
Gossip Algorithms: Design, Analysis and
Applications

Stephen Boyd Arpita Ghosh Salaji Prabhakar Devavrat Shah *
Information Systems Laboratory, Stanford University

Stanford, CA 94105-9510

Ahtruct- Motivated by applications to sensor, peer-to-
peer and ad hoc networks, we study distributed asyn-
chronous algorithms, also known as gossip algorithms, for
computation and information exchange in an arbitrarily
connected network of nodes. Nodes in such networks
operate under limited computational, communication and
energy resources. These constraints naturally give rise to
"gossip" algorithms: schemes which distribute the compu-
tational burden and in which a node communicates with
a randomly chosen neighbor.

We analyze the averaging problem under the gossip con-
straint for arbitrary network, and find that the averaging
time of a gossip algorithm depends on the second largest
eigenvalue of a doubly stochastic mairix characterizing the
algorithm. Using recent results of Boyd, Diaconis and Xiao
(2003), we show that minimizing this quantity to design
the fastest averaging algorithm on the network is a semi-
definite program(SDP). In general, SDPs cannot be solved
distributedly; however, exploiting problem structure, we
propose a subgradient method that distrihutedly solves the
optimization problem over the network.

The relation of averaging time to the second largest
eigenvalue naturally relates it to the mixing time of a
random walk with transition probabilities that are derived
from the gossip algorithm. We use this connection to
study the performance of gossip algorithm on two popular
networks: Wireless Sensor Networks, which are modeled
as Geometric Random Graphs, and the Internet graph
under the so-called Preferential Connectivity Model.

I . INTRODUCTION

The advent of sensor, wireless ad hoc and peer-to-peer
networks has necessitated the design of asynchronous,
distributed and fault-tolerant computation and informa-
tion exchange algorithms. This is mainly because such
networks are constrained by the following operational
characteristics: (i) they may not have a centralized entity

*Author names appear in alphabetical order.
This work is supported in part by a Stanford Graduate Fellowship,

and by C2S2. the MARCO Focus Center for Circuit and System
Solution. under MARCO contract 2003-CT-SS8.

devavrat}@stanford.edu

for facilitating computation, communication and time-
synchronization, (ii) the network topology may not be
completely h o w n to the nodes of the network, (iii)
nodes may join or leave the network (even expire),
so that the network topology itself may change, and
(iv) in the case of sensor networks, the computational
power and energy resources may be very limited. These
constraints motivate the design of simple asynchronous
decentralized algorithms for computation where each
node exchanges information with only a few of its
immediate neighbors in a time instance (or, a round).
The goal in this setting is to design algorithms so that
the desired computation and communication is done as
quickly and efficiently as possible.

We study the problem of averaging as an instance
of the distributed computation problem, A toy example
to explain the motivation for the averaging problem is
sensing temperature of some small region of space by
a network of sensors. For example, in Figure 1 , sensors
are deployed to measure the temperature T of a source.
Sensor i , i = 1,. . . 4 measures T; = T + vi, where the

are IID, zero mean Gaussian sensor noise variables.
The unbiased, minimum mean squared error (MMSE)
estimate is the average P = - Thus, to combat

= T

Fig. 1. Sensor nodes deployed to measure ambient
temperature.
minor fluctuations in the ambient temperature and the
noise in sensor readings, the nodes need to average their
readings,

0-7803-8968-9/05/$20.00 (C)2005 IEEE 1653

mailto:devavrat}@stanford.edu

Distributed averaging arises in many applications such
as coordination of autonomous agents, estimation and
distributed data fusion on ad-hoc networks, and de-
centralized optimization. ' Fast distributed averaging
algorithms are also important in other contexts; see
Kempe et a1 [KDGO3], for example. For an extensive
body of related work, see [KK02],EKKDOlI, [HHLW,
[GvRBOl 1, [KEWO2], [MFHHOZ], [vROO], EGHK991,
EIEGH021, [KSSVOOa], [SMKfOl I, RFH+OI].

This paper undertakes an in-depth study of the design
and analysis of gossip algorithms for averaging in an
arbitrrrril!l connected network oE nodes. (By gossip algo-
rithm, we mean specifically an algorithm in which each
node communicates with no more than one neighbour in
each time slot.} Thus, given a graph G, we determine
the averaging time, Tave, which is the time taken for
the value at each node to be close to the average
value (a more precise definition is given later). We find
that the averaging time depends on the second largest
eigenvalue of a doubly stochastic matrix characterizing
the averaging algorithm: the smaller this eigenvalue, the
faster the averaging algorithm. The fastest averaging
algorithm is obtained by minimizing this eigenvalue over
the set of allowed gossip algorithms on the graph. This
minimization is shown to be a semi-definite program,
which is a convex problem, and therefore can be solved
efficiently to obtain the global optimum.

The averaging time, Tave, is closely related to the
mixing time, Tmix, of the random walk defined by
the matrix that characterizes the algorithm. This means
we can study also averaging algorithms by studying
the mixing time of the corresponding random walk on
the graph. The recent work of Boyd et al [BDX03]
shows that the ratio of the mixing times of the natural
random walk to the fastest-mixing random walk can
grow without bound as the number of nodes increases;
correspondingly, therefore, the optimal averaging algo-
rim can perform arbitrarily better than the one based
on the natural random walk. Thus, computing the op-
timal averaging algorithm is important: however, this
involves solving a semi-definite program, which requires
a knowledge of the complete topology. Surprisingly, we
find that we can exploit the problem structure to devise a
distributed subgradient method to solve the semidefinite

'The theoretical framework developed in this paper is not merely
restricted to averaging algoriths. It easily extends to the computation
of other functions which can be computed via pair-wise operations:
e.g.. the maximum, minimum or product functions. It can also be
extended for analyzing information exchange algorithms, although
this extension is not as direct. For concreteness and for stating
our results as precisely as possible, we shall consider averaging
algorithms in the rest of the paper.

program and obtain a near-optimal averaging algorithm.

Finally, we study the performance of gossip algorithms
on two network graphs which are very important in
practice: Geometric Random Graphs which are used to
model wireless sensor networks, ilod the Internet graph
under the preferential connectivity model. We find that
for geometric random graphs, the averaging time of
the natural is the same order as the optimal averaging
algorithm, which, as remarked earlier, need not be the
case in a genera1 graph.

We shall state our main results after setting out some
notation and definitions in the next section.

A. Problenr Fonnutation and Dejnirions

Consider a connected graph G = (V ,E) , where the
vertex set V contains n nodes and E is the edge set. The
it' component of the vector s(0) = [z1(0), ..., xn(0)lT

L i X i i 0) represents the initial value at node i. Let zave =
be the average of the entries of z(0) and the goal rs to
compute xave in a distributed and asynchronous manner.

Asynchronous time model: Each node has a
clock which ticks at the times of a rate 1 Poisson
process. Thus, the inter-tick times at each node are
rate 1 exponentials, independent across nodes and
over time. Equivalently, this corresponds to a single
clock ticking according to a rate n, Poisson process
at times Zk ,k 2 1, where {Zr,+l - Zr,} are ID
exponentials of rate 'n. Let I k E { 1, ..., 'IZ} denote
h e node whose clock ticked at time Z k . Clearly,
the J k are IID variables distributed uniformly
over { 1 , . . . , n} . We discretize time according
to clock ticks since these are the only times at
which the value of x(+) changes, Therefore, the
interval [Zk, Zk+1) denotes the kth time-slot and,
on average, there are n clock ticks per unit of
absolute time, Lemma 1 states a precise translation
of clock ticks into absolute time.

Synchronous time model: In the synchronous time
model, time is assumed to be slotted commonly
across nodes. In each time slot, each node contacts
one of its neighbors independently and (not neces-
sarily uniformly) at random. Note that in this model
all nodes communicate simultaneously, in contrast
to the asynchronous model where only one node
communicates at a given time. On the other hand,
in both models each node contacts only one other
node at a time.
This paper uses the asynchronous time model
whereas previous work, notably that of [KSSVOObl,

1654

[KDG03], considers the syncfironous time model.
The qualitative and quantitative conclusions are
unaffected by the type of model; we choose the
asynchronous time model for convenience.

Algorithm A(P): We consider a class of algo-
rithms, denoted by A. An algorithm in this class is
characterized by an n x n, matrix Y = (Pij] of non-
negative entries with the condition that Pij > 0 only
if (i , j) E E. For technical reasons, we assume that
P is a stochastic matrix with its larsesl eigenvalue
equal to 1 and at1 the remaining st?. - 1 eigenvalues
are strictly less than 1 in magnitude. (Such a matrix
can always be found if the underlying graph G
is connected and non-bipartite. We will assume
that the network graph G satisfies these conditions
for the remainder of the paper.) The algorithm
associated with P, denoted by d(P), is described
as follows:
In the kth time-slot, let node 2's clock tick and let
it contact some neighboring node j with probability
Pij. At this time both nodes set their values equal
to the average of their current values. Formally, let
r c (l c) denote the vector of values at the end of the
time-slot k. Then,

% (I ;) = W (k) X (k - 1): (1)

where with probability APij (i is the probability
that the i th node's clock ticked and Pij is the chance
that it contacted node j) the random matrix W { k)
is

where e; = [O . . . 0 1 O . - - O] * is an n x 1 unit
vector with the i th component equal to 1.

Quantity of Interest: Our interest is in determining
the time (number of clock ticks) it takes for z (k)
to converge to s,l, where 1 is the vector of all
ones.
Definition 1: For any 0 < e < 1, the E-averaging
time of an algorithm A(P) is denoted by T,,,(E, P)
and equals

(3)
where llvll denotes the 12 norm of the vector U .

Thus the €-averaging time is the smallest number of
clock ticks it takes for x(-) to get within E of z,l

with high probability, regardless of the initial value

The following lemma relates the number of clock ticks
to absolute time.

Lemma I: For any 6 2 1, E[Zk] = k/.n. Further, for

4 0) .

a n y b > O ,

PmoJ By definition, E[ZkJ = C i = l E (Z , -
Zj-11 = cj=l 1 / 7 7 = k / n . Equation (4) foIlows directly
from Cramer's Theorem (see [DZ99], pp. 30 & 35).

As a consequence of the Lemma 1, for k 2 'U,

k

with high probability (i.e.probability at least 1 - l/n2j.
In this paper, all the results about e-averaging times
are at least n., Hence, dividing the quantities measured
in term of the number of clock ticks by 71 gives the
corresponding quantities when measured in absolute time
(for an example, see Corollary 2).

B. Previoiis Resu 1r.s

A general lower bound for any graph G and any
averaging algorithm was obtained in [KSSVOOa] in the
synchronous setting. Their result is:

771eorenz 1: For any gossip algorithm on any graph
G and for 0 < E < 0.5, the 6-averaging time (in
synchronous steps) is lower bounded by S1(logn).

For a complete graph and a synchronous averaging
algorithm, [KDG03] obtain the following result.

Theorevtz 2: For a complete graph, there exists a gos-
sip algorithm such that the l/n-averaging time of the
algorithm is 0 (log 11) .

The problem of (synchronous) fast distributed averag-
ing on an arbitrary graph without the gossip constraint
is studied in [XB03]; here, W (t) = W for all t; i.e., the
system is completely deterministic. Distributed averag-
ing has also been studied in the context of distributed
load balancing ([RSW98]), where an analysis based on
Markov chains is used to obtain bounds on the time
required to achieve averaging (upto the integer con-
straint) upto a certain accuracy. However, each iteration
is governed either by a constant stochastic matrix, or a
fixed sequence of matchings is considered. Some olher
results on distributed averaging can be found in [BS03],
[Mur03], [LBFM], [OSMO4], [JLSO3J.

1655

Not much is known about good randomized gossip
algorithms for averaging on arbitrary graphs. The algo-
rithm of [KDG03] is quite dependent on the fact that the
underlying graph is a complete graph, and the general
result of KSSVOOa] is a non-constructive lower hound.

C. Our Resrrlts

In this paper, we design and characterize the perfor-
mance of averaging algorithms for arbitrary graphs. Our
main result is the following theorem, which we shall
later (in Section IV) apply to specific types of graphs
that are of interest in applications.

Tlreorein 3: The averaging time, Taye(E,P), of the
algorithm A(P) is bounded as follows:

where

and D is the diagonal matrix with entries
R

j= 1

Theorem 3 is proved in Section 11.
In Section 111 we show that the problem of finding

the fastest averaging algorithm can be formulated as a
semidefinite program (SDP). In general, it is not possible
to solve a semidefinite program in a distributed fashion.
However, we exploit the structure of the problem to
propose a completely distributed algorithm that solves
the optimization problem on the network, based on a
subgradient method. The description of the algorithm
and proof of convergence are found in Section 111-A.

Section N relates averaging time of an algorithm on
a graph G with the mixing time of an associated random
walk on G, and uses this result to study applications of
our results in the context of two networks of practical
interest: wireless networks, and the Internet.

11. PROOF OF THEOREM 3

We prove bounds (5) and (6) in Lemmas 2 and 3 on
the number of discrete times {or equivalently clock ticks)
required to get within E of XaiJel (analogous to (5) and
(6)).

A. Upper Bound

n:(O), for I; 2 K * (E) ,
L e m m 2: For algorithm A (P) , for any initial vector

where

Proufi Recall that under algorithm A (P) , from (1)
and (21,

a(k + 1) = W (k 4- 1)2(6), (91

where with probability $P;j the random matrix W (k) is

First note that W(k) are doubly stochastic matrices for
all (i , j) . For doubly stochastic matrices, the vector k1
is the eigenvector corresponding to the largest eigenvalue
:L. With this observation, and with our assumptions on
P, it can be shown that x(k) - aavel. Our interest is
in finding out how fast i t converges. In particular, we
would like to obtain bounds on the error random vector
. y (Q

~ (k) ~ (k) - z a v e I . (11)

Note that, p(k) 1. 1 since ~ (k) ~ 1 = 0.
Consider the evolution of y(,):

g (k + 1) = ~ (k + 1) - save1

(2 I Y (k + l) a (k) - z,,,W(k)l
=

= W (k + l)y(k). W)
W (k + 1) (~ (k) - XaveI)

Here (a) follows from the fact that 1. is an eigenvector
for all W (k + 1). Thus g(.) evolves according to the
same linear system as a(.).

To obtain probabilistic bounds on y(k), we will first
compute the second moment of y(k) and then apply
Markov’s inequality as below.
Computing W :

Let,

w e EIW(0)] = E[kP-(k)]

i,?

Then, the entries of IV are as follows:

1656

where D is the diagonal matrix with entries

Note thal, if P = PT, then P is doubly stochastic.
This impIies that Dj = 2, which in turn implies that

Computing Second Moment E [~ ~ (k) ~ p (k)] :
w = r(1 - l/n) + P/n.

For each k , W (k) = IVij with probability %, so that

= W (k) . (17)

Since this is true for each instance of the random matrix
fif ,

E[W(O>TW(O)J = E[W(O)J
= w. (1 8)

Now, from (12),

E[y(k + q T y (k + l)]
= E [y (k) T W (k + l) T W (k + l)y(k) j

= E [Y (kIT WY (I; 11 >

= E [y (k) T E [W (k + l) T I . l f (k -t- I)ly(k)]y(k)J
(19)

using (18), and the fact that the W (k + 1) are ID
(independent of ;v(k)) .

The matrix W is symmetric2 positive-semidefinite
(since W = WTWj and hence it has non-negative real
eigenvalues.

As stated earlier. g (k) I 1, which is the eigenvector
corresponding to the largest eigenvalue X I = 1 of W .
So, from the variational characterization of the second
eigenvalue, we have

Y (V I W W I A2 (w y (k > T y (k) .

q d k + UTl/(k + 111 5 Xz(W)ElY[b)Ty(k)].C21)

(20)

From (18) and (20),

'The symmetry of W does not depend on P being symmetric.

Recursive application of (21 j yields

J%/(k)Tl/(k)l 5 ~ 2 (v k y (o) T y (o > . 122)

y(o)Ty(o) = z(0) z(0) --n2,,

Now,

T 2

- < ~ (o) T x (o) . (23)

Application of Markov's Inequality:

equality, we have
From (22), (23) and an application of Markov's in-

310 C1 From (24, it follows that for k 2 K (E) = &,

This proves the Lemma, and gives us an upper bound
on the e-averaging time.

B. Lmver Bound

lh" 3: For algorithm A (P) , there exists an initial
vector x(O), such that for k < K (E) ,

where

Proof:
From (12) and (lS), we obtain

E [y (k)] = W k y (0) . (27)

We have shown that W is a symmetric positive-
semidefinite doubly stochastic matrix. W has (non-
negalive real) eigenvalues

1 = XI(M') 2 X 2 (W) 2 .. . 2 X,(W) 2 0:

with corresponding orthonormal eigenvectors
1 - fil, 2r2, us, . . . , zn. Choose

1657

For this choice of x(O), 11~(0)11 = 1. Now from (271,

(28)
1

For this particuIar choice of x(O), we will Iower bound
the e-averaging time by lower bounding E[lly(k) 1 1 *] and
using Lemma 4 as stated below,

E [y (k)] = - - x ; (w) V z .
fi

By Jensen's inequality and (28),
n n

with probability at least 1 - 2 ~ .

(29)
1 - -,p m/7 . - 2 2 (1

L e t m a 4: Let X be a random variable such that 0 5
X 5 B. Then, for any 0 < E < B ,

Pro o$

E [X] 5 cPr(X < e) + B Pr(X 2 E)

= Pr(X 2 cj(B - c) + E .

Rearranging terms gives us the lemma.
From (281, llg(k)112 5 /)g(0)1(2 I 1/2. Hence Lemma

(4) and (29) imply that for I; < K,(c)

Pr(l lv(W 1 4 > E * (3 0)
This completes the proof of Lemma 3.

The following corollaries are immediate.
Corollary I: For large n and symmetric P, Tay,(€, P)

is bounded as follows:

- Proofi By definition, X 2 (W) -

(1 -;(I - A2(P))). For large n, :(l - X2(P j)
is very small, and hence

1 1
log (1 - --(1 - X2(P)) = --(1- A Z (P)) . L

This along with Theorem 3 completes the proof. H

Corolla? 2: For a symmetric P , the absolute time,
Z T * (~ , P) , it takes for T*(c,P) clock ticks to happen is
given by

Pruufi For b = 2(1- X a (P) 1 and I; = T*(c, P) and
using (31), the right hand"<de of (4) evaluates to

= 2t .) 2exp (- 3n, 2(1 - A@))
2(1 - X 2 (P)) 3 n log E-1 *

Since -1 5 X,(P) 5 1 for a non-negative doubly
stochastic symmetric matrix P , 6 = 2 is larger than
the above choice of 6. This completes the proof.

J;I

I l l . OPTIMAL AVERAGING ALGOR~THM

1658

From Theorem 5, we see that the averaging time is a
monotonically increasing function of the second largest
eigenvalue of T/I/ = ETj=, iPijiVij. Thus, finding-the
fastest averaging algorithm corresponds to finding P
such that Xg(W) is the smallest, while satisfying con-
straints on P. Thus, we have the optinlization problem

The objective function, which is the second largest eigen-
value of a doubly stochastic matrix, is a convex function
on the set of symmetric matrices, and therefore we
have a convex optimization problem. This problem can
be reformulated as the following semidefinite program
(SDP):

minimize s
subject to TV - llT/n 5 SI,

For general background on SDPs, eigenvalue optimiza-
tion, and associated interior-point methods for solving
these problems, see, for example, [BV03], [WSVOO],
b0961, [Ove92], and references therein. Interior point
methods can be used to solve problems with a thousand
edges or so; subgradient methods can be used to solve
the problem for larger graphs with upto a hundred thou-
sand edges. The disadvantage of a subgradient method
compared to a primal-dual interior point method is that
the algorithm is relatively slow (in terms of number of
iterations), and has no simple stopping criterion that can
guarantee a certain level of suboptimality,

Thus, given a graph topology, we can solve the
semidefinite program (35) to find the P* for the fastest
averaging algorithm.

A. Distributed Optirniznfion

Finding the fastest averaging algorithm is a convex
optimization problem, and can therefore be solved ef-
ficiently to obtain the optimal distribution P*. Unfor-
tunately, a E' computed via a centralized computation
is not very useful in our setting. It is natural to ask
if in h i s setting, rhe optimization (like the averaging
itself), can 'also be performed distributedly; i.e., is it
possible for the nodes on the graph, possessing only
local information, and with oniy local communication,
to compute the probabilities Eij that lead to the fastest
averaging algorithm?

In this section, we outline a completely distributed
algorithm based on an upproximfe sirbgradieni method
which converges to a neighborhood of the optimal Y*.
The algorithm uses distributed averaging to compute
a subgradient; the accuracy to which the averaging is
performed determines the size of the neighbourhood.
The greater the accuracy, the smalfer the neighbourhood,
i .e . , the better the approximation to the optimal P*. The
exact relation between the accuracy of the distributed
averaging and the size of the neighbourhood is stated in
Theorem 4 at the end of this section. First we start with
some notation.
Notation: It will be easier to analyze the subgradient
method if we collect the entries of the matrix Pij into a
vector, which we will call p . Since there is no symmetry
requirement on the matrix P, the vector p will need to
have entries corresponding to Pij as well as Pji (this
corresponds to repiacing each edge in the undirected
graph G by two directed edges, one in each direction).

The vector p corresponds to the matrix Y as follows.
Let the total number of (non self-loop) edges in G be m.
Assign numbers to the edges (i , j) from 1 through m.
If a i < j then p l = Pij, where 1 is the number assigned
to (the undirected) edge (i , j > (which we will denote by
1 - (i : j)> ; if i > j then p-1 = p Z j . (Recall that we are
not considering self-loop edges.)

We will also introduce the notation pi corresponding
to the non-zero entries in the ith row of P (we do this to
make concise the constraint that the sum of elements in
each row should be 1). That is, we define for 1 5 i 5 n,

pi= [P . . - (' 2 3 , w) ' E &I. (36)

Define n x n matrices El, 1 N (i, j) as follows: Elij =
= +l, Elit = Eli3 = -1, and a11 other entries of

EL are zero. Then, we have that

El = 2 p j j - I) .

Finally, denote the degree of node i by mi.

1) Siibgrlrdient metlzod: We will describe the subgra-
dient method for the optimization problem restated in
terms of the variable p. We can state (35) in terms of
the variables p = [pm, . . . p-1> yl, . . . pm] as follows:

minimize ~2 (I + p l ~ j -i- P - ~ E - I)

subject to lTpi 5 1 , Vi (37)
p1 2 0: 1 I ill 5 %

where pi is as defined in (36).
We wilI use the subgradient method to solve this

problem distributedly. The use of the subgradient method
to solve eigenvalue problems is well-known; see for
example [BDX03], [OW93], ww96], [Lew99] for ma-
terial on non-smooth analysis of spectral €unction, and
[Cla90], [HUL93], [BLOO] for more general background
on non-smooth Optimization.

Recall that a subgradient of A2 at I.17 is a symmetric
matrix G that satisfies the inequality

)\2(7/5/) 2 Xz(W) + (G, E' - W)
= X2(W) + Tr G(r;v - W)

for any feasible, i.e., symmetric stochastic matrix 1,v. Let
U be a unit eigenvector associated with Xz(W), then the
matrix G = uuT is a subgradient of X2(W) (see, for
example, [BDX031).

Using

in terms of the probability vector p , we obtain

m

so that the subgradient g (p) is given by

' T T g(p) = - (U E-,u., . . . , U Emt&L), (39) 2n

with components

where Ill = 1, . . . ,m.
Observe that if each node i knows its own component

ui of the unit eigenvector, then this subgradient can be
computed locaily, using oniy local information.

The following is the projected subgradient method for
(40):

1659

Initialization: Initialize p to some feasible vector,
for example, p corresponding to the natural random
walk. Set k := 1.
Repeat for b 2 1,
- Subgradient step. Compute a subgradient g (k)

at p, and set

p := p - I/&)

- Projection onto feasible set. At each node i,
prqject pi obtained from the subgradient step
onto l T q 5 1 ,g 5 0. This is achieved as
foi low s:
1) If zy!l max(0,pij) 5 1, then set pi =

max(0, pi}, stop.
2) If not, then use bisection to find IC 2 0

such that cy& max{O,pij - x} = 1; set
pi max(0, piJ - x}, stop.

In this algorithm, Step 1 moves p in the direction of
the subgradient with stepsize vr;; we will discuss the
stepsizes a little later in this section. Step 2 projects the
vector p onto the feasible set. Since the constraints at
each node are separable, the variables pi corresponding
to nodes i are projected onto the feasible set separately.

The projection method is derived from the optimality
conditions of the projection problem

2

(40)
minimize x'zI(gj - pij)
subject to f g 5 1, g 0

as shown.
Introduce Lagrange multipliers A E R;m for the

inequality Q 0, and v for l T q - 1 5 0. The
KKT conditions for optimal primal and dual variables
Q*, A* v* are

q* 0, lTq* 51

v*(Pq* - 1) = 0, A;$ = 0, j = 1,. . . ,mi,

Z(q; - pij) + V* - A; = 0, j = 1,. . . , T&.

A * y 0, v* 2 0

Eliminating the slack variables X j , we get the equivalent
optimality conditions

q* 0, lTq* 5 1, (41
v* 2 0, v*(lTq* - 1) = 0, (42)
$(2($ - pij) + v*) = 0, j = 1,. . . ,m i , (43)
2($ - pij) + V* 2 0, j = 1 , . * . ,n&. (44)

If U* < 2pij, then from the last condition, necessarily
qt > 0. From (43j, this gives us 4; = pjj - v*/2. If
on the other hand v* 2 2pij, then v* 2 2pij - 2s; as

well since q; 1 0, and so to satisfy (431, we must have
q; = 0. Combining these gives us that

I / *

2 q; = max{O,pij - -}. (45)

The q; must satisfy lTq* 5 1, i .e., xmax(0,qj -
v*/2) 5 1. However, we must also satisfy the com-
plementary slackness condition v*(l'g* - 1) = 0.
These two conditions combined together lead to a unique
solution for I)*> obtained either at v* 0, or at the
solution of Cmax{O,qj - v*/2} = 1; from v* the q;
can be found as described.

2) Decentrdization: Now consider the issue of de-
centralization. Observe that in the above algorithm, g
can be computed locally at each node if U, the unit
eigenvector corresponding to A2 (W) , is known; more
precisely, if each node i is aware of its own component
of U, and that of its immediate neighbours. The projection
step can be carried out exactly at each node using local
information alone.

The rest of the section proceeds as follows: first we
will discuss approximate distributed computation of the
eigenvector U of W , and then show that the subgradient
method converges to a certain neighborhood of the
optimal value in spite of the error incurred during the
distributed computation of U at each iteration.

The problem of distributedly computing the top-k
eigenvectors of a matrix on a graph is discussed in
[KM04]; a distributed implementation of and error anal-
ysis for orthogonal iterations is described. By distributed
computation of an eigenvector U of a matrix W , we mean
that each node i is aware of the ith row of Mi, and can
only communicate with its immediate neighbours; given
these constraints, the distributed computation ensures
that each node holds its value ui in the unit eigenvector

Since the matrix W is symmetric and stochastic (it
is a convex combination of symmetric stochastic maui-
ces), we h o w that the first eigenvector is 1. Therefore
orthogonal iterations takes a particularly simple form (in
particular, we do not need any Cholesky factorization
type of computations at the nodes). We describe orthog-
onal iterations for this problem below:

DecentralOI: Initialize the process with some ran-

U.

domly chosen vector VO; for k > 1, repeat
- ! k t 2)k = W-Vk-1
- (Orthogonalizej l/k = ' ~ k - (Cy=, &,)I
- (Scale to unit norm) vk = vuk/llwII

Here, the multiplication by is distributed, since IV
respects the graph structure, i.e., Wij # 0 only if (2 , j) is

1660

an edge. So entry 2: of vk can be found using only values
of U X . - ~ corresponding LO neighbours of node i , i . e . , the
computation is distributed. The orthogonalize and scale
steps can be carried out dislributedly using the gossip
algorithm outlined in this paper, or just by distributed
averaging as described in [XB03] and used in CKM041.
Observe that the very matrix W can be used for the
distributed averaging step, since it is also a probability
matrix. We state the following result (appiied to our
special case) from [KM04], which basically states that it
is possible to compute the eigenvector upto an arbitrary
accuracy:

Lemma 5; If DecentralOI is run for
R (t ~ ~ ~ i ~ Iog(lG/t)) iterations, producing orthogonal
vector U , then

where llu, - u,11 is the L2 distance between U and the
eigenspace of Az; ur is the vector in the eigenspace
achieving this distance.

It is therefore clear that an approximate eigenvector,
and therefore an approximate subgradient can be com-
puted distributedly.

3) Convergence analysis: It now remains to show that
the subgradient method converges despite approximation
errors in computation of the eigenvector, which spill over
into computation of the subgradient, To show this, we
will use a result from fKiw041 on the convergence of
approximate subgradient methods.

Given an optimization problem with objective function
f and feasible set S, the approximate subgradient method
generates a sequence {&}E1 c S such that

(47) = Ps(zk - v&), g k E a&@),
where PS is a projection onto the feasible set, U,,. > 0 is
a stepsize, and

k a d &) = {g : f s (a) 2 fs (ak)+(g: .z-x }-E,k VZ]
(448)

is the ~k subdifferential of the objective function fs at
Xk.

Let Tk = (1 /2) [gk/ ’vk , and & = ~k + tk. Then we
have the following theorem from [KiwOM],

Lemrrru 6; If vk = 00, then

lim inf j (d) I: f* + 6,

where 6 = h i sup dk, and f * is the optimal value of the
objective function.

!5!

Consider the k-th iteration of the subgradient method,
with current iterate p (k) , and let fi be the error
in the (approximate) eigenvector U corresponding to
X2(IV(p(b))). (By error in the eigenvector, we mean
the L2 distance between ‘U and the (actual) eigenspace
corresponding to A2). Again, denote by U , the vector in
the eigenspace minimizing the distance to U , and denote
the exact subgradient computed from ur by gr..

We have 1/71 - ‘ ~ b , () ~ 5 E . First we find Q in terms of
E as follows:

This implies,

Ek = suP{g-yt- :Y-p(~)) = clly-Lh1121
P

where c is a scaling constant.
Next, we will find llg - g,112 in terms of E as follows:

n

Now, Ihe lth component of g - gr is

Combining the facts that /U; - u,,I 2 &: V i ; and
vz, j ; we get the (since (1 ~ 1 1 = 11 Iui - ujl 5

following

Summing over dl na edges gives us llg-gr 11 5 8 m / n 2 ,
i.e., fk 5 8cmc/n2 5 8cc since m 5 la2 for all graphs.

Now choose Vk = l /k . From (39, it can be seen
that)1gk1i2 is bounded above by &/n, and so ~k in
Theorem 6 converges to 0. Therefore if in each iteration
i, the eigenvector is computed to within an error of ~ i ,

and E = lim infe i , we have the foItowing result:
Tlzeoretn 4: The distributed subgradient method de-

scribed above converges to a distribution p for which
X 2 (W (p)) is within 8cmt/,tz2(s SCE) of the globally
optimal value X 2 (W (j *)) .

1661

IV. APPLICATIONS

In this section, we briefly discuss applications of our
results in the context of wireless ad-hoc networks and the
Internet. We examine how the performance of averaging
algorithms scales with the size (in terms of the number
of nodes) of the network.

Before we study this, we need the following result,
relating the averaging time of an algorithm A(P) and
the mixing time of the Markov chain on G that evolves
according to IV = W(P) . (Since IV is a positive-
semidefinite doubly stochastic matrix, the Markov chain
with transition matrix W has uniform equilibrium distri-
bution.)

Recdl that the mixing time is defined as follows:

Definition 2 (Mixing Emel: For a Markov chain
with symmetric transition matrix W . let Ai(t) =

3 cyL, 1W;j - ;I. Then, the +mixing time is defined

Tmix(E) = supinf{f : Ai(t') 5 €,'if t' 2 t } . (49)

We have the following relation between mixing times
and averaging limes, the proof of which can be found in
[BGPSW].

Theorem 5: For a symmetric matrix P, the E -

averaging time (in terms of absolute time) of the gossip
algorithm A(P) is related to the mixing time of the
Markov chain with transition matrix P as

.

as

2

Tave (E, P) = 8 [log n -t Tmix(t)) .

Figure 2 is a pictorial description of Theorem 5.
The z-axis denotes mixing time and the y-axis denotes
averaging lime. The scale on the axis is in order notation.
As shown in the figure, for P such that T&(P) =
o(logn), T,,, (;,E') 1 @(logn); for P such that

knowing mixing property of random walk essentially
characterizes the averaging time in the order sense.

Tmix(P) = ot(l0g n), Taw (i, P) = @(Tmix).

A. Wireless Nehwork

The Geometric Random Graph, introduced by Gupta
and Kumar [GKOO], has been used successfully to model
ad-hoc wireless networks. A d-dimensional Geometric
Random Graph on n nodes, modeling wireless ad-hoc
networks of ?z nodes with wireless transmission radius
T , is denoted as Gd(n: r) , and is obtained as follows:
place n nodes on a d dimensional unit cube uniformly
at random and connect any two nodes that are within dis-
tance T of each other. An example of a two dimensional
graph, G2(n, T) is shown in the Figure3.

71

log T t

Tmix
loglogn logn

Fig. 2. Graphical interpretation of Theorem 5.

The following is a well-known result about
the connectivity of G d (n , r) (for a proof, see
[GKOO], [GMPSWI, Pen031):

Lemma 7: For nrd 3 2logn, the G (n , r) is con-
nected with probability at least 1 - l/n2.

Theorem 6: On the Geometric Random Graph,
G d (n 7 ~) , the absolute l/na-averaging time, QI > 0, of
the optimal averaging algorithm is o 9 .

PrmJ In [BGPSM], the authors show that for E =
l/nQ,cy > 0 the €-mixing times for the fastest-mixing
random walk on the geometric random graph Gd(n,r)
is of order €I(?). Therefore, using this and the results
of Corollaries 1 and 2, we have the theorem.

Thus, in wireless sensor networks with a small radius
of communication, distributed computing is necessarily
slow, since the fastest averaging algorihm is itself slow.
However, consider the natural averaging algorithm, based
on the natural random walk, which can be described
as follows: each node, when it becomes active, chooses
one of its neighbors uniformly at random and averages
its value with the chosen neighbor. As noted before, in
general, the performance of such an algorithm can be
far worse than the optimal algorithm. Interestingly, in
the case of Gd(n:r) , the performances of the natural
averaging algorithm and the optimal averaging algorithm
are comparable (i.e. they have averaging times of the
same order). We state the following Theorem, which
is obtained exactly the same way as Theorem 6 , using
a result on Tmix for the natural random walk from
[BGPSOS]:

Theorem 7: On Lhe Geometric Random Graph,

0

1662

Gd(n , r) , the absolute l/n"-averaging time, cy > 0, of
the natural averaging algorithm is of the same order as
the optimal averaging dgorithm, i.e., 0 (9).
Implication. In a wireless sensor network, Theorem 6
suggests that for a small radius of Iransmission, even the
fastest averaging algorithm converges slowly; however,
the good news is that the natural averaging algorithm,
based only on local information, scales just as well as
the fastest averaging algorithm. Thus, at least in the
order sense, it is not necessary to optimize for the fastest
averaging algorithm in a wireless sensor network.

B. Inllremet

The Preferenual Connectivity (PC) model [MPS031 is
one of the popular models for he Internet. In [MPS03],
it is shown that the Internet is an expander under the
preferential connectivity model. This means that there
exists a positive constant 5 > 0 (indcpendent of the
size of the graph:), such that for the transition matrix
corresponding to the natural random walk, calI it P,

I (l-Arnax(f')) 5 1, (50)

where Amax(P) is the second largest eigenvalue of P
in magnitude, i .e., the spectral gap is bounded away
from zero by a constant. Let. P' be the transition matrix
corresponding to the fastest mixing random walk on the
htemet graph under the PC model. The random walk
corresponding to P* must mix at least as fast as the
natural one, and therefore,

It is easy to argue that there exists an optimal P' that is
symmetric (given any optimal PO, the matrix 1/2(Po +
P r) is symmetric, and leads to the same E [W] as Po).
Therefore, from t50), t51), Theorem 3 and Corollary 2,
we obtain the following Theorem.

Theorern 8: Under the PC model, the optimal averag-
ing algorithm on the Internet has an absolute €-averaging
time TaVe(e) = Q (loge-l).
Implication. The absolute time for distributed compu-
tation on the Intemet is independent of the size of the
network, and depends only on the desired accuracy of
the computation3. One implication is that exchanging
information on Internet via peer-to-peer network built
on tap of it is extremely fast!

'Althought the asymmetry of the P matrix for the natural random
walk on the Internet prevents us from exactly quantifying the aver-
aging time. we believe that averaging will be fast even under the
natural random walk. since the spectra1 gap for this random walk is
bounded away from 1 by a constant.

1

0

.
1

Fig. 3. An example of a Geometric Random Graph in
two-dimensions. A node is connected to all other nodes
that are within distance T of itself.

V. CONCLUSION

We presented a framework for the design and analy-
sis of a randomized asynchronous distributed averaging
algorithm on an arbitrary connected network. We charac-
terized the performance of the afgorithm precisely in the
terms of second largest eigenvalue of an appropriate dau-
bly stochastic matrix. This allowed us to find the fastest
averaging of this class of algorithms, by establishing the
corresponding optimization problem to be convex. We
established a tight relation between the averaging time
of the dgorithm and the mixing time of an associated
random wdk, and utilized this connection to design
fast averaging algorithms for two popular and well-
studied networks: WireIess Sensor Networks (modeled
as Geometric Random Graphs), and the Internet graph
(under the so-called Preferential Connectivity Model}. In
these models, we find that the natural algorithm is as fast
as the optimal algorithm.

In general, solving semidefinite programs in a dis-
tributed manner is not possible. However, we utilized the
structure of the problem in order to solve the semidef-
inite program (corresponding to the optima1 averaging
algorithm) in a distributed fashion using the subgradient
method. This allows for self-tuning weights: that is,
the network can start out with some arbitrary averaging
matrix, say, one derived from the natural random walk,
and then locally, without any central coordination, COR-

verge to the optimal weights corresponding to the fastest
averaging algorithm.

The framework developed in this paper is general and
can be utilized for the purpose of design and analysis of
distributed algorithms in many other settings.

ACKNOWLEDGMENT

D. Shah thanks Bob Gallagr for his suggestions.

1663

[BDX03]

[BGPSO4]

[BGPSOS]

[BLOO]

[BS03]

[BVOS]

ICla901

[DZ99]

[EGHKW]

[GKOO]

IGMPSO41

[GvRBOll

[HHL88]

[HUL93]

[IEGH021

[JLSO3]

[KDGO?]

[KEWOZ]

[K i d 4 1

[KK02]

REFERENCES

S. Boyd. P. Diaconis, and L. Xiao. Fastest mixing
Markov chain on a graph. Submitted to SIAM Review.
problems and techniques section. February 2003. Avail-
able a t www.stanford.edu/'boyd/fmmc .html.
S . Boyd, A . Ghosh. B. Prabhakar. and D. Shah. Analysis
and oDtirnization of randomized gossip algorithms. In

Proc. 43st IEEE Svfnp. on Foundations of Conputer
Science. 2002.
D. Kempe, J. Kleinberg. and A. Demers. Spatial gossip
and resource location protocols. In Proc. 33rd ACM
Symnp. of1 Theory of Computing. 2001.
D. Kempe and Frank McSherry. A decentralized algo-
rithm for spectral analaysis. In Symposiurii on 7 h e o v
of Coniputing. ACM, 2001.

[KSSVOOa] R . Karp. C. Schindelhauer. S. Shenker. and B. Vocking.
Randomized rumor spreading. In Proc. 41st IEEE Synp.
oil Fouridorions of Cornputer Science. 2000.

[KSSVOOb] R. Karp, C . Schindelhauer. S. Shenker. and B. Vcking.
Randomized rumor spreading. In Proc. Synposiuiii an
Foundalions of Conrputer Science. IEEE. 2000.

strategies for groups of mobile autonomous agents.
49(4):622429. April 2004.

[Lew961 A. S. Lewis. Convex analysis on the Hemitian matrices.
SIAM Journal oii Uptiniizatiori. 6:166177. 1996.

[Lew99] A . S. Lewis. Nonsmooth analysis of eigenvalues.
Marhematical Prugrurtoning. 84 1-24, 1999.

[LO961 A. S. Lewis and M. L. Overton. Eigenvalue op t i i za -
tion. Acta Nunierica. 5:149-190, 1996.

$fhIHH02] S. Madden. M. Franklin, J . Hellerstein. and W. Hong.

KKDOl]

KM04

- _ -
Proc. -004 lEEE CDC, 2004.
S. Boyd. .4. Ghosh. B. Prabhakar. and D. Shah. Mixing
times of random walks on geometric random graphs.
Proc. SIAM WALCO. 2005.
J. M. Bomein and A. S. Lewis. Convex. Analysis
mid Nonlinear Oprimizalion, Theoq and Gnnples.

Springer-Verlag, New York. 2000.
R. W. Beard and V. Stepanyan. Synchronization of

in distributed multiple vehicle coordinated
control. In Proceedings ofIEEE Conference OF? Decisioii
and Conrrol. December 2003.
S. Boyd and L. Vandenberghe. Convex Opfiffrizafiofi.
Cambridge University Press. 2003. Available at
http://www.stanford.edu/"boyd/cvxbook.ht
E H. Clarke. 0prhi:ation und Nonsmooth Analysis.

Canadian ~ ~ t h ~ ~ ~ t i ~ ~ l society Books in MathemticS. [LBF04] 2. Lin. M. Brouke. and B. Francis. Local COnlrol

SIAM. Philadelphia. 1990.
A. Dembo and 0. Zeitouni. Large Devialioizs Tech-
niques and Applicari;ons. Springer. 1999.
D. Estrin, R. Govindan. J. Heidemann. and S. Kumar.
Next century challenges: Scalable coordination in sensor
networks. In Proc. 5th Intl. Cong on Mobile Computing
and Networking. 1999.
P. Gupta and P. R. Kumar. The capacity of wireless
networks. IEEE Transactions on Infonnafioii Theory.
46(2):383&04. March 2000.
A. El Gamal. 1. Mammen, E. Prabhakar, and D. Shah.
Throughput-deiay trade-off in wireless networks. h
Proc. 2004 INFOCOM. 2004.
I. Gupta. R. van Renesse, and K. Birman. Scalable fault-
tderant aggregation in large process groups. In Proc.
Con$ on Dependable Systems and Neiworkr, 2001.
S. Hedetniemi. S. Hedetniemi, and A. Liestman. A
survey of gossiping and broadcasting in communication
networks. Networks. 18:319-349, 1988.
J.-B. Hiriart-Urruty and C. Lemarkchal. Convex Analysis
and Minirnizutian Algorithm. Springer-Verlag, Berlin,
1993.
C. Intanagonwiwat. D. Estrm, R. Govindan. and J . Hei-
demann. lmpact of netowrk density on data aggregation
in wireless sensor networks. In Pmc. lntl. Con$ on
Distributed Computing Systems, 2002.
A. Jadbabaie, J. Lin, and A. S.Morse. Coordination
of groups of mobile autonamous agents using nearest
neighbor rules. IEEE Transactions on Autonutic Con-
fro/. 488(6):988-1001, June 2003.
D. Kempe, A. Dobra. and J . Gehrke. Gossip-based com-
putation of aggregate information. In Pruc. Conference
on Folrndariuns of Cornputer Science. IEEE, 2003.
B. Krishnamachari, D. Estrin, and S. Wicker. The impact
of data aggregation in wireless sensor networks. In ht l .
Workshop of Distributed Evenr Based Systems, 2002.
K. Kiwiel. Convergence of approximate and incremental
subgradient methods for convex optimization. SIAM
Journal on Optimization, 14(3):807-840. 2004.
D. Kempe and J . Kleinberg. Protocols and impossibility
results for gossip-based communication mechanisms. In

[MPSO3]

[Mm31

[OSM04]

[Ove92]

[OW931

[Pen031

[RFH+011

[RSW9P]

I

Tag: A tiny aggregation service for ad-hoc sensor net-
works. In Proc. 5th Symp.on Operaring Systems Design
wid inplementution. 2002.
M. Mihail. C. Papadimitriou. and A. Saberi. Intemet is
an exapnder. [n h o c . con$ on Fouizdations ofCormipuler
Science. 2003.
L. Mureau. Leaderless coordination via bidirectional
and unidirectional time-dependent communication. In
Proceedings of IEEE Corlference on Decision and Cort-
tml, December 2003.
R. Olfati-Saber and R. M. Murray. Consensus problems
in networks of agents with switching topology and
time-delays. lEEE Transactions on Auromaric Control,
49(9):1520-1533, September 2004.
M. L. Overton. Large-scale optimization of eigenvalues.
SIAM Journal on Optinriafion. 2:88-120, 1992.
M. L. Overton and R. S . Wamersley. Optimality
conditions and duality theory for minimizing sums of
the Lqest eigenvalues of symmetric matrices. Mathe-
m i c d Programming. 62:321-357. 1993.
M. Penrose. Random geometric graphs. Oxford studies
in probability. Oxford University Press, Oxford, 2003.
S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc.of the ACM SIGCOMM Conference. 2001.
Y. Rabani, A. Sinclair, and R. Wanka. Local divergence
of Markov chains and the analysis of iterative load-
balancing schemes. In Proc. Conference on Foufiddioirs
of Compucer Science. EEE, 1998.

[SMK'OI] 11 Stoica, R. Moms, D. Karger. E Kaashoek. and
H, Balaknshnan, Chord: A scalable peer-to-peer lookup
service for internet applications. In Procuf flie ACM
SIGCOMM Conference, 2001.
R. van Renesse. Scalable and secure resource location.
In 33rd Hawaii Intl. Con$ on Sysreriz Sciences. 2000.
H. Wolkowicz, R. Saigal. and L. Vandenberghe. Hand-
book of Semidefinite Progranuning, Theory, Algorithm,
and Applications. Kluwer Academic Publishers. 2000.
L. Xiao and S. Boyd. Fast linear iterations for distributed
averaging. In Proc. 2003 Conference 011 Decision and
Confro/. December 2003.

[vROO]

[WSVOO]

[XB03]

1664

http://www.stanford.edu/"boyd/cvxbook.ht

