k  + 1) = ~ ( k  + 1) - save1 

(2 I Y ( k +  l ) a ( k )  - z,,,W(k)l 
= 

= W ( k  + l)y(k).  W )  
W ( k  + 1) ( ~ ( k )  - XaveI) 

Here (a) follows from the fact that 1. is an eigenvector 
for all W ( k  + 1). Thus g(.) evolves according to the 
same linear system as a(.). 

To obtain probabilistic bounds on y(k), we will first 
compute the second moment of y(k) and then apply 
Markov’s inequality as below. 
Computing W :  

Let, 

w e EIW(0)] = E[kP-(k)] 

i,? 

Then, the entries of IV are as follows: 
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where D is the diagonal matrix with entries 

Note thal, if P = PT,  then P is doubly stochastic. 
This impIies that Dj = 2, which in turn implies that 

Computing Second Moment E [ ~ ~ ( k ) ~ p ( k ) ] :  
w = r(1 - l/n) + P/n. 

For each k ,  W ( k )  = IVij with probability %, so that 

= W ( k ) .  (17) 

Since this is true for each instance of the random matrix 
fif , 

E[W(O>TW(O)J = E[W(O)J 
= w. (1 8) 

Now, from (12), 

E[y( k + q T y (  k + l)] 
= E [ y ( k ) T W ( k  + l ) T W ( k  + l )y(k) j  

= E [Y ( kIT WY ( I; 11 > 

= E [ y ( k ) T E [ W ( k  + l ) T I . l f ( k  -t- I)ly(k)]y(k)J 
(19) 

using (18), and the fact that the W ( k  + 1) are ID 
(independent of ;v( k) ) .  

The matrix W is symmetric2 positive-semidefinite 
(since W = WTWj and hence it has non-negative real 
eigenvalues. 

As stated earlier. g ( k )  I 1, which is the eigenvector 
corresponding to the largest eigenvalue X I  = 1 of W .  
So, from the variational characterization of the second 
eigenvalue, we have 

Y ( V I W W  I A2 ( w y ( k > T y ( k ) .  

q d k  + UTl/(k + 111 5 Xz(W)ElY[b)Ty(k)].C21) 

(20) 

From (18) and (20), 

'The symmetry of W does not depend on P being symmetric. 

Recursive application of (21 j yields 

J%/(k)Tl/(k)l 5 ~ 2 ( v k y ( o ) T y ( o > .  122) 

y(o)Ty(o) = z(0) z(0) --n2,, 

Now, 

T 2 

- < ~ ( o ) T x ( o ) .  (23)  

Application of Markov's Inequality: 

equality, we have 
From (22), (23) and an application of Markov's in- 

310 C1 From (24, it follows that for k 2 K ( E )  = &, 

This proves the Lemma, and gives us an upper bound 
on the e-averaging time. 

B. Lmver Bound 

lh" 3: For algorithm A ( P ) ,  there exists an initial 
vector x(O), such that for k < K ( E ) ,  

where 

Proof: 
From (12) and (lS), we obtain 

E [ y ( k ) ]  = W k y ( 0 ) .  (27) 

We have shown that W is a symmetric positive- 
semidefinite doubly stochastic matrix. W has (non- 
negalive real) eigenvalues 

1 = XI(M') 2 X 2 ( W )  2 .. . 2 X,(W) 2 0: 

with corresponding orthonormal eigenvectors 
1 - fil, 2r2, us, .  . . , zn. Choose 
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For this choice of x(O), 11~(0)11 = 1. Now from (271, 

(28) 
1 

For this particuIar choice of x(O), we will Iower bound 
the e-averaging time by lower bounding E[lly(k) 1 1 * ]  and 
using Lemma 4 as stated below, 

E [ y ( k ) ]  = - - x ; ( w ) V z .  
fi 

By Jensen's inequality and (28), 
n n 

with probability at least 1 - 2 ~ .  

(29) 
1 - -,p m/7 . - 2 2 (  1 

L e t m a  4: Let X be a random variable such that 0 5 
X 5 B. Then, for any 0 < E < B ,  

Pro o$ 

E [ X ]  5 cPr(X < e) + B Pr(X 2 E )  

= Pr(X 2 cj(B - c) + E .  

Rearranging terms gives us the lemma. 
From (281, llg(k)112 5 /)g(0)1(2 I 1/2. Hence Lemma 

(4) and (29) imply that for I; < K,(c) 

Pr(l lv(W 1 4  > E *  (3 0) 
This completes the proof of Lemma 3. 

The following corollaries are immediate. 
Corollary I: For large n and symmetric P, Tay,(€, P )  

is bounded as follows: 

- Proofi By definition, X 2 ( W )  - 

(1 -;(I - A2(P))). For large n, :(l - X2(P j )  
is very small, and hence 

1 1 
log (1 - --(1 - X2(P) )  = --(1- A Z ( P ) ) .  L 

This along with Theorem 3 completes the proof. H 

Corolla? 2: For a symmetric P ,  the absolute time, 
Z T * ( ~ , P ) ,  it takes for T*(c,P)  clock ticks to happen is 
given by 

Pruufi For b = 2(1- X a  ( P )  1 and I; = T*(c, P) and 
using (31), the right hand"<de of (4) evaluates to 

= 2t .  ) 2exp (- 3n, 2(1 - A@)) 
2(1 - X 2 ( P ) )  3 n  log E-1 * 

Since -1 5 X,(P) 5 1 for a non-negative doubly 
stochastic symmetric matrix P ,  6 = 2 is larger than 
the above choice of 6. This completes the proof. 

J;I 

I l l .  OPTIMAL AVERAGING ALGOR~THM 
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From Theorem 5, we see that the averaging time is a 
monotonically increasing function of the second largest 
eigenvalue of T/I/ = ETj=, iPijiVij. Thus, finding-the 
fastest averaging algorithm corresponds to finding P 
such that Xg(W) is the smallest, while satisfying con- 
straints on P. Thus, we have the optinlization problem 

The objective function, which is the second largest eigen- 
value of a doubly stochastic matrix, is a convex function 
on the set of symmetric matrices, and therefore we 
have a convex optimization problem. This problem can 
be reformulated as the following semidefinite program 
(SDP): 

minimize s 
subject to TV - llT/n 5 SI, 

For general background on SDPs, eigenvalue optimiza- 
tion, and associated interior-point methods for solving 
these problems, see, for example, [BV03], [WSVOO], 
b0961, [Ove92], and references therein. Interior point 
methods can be used to solve problems with a thousand 
edges or so; subgradient methods can be used to solve 
the problem for larger graphs with upto a hundred thou- 
sand edges. The disadvantage of a subgradient method 
compared to a primal-dual interior point method is that 
the algorithm is relatively slow (in terms of number of 
iterations), and has no simple stopping criterion that can 
guarantee a certain level of suboptimality, 

Thus, given a graph topology, we can solve the 
semidefinite program (35) to find the P* for the fastest 
averaging algorithm. 



A. Distributed Optirniznfion 

Finding the fastest averaging algorithm is a convex 
optimization problem, and can therefore be solved ef- 
ficiently to obtain the optimal distribution P*. Unfor- 
tunately, a E' computed via a centralized computation 
is not very useful in our setting. It is natural to ask 
if in h i s  setting, rhe optimization (like the averaging 
itself), can 'also be performed distributedly; i.e., is it 
possible for the nodes on the graph, possessing only 
local information, and with oniy local communication, 
to compute the probabilities Eij that lead to the fastest 
averaging algorithm? 

In this section, we outline a completely distributed 
algorithm based on an upproximfe  sirbgradieni method 
which converges to a neighborhood of the optimal Y*. 
The algorithm uses distributed averaging to compute 
a subgradient; the accuracy to which the averaging is 
performed determines the size of the neighbourhood. 
The greater the accuracy, the smalfer the neighbourhood, 
i .e . ,  the better the approximation to the optimal P*. The 
exact relation between the accuracy of the distributed 
averaging and the size of the neighbourhood is stated in 
Theorem 4 at the end of this section. First we start with 
some notation. 
Notation: It will be easier to analyze the subgradient 
method if we collect the entries of the matrix Pij into a 
vector, which we will call p .  Since there is no symmetry 
requirement on the matrix P,  the vector p will need to 
have entries corresponding to Pij as well as Pji (this 
corresponds to repiacing each edge in the undirected 
graph G by two directed edges, one in each direction). 

The vector p corresponds to the matrix Y as follows. 
Let the total number of (non self-loop) edges in G be m. 
Assign numbers to the edges ( i , j )  from 1 through m. 
If a i  < j then p l  = Pij, where 1 is the number assigned 
to (the undirected) edge ( i , j >  (which we will denote by 
1 - ( i : j )> ;  if i > j then p-1 = p Z j .  (Recall that we are 
not considering self-loop edges.) 

We will also introduce the notation pi corresponding 
to the non-zero entries in the ith row of P (we do this to 
make concise the constraint that the sum of elements in 
each row should be 1). That is, we define for 1 5 i 5 n, 

pi=  [P . . - ( '  2 3 ,  w )  ' E &I.  (36) 

Define n x n matrices El, 1 N (i, j )  as follows: Elij = 
= +l, Elit = Eli3 = -1, and a11 other entries of 

EL are zero. Then, we have that 

El = 2 p j j  - I ) .  

Finally, denote the degree of node i by mi. 

1 )  Siibgrlrdient metlzod: We will describe the subgra- 
dient method for the optimization problem restated in 
terms of the variable p.  We can state (35) in terms of 
the variables p = [pm, . . . p-1> yl, . . . pm] as follows: 

minimize ~2 ( I  + p l ~ j  -i- P - ~ E - I )  

subject to lTpi 5 1 ,  Vi  (37) 
p1 2 0: 1 I ill 5 % 

where pi is as defined in (36). 
We wilI use the subgradient method to solve this 

problem distributedly. The use of the subgradient method 
to solve eigenvalue problems is well-known; see for 
example [BDX03], [OW93], ww96], [Lew99] for ma- 
terial on non-smooth analysis of spectral €unction, and 
[Cla90], [HUL93], [BLOO] for more general background 
on non-smooth Optimization. 

Recall that a subgradient of A2 at I.17 is a symmetric 
matrix G that satisfies the inequality 

)\2(7/5/) 2 Xz(W) + (G, E' - W )  
= X2( W )  + Tr G( r;v - W )  

for any feasible, i.e., symmetric stochastic matrix 1,v. Let 
U be a unit eigenvector associated with Xz(W), then the 
matrix G = uuT is a subgradient of X2(W) (see, for 
example, [BDX031). 

Using 

in terms of the probability vector p ,  we obtain 

m 

so that the subgradient g ( p )  is given by 

' T  T g(p) = - ( U  E-,u., . . . , U Emt&L), (39) 2n 

with components 

where Ill = 1, . . . ,m. 
Observe that if each node i knows its own component 

ui of the unit eigenvector, then this subgradient can be 
computed locaily, using oniy local information. 

The following is the projected subgradient method for 
(40): 
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Initialization: Initialize p to some feasible vector, 
for example, p corresponding to the natural random 
walk. Set k := 1. 
Repeat for b 2 1, 
- Subgradient step. Compute a subgradient g ( k )  

at p, and set 

p := p - I/&) 

- Projection onto feasible set. At each node i, 
prqject pi obtained from the subgradient step 
onto l T q  5 1 ,g  5 0. This is achieved as 
foi low s: 
1) If zy!l max(0,pij) 5 1, then set pi = 

max(0, pi}, stop. 
2) If not, then use bisection to find IC 2 0 

such that cy& max{O,pij - x} = 1; set 
pi max(0, piJ - x}, stop. 

In this algorithm, Step 1 moves p in the direction of 
the subgradient with stepsize vr;; we will discuss the 
stepsizes a little later in this section. Step 2 projects the 
vector p onto the feasible set. Since the constraints at 
each node are separable, the variables pi corresponding 
to nodes i are projected onto the feasible set separately. 

The projection method is derived from the optimality 
conditions of the projection problem 

2 

(40) 
minimize x'zI(gj - pij) 
subject to f g 5 1, g 0 

as shown. 
Introduce Lagrange multipliers A E R;m for the 

inequality Q 0, and v for l T q  - 1 5 0. The 
KKT conditions for optimal primal and dual variables 
Q*, A* v* are 

q* 0, lTq* 51 

v*(Pq* - 1) = 0, A;$ = 0, j = 1,. . . ,mi, 

Z(q; - pij) + V* - A; = 0, j = 1,. . . , T&. 

A *  y 0, v* 2 0 

Eliminating the slack variables X j ,  we get the equivalent 
optimality conditions 

q* 0, lTq* 5 1, (41 
v* 2 0, v*(lTq* - 1) = 0, (42) 
$(2($ - pij) + v*) = 0, j = 1,. . . ,m i ,  (43) 
2($ - pij) + V* 2 0, j = 1 , .  * .  ,n&. (44) 

If U* < 2pij, then from the last condition, necessarily 
qt  > 0. From (43j, this gives us 4; = pjj - v*/2. If 
on the other hand v* 2 2pij, then v* 2 2pij - 2s; as 

well since q; 1 0, and so to satisfy (431, we must have 
q; = 0. Combining these gives us that 

I / *  

2 q; = max{O,pij - -}. (45) 

The q; must satisfy lTq*  5 1, i .e.,  xmax(0,qj  - 
v*/2) 5 1. However, we must also satisfy the com- 
plementary slackness condition v*(l'g* - 1) = 0. 
These two conditions combined together lead to a unique 
solution for I )*> obtained either at v* 0, or at the 
solution of Cmax{O,qj - v*/2} = 1; from v* the q; 
can be found as described. 

2) Decentrdization: Now consider the issue of de- 
centralization. Observe that in the above algorithm, g 
can be computed locally at each node if U, the unit 
eigenvector corresponding to A2 ( W ) ,  is known; more 
precisely, if each node i is aware of its own component 
of U, and that of its immediate neighbours. The projection 
step can be carried out exactly at each node using local 
information alone. 

The rest of the section proceeds as follows: first we 
will discuss approximate distributed computation of the 
eigenvector U of W ,  and then show that the subgradient 
method converges to a certain neighborhood of the 
optimal value in spite of the error incurred during the 
distributed computation of U at each iteration. 

The problem of distributedly computing the top-k 
eigenvectors of a matrix on a graph is discussed in 
[KM04]; a distributed implementation of and error anal- 
ysis for orthogonal iterations is described. By distributed 
computation of an eigenvector U of a matrix W ,  we mean 
that each node i is aware of the ith row of Mi, and can 
only communicate with its immediate neighbours; given 
these constraints, the distributed computation ensures 
that each node holds its value ui in the unit eigenvector 

Since the matrix W is symmetric and stochastic (it 
is a convex combination of symmetric stochastic maui- 
ces), we h o w  that the first eigenvector is 1. Therefore 
orthogonal iterations takes a particularly simple form (in 
particular, we do not need any Cholesky factorization 
type of computations at the nodes). We describe orthog- 
onal iterations for this problem below: 

DecentralOI: Initialize the process with some ran- 

U. 

domly chosen vector VO; for k > 1, repeat 
- ! k t  2)k = W-Vk-1 
- (Orthogonalizej l/k = ' ~ k  - (Cy=, &,)I 
- (Scale to unit norm) vk = vuk/llwII 

Here, the multiplication by is distributed, since IV 
respects the graph structure, i.e., Wij # 0 only if ( 2 ,  j )  is 
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an edge. So entry 2: of vk can be found using only values 
of U X . - ~  corresponding LO neighbours of node i ,  i . e . ,  the 
computation is distributed. The orthogonalize and scale 
steps can be carried out dislributedly using the gossip 
algorithm outlined in this paper, or just by distributed 
averaging as described in [XB03] and used in CKM041. 
Observe that the very matrix W can be used for the 
distributed averaging step, since it is also a probability 
matrix. We state the following result (appiied to our 
special case) from [KM04], which basically states that it 
is possible to compute the eigenvector upto an arbitrary 
accuracy: 

Lemma 5; If DecentralOI is run for 
R ( t ~ ~ ~ i ~  Iog( lG/t)) iterations, producing orthogonal 
vector U ,  then 

where llu, - u,11 is the L2 distance between U and the 
eigenspace of Az; ur is the vector in the eigenspace 
achieving this distance. 

It is therefore clear that an approximate eigenvector, 
and therefore an approximate subgradient can be com- 
puted distributedly. 

3) Convergence analysis: It now remains to show that 
the subgradient method converges despite approximation 
errors in computation of the eigenvector, which spill over 
into computation of the subgradient, To show this, we 
will use a result from fKiw041 on the convergence of 
approximate subgradient methods. 

Given an optimization problem with objective function 
f and feasible set S, the approximate subgradient method 
generates a sequence {&}E1 c S such that 

(47) = Ps(zk - v&), g k  E a&@), 
where PS is a projection onto the feasible set, U,,. > 0 is 
a stepsize, and 

k a d & )  = {g : f s (a )  2 fs (ak)+(g: .z-x  }-E,k  VZ] 
(448) 

is the ~k subdifferential of the objective function fs at 
Xk. 

Let Tk = (1 /2) [gk/ ’vk ,  and & = ~k + tk. Then we 
have the following theorem from [KiwOM], 

Lemrrru 6; If vk = 00, then 

lim inf j ( d )  I: f* + 6,  

where 6 = h i  sup dk, and f * is the optimal value of the 
objective function. 

!5! 

Consider the k-th iteration of the subgradient method, 
with current iterate p ( k ) ,  and let fi be the error 
in the (approximate) eigenvector U corresponding to 
X2(IV(p(b))). (By error in the eigenvector, we mean 
the L2 distance between ‘U and the (actual) eigenspace 
corresponding to A2). Again, denote by U ,  the vector in 
the eigenspace minimizing the distance to U ,  and denote 
the exact subgradient computed from ur by gr.. 

We have 1/71 - ‘ ~ b , ( ) ~  5 E .  First we find Q in terms of 
E as follows: 

This implies, 

Ek = suP{g-yt- :Y-p(~))  = clly-Lh1121 
P 

where c is a scaling constant. 
Next, we will find llg - g,112 in terms of E as follows: 

n 

Now, Ihe lth component of g - gr is 

Combining the facts that /U; - u,,I 2 &: V i ;  and 
vz, j ;  we get the (since ( 1 ~ 1 1  = 11 Iui - ujl 5 

following 

Summing over dl na edges gives us llg-gr 11 5 8 m / n 2 ,  
i.e., fk 5 8cmc/n2 5 8cc since m 5 la2 for all graphs. 

Now choose Vk = l /k .  From (39, it can be seen 
that )1gk1i2 is bounded above by &/n, and so ~k in 
Theorem 6 converges to 0. Therefore if in each iteration 
i, the eigenvector is computed to within an error of ~ i ,  

and E = lim infe i ,  we have the foItowing result: 
Tlzeoretn 4: The distributed subgradient method de- 

scribed above converges to a distribution p for which 
X 2 ( W ( p ) )  is within 8cmt/,tz2(s SCE) of the globally 
optimal value X 2 ( W ( j * ) ) .  
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IV. APPLICATIONS 

In this section, we briefly discuss applications of our 
results in the context of wireless ad-hoc networks and the 
Internet. We examine how the performance of averaging 
algorithms scales with the size (in terms of the number 
of nodes) of the network. 

Before we study this, we need the following result, 
relating the averaging time of an algorithm A(P)  and 
the mixing time of the Markov chain on G that evolves 
according to IV = W(P) .  (Since IV is a positive- 
semidefinite doubly stochastic matrix, the Markov chain 
with transition matrix W has uniform equilibrium distri- 
bution.) 

Recdl that the mixing time is defined as follows: 

Definition 2 (Mixing Emel: For a Markov chain 
with symmetric transition matrix W .  let Ai(t) = 

3 cyL, 1W;j - ;I. Then, the +mixing time is defined 

Tmix(E) = supinf{f : Ai(t') 5 €,'if t' 2 t } .  (49) 

We have the following relation between mixing times 
and averaging limes, the proof of which can be found in 
[BGPSW]. 

Theorem 5: For a symmetric matrix P,  the E -  

averaging time (in terms of absolute time) of the gossip 
algorithm A(P) is related to the mixing time of the 
Markov chain with transition matrix P as 

. 

as 

2 

Tave (E, P )  = 8 [log n -t Tmix(t)) . 

Figure 2 is a pictorial description of Theorem 5.  
The z-axis denotes mixing time and the y-axis denotes 
averaging lime. The scale on the axis is in order notation. 
As shown in the figure, for P such that T&(P) = 
o(logn), T,,, (;,E') 1 @(logn); for P such that 

knowing mixing property of random walk essentially 
characterizes the averaging time in the order sense. 

Tmix(P) = ot(l0g n),  Taw (i, P )  = @(Tmix). 

A. Wireless Nehwork 

The Geometric Random Graph, introduced by Gupta 
and Kumar [GKOO], has been used successfully to model 
ad-hoc wireless networks. A d-dimensional Geometric 
Random Graph on n nodes, modeling wireless ad-hoc 
networks of ?z nodes with wireless transmission radius 
T ,  is denoted as Gd(n: r ) ,  and is obtained as follows: 
place n nodes on a d dimensional unit cube uniformly 
at random and connect any two nodes that are within dis- 
tance T of each other. An example of a two dimensional 
graph, G2(n,  T )  is shown in the Figure3. 

71 

log T t  

Tmix 
loglogn logn 

Fig. 2. Graphical interpretation of Theorem 5. 

The following is a well-known result about 
the connectivity of G d ( n , r )  (for a proof, see 
[GKOO], [GMPSWI, Pen031): 

Lemma 7: For nrd 3 2logn, the G ( n , r )  is con- 
nected with probability at least 1 - l/n2. 

Theorem 6: On the Geometric Random Graph, 
G d ( n 7 ~ ) ,  the absolute l/na-averaging time, QI > 0, of 
the optimal averaging algorithm is o 9 . 

PrmJ In [BGPSM], the authors show that for E = 
l/nQ,cy > 0 the €-mixing times for the fastest-mixing 
random walk on the geometric random graph Gd(n,r)  
is of order €I(?). Therefore, using this and the results 
of Corollaries 1 and 2, we have the theorem. 

Thus, in wireless sensor networks with a small radius 
of communication, distributed computing is necessarily 
slow, since the fastest averaging algorihm is itself slow. 
However, consider the natural averaging algorithm, based 
on the natural random walk, which can be described 
as follows: each node, when it becomes active, chooses 
one of its neighbors uniformly at random and averages 
its value with the chosen neighbor. As noted before, in 
general, the performance of such an algorithm can be 
far worse than the optimal algorithm. Interestingly, in 
the case of Gd(n:r ) ,  the performances of the natural 
averaging algorithm and the optimal averaging algorithm 
are comparable (i.e. they have averaging times of the 
same order). We state the following Theorem, which 
is obtained exactly the same way as Theorem 6 ,  using 
a result on Tmix for the natural random walk from 
[BGPSOS]: 

Theorem 7: On Lhe Geometric Random Graph, 

0 
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Gd(n , r ) ,  the absolute l/n"-averaging time, cy > 0, of 
the natural averaging algorithm is of the same order as 
the optimal averaging dgorithm, i.e., 0 (9). 
Implication. In a wireless sensor network, Theorem 6 
suggests that for a small radius of Iransmission, even the 
fastest averaging algorithm converges slowly; however, 
the good news is that the natural averaging algorithm, 
based only on local information, scales just as well as 
the fastest averaging algorithm. Thus, at least in the 
order sense, it is not necessary to optimize for the fastest 
averaging algorithm in a wireless sensor network. 

B. Inllremet 

The Preferenual Connectivity (PC) model [MPS031 is 
one of the popular models for he  Internet. In [MPS03], 
it is shown that the Internet is an expander under the 
preferential connectivity model. This means that there 
exists a positive constant 5 > 0 (indcpendent of the 
size of the graph:), such that for the transition matrix 
corresponding to the natural random walk, calI it P,  

I (l-Arnax(f')) 5 1,  (50) 

where Amax(P) is the second largest eigenvalue of P 
in magnitude, i .e.,  the spectral gap is bounded away 
from zero by a constant. Let. P' be the transition matrix 
corresponding to the fastest mixing random walk on the 
htemet graph under the PC model. The random walk 
corresponding to P* must mix at least as fast as the 
natural one, and therefore, 

It is easy to argue that there exists an optimal P' that is 
symmetric (given any optimal PO, the matrix 1/2(Po + 
P r )  is symmetric, and leads to the same E [ W ]  as Po). 
Therefore, from t50), t51), Theorem 3 and Corollary 2, 
we obtain the following Theorem. 

Theorern 8: Under the PC model, the optimal averag- 
ing algorithm on the Internet has an absolute €-averaging 
time TaVe(e) = Q (loge-l). 
Implication. The absolute time for distributed compu- 
tation on the Intemet is independent of the size of the 
network, and depends only on the desired accuracy of 
the computation3. One implication is that exchanging 
information on Internet via peer-to-peer network built 
on tap of it is extremely fast! 

'Althought the asymmetry of the P matrix for the natural random 
walk on the Internet prevents us from exactly quantifying the aver- 
aging time. we believe that averaging will be fast even under the 
natural random walk. since the spectra1 gap for this random walk is 
bounded away from 1 by a constant. 

1 

0 

. 
1 

Fig. 3. An example of a Geometric Random Graph in 
two-dimensions. A node is connected to all other nodes 
that are within distance T of itself. 

V. CONCLUSION 

We presented a framework for the design and analy- 
sis of a randomized asynchronous distributed averaging 
algorithm on an arbitrary connected network. We charac- 
terized the performance of the afgorithm precisely in the 
terms of second largest eigenvalue of an appropriate dau- 
bly stochastic matrix. This allowed us to find the fastest 
averaging of this class of algorithms, by establishing the 
corresponding optimization problem to be convex. We 
established a tight relation between the averaging time 
of the dgorithm and the mixing time of an associated 
random wdk, and utilized this connection to design 
fast averaging algorithms for two popular and well- 
studied networks: WireIess Sensor Networks (modeled 
as Geometric Random Graphs), and the Internet graph 
(under the so-called Preferential Connectivity Model}. In 
these models, we find that the natural algorithm is as fast 
as the optimal algorithm. 

In general, solving semidefinite programs in a dis- 
tributed manner is not possible. However, we utilized the 
structure of the problem in order to solve the semidef- 
inite program (corresponding to the optima1 averaging 
algorithm) in a distributed fashion using the subgradient 
method. This allows for self-tuning weights: that is, 
the network can start out with some arbitrary averaging 
matrix, say, one derived from the natural random walk, 
and then locally, without any central coordination, COR- 

verge to the optimal weights corresponding to the fastest 
averaging algorithm. 

The framework developed in this paper is general and 
can be utilized for the purpose of design and analysis of 
distributed algorithms in many other settings. 
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