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Geometric Programming Duals of Channel
Capacity and Rate Distortion
Mung Chiang, Member, IEEE, and Stephen Boyd, Fellow, IEEE

Abstract—We show that the Lagrange dual problems of the
channel capacity problem with input cost and the rate distortion
problem are simple geometric programs. Upper bounds on
channel capacity and lower bounds on rate distortion can be
efficiently generated from their duals. For channel capacity, the
geometric programming dual characterization is shown to be
equivalent to the minmax Kullback–Leibler (KL) characterization
in [10], [14]. For rate distortion, the geometric programming dual
is extended to rate distortion with two-sided state information.

A “duality by mapping” is then given between the Lagrange dual
problems of channel capacity with input cost and rate distortion,
which resolves several apparent asymmetries between their primal
problems in the familiar form of mutual information optimization
problems. Both the primal and dual problems can be interpreted in
a common framework of free energy optimization from statistical
physics.

Index Terms—Channel capacity, convex optimization, duality,
free energy, geometric programming, rate distortion.

I. INTRODUCTION

A. Overview

SHANNON made the following well-known remarks in
[27]:

There is a curious and provocative duality between the
properties of a source with a distortion measure and those
of a channel. This duality is enhanced if we consider chan-
nels in which there is a cost associated with the different
input letters…Solving this problem corresponds, in a sense,
to finding a source that is right for the channel and the de-
sired cost…In a somewhat dual way, evaluating the rate
distortion function for a source…corresponds to finding a
channel that is just right for the source and allowed distor-
tion level.

Thus, the two fundamental limits of data transmission and
data compression are “somewhat dual” for the basic discrete
memoryless systems in [26], [27]. This paper gives an exact
and detailed characterization of this Shannon duality between
data transmission and compression through Lagrange duality in
convex optimization.
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In Sections II and III, we show that the Lagrange dual prob-
lems of channel capacity with input cost and of rate distortion
are simple geometric programs, a special type of nonlinear
optimization problems to be introduced in Section I-B. This
implies that any Lagrange dual variable satisfying the Lagrange
dual constraints gives an upper bound on channel capacity
or a lower bound on rate distortion, and that the optimized
value of the Lagrange dual problem equals channel capacity
or rate distortion. For channel capacity, the geometric pro-
gramming characterization is shown to be equivalent to the
minmax Kullback–Leibler (KL) characterization in [10], [14],
which obtains channel capacity by minimizing over output
distributions. For rate distortion, the geometric programming
dual is extended to rate distortion with state information [8],
[31]. Section IV-A shows a “duality by mapping” relationship
between the Lagrange dual problems of channel capacity and
rate distortion, thus characterizing Shannon duality through
Lagrange duality. Section IV-B interprets channel capacity as a
free energy optimization problem in statistical physics, comple-
menting the free energy interpretation of rate distortion in [1].

It is not too surprising that channel capacity and rate distor-
tion can be obtained by geometric programs. Section I-B shows
that geometric programs can easily be turned into convex
optimization problems using the same inequality that proves
the convexity of KL divergence, and the appendix connects the
special forms of the geometric program duals with typicality
arguments. In [6], it is shown that large deviations bounds
for independent and identically distributed (i.i.d.) random
variables and Markov chains can be obtained through geo-
metric programs, and that generalized free energy optimization
problems and various lossless source coding relaxations are
also geometric programs.

We will use the following notation. Probability distributions
are represented as row vectors. Both column and row vectors
are denoted in boldface, and matrices in capital letter boldface.
Given two column vectors and of length , we express the
sum as an inner product . If is a row vector
instead, the inner product is denoted as . Componentwise in-
equalities on a vector with entries are expressed using the

symbol: denotes , . A column
vector with all entries being is denoted as , and the length of

will be clear from the context.

B. Geometric Programming

All problems treated in this paper are convex optimization
problems: minimizing a convex objective function subject to
upper bound inequality constraints on other convex functions.
It is well known that for a convex optimization problem, a local
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minimum is also a global minimum. Lagrange duality theory
is also well developed for convex optimization. For example,
the duality gap is zero under mild technical conditions such as
Slater’s condition [4] that requires the existence of a strictly fea-
sible point. When put in an appropriate form with the right data
structure, a convex optimization problem is also easy to solve
numerically by efficient algorithms such as the primal-dual inte-
rior-point methods [4], [22]. In this paper, we will use geometric
programming [11], a type of nonlinear problems that can be
turned into convex optimization. Geometric programs have been
used for various engineering problems, including recently for
resource allocation in communication networks [5]–[7], [16],
[17].

We first define a monomial as a function

where the multiplicative constant and the exponential
constants , . A sum of monomials is
called a posynomial

where , , and , ,
.

Minimizing a posynomial subject to posynomial inequality
constraints and monomial equality constraints is called a geo-
metric program in standard form

minimize

subject to

(1)

where , are posynomials

and , are monomials

Note that the objective of a geometric program can also be
the maximization of a monomial, since this is equivalent to the
minimization of the reciprocal of a monomial, which is again
a monomial. Given a geometric program in standard form, we
can form a matrix where each row consists of the exponen-
tial constants associated with each term of the posynomials and
monomials, and a vector consisting of all the multiplicative
constants.

Geometric programming in the above standard form is not
a convex optimization problem. However, with a logarithmic
change of variables and constants: , ,

, we can turn it into the following geometric program
in convex form with variables :

minimize

subject to

(2)

To show that (2) is indeed a convex optimization problem,
consider the following log sum inequality (readily proved by
the convexity of , , [9], [10]):

(3)

where , . This inequality easily leads
to the convexity of KL divergence

in [9], which in turn shows that channel capacity and rate
distortion problems are convex optimization problems.

Now consider the convexity of the LogSumExp function
, which can be shown from the following

conjugacy relationship. Given a function , the
function , defined as

(4)

is called the conjugate function of . Since is the pointwise
supremum of a family of affine functions of , it is always a
convex function. It is easy to verify that, if is the conju-
gate of , then for a given , the perspective function

is the conjugate of the scaled function .
Let and in the log sum inequality

(3). We obtain

which by definition shows that LogSumExp is the conjugate
function of negative entropy. Since all conjugate functions are
convex, LogSumExp is convex. Therefore, geometric programs
in convex form are indeed convex optimization problems.

As a small example, it is easily seen that the following opti-
mization problem is a geometric program in standard form:

minimize

subject to

We will show in Section II-B that the above geometric pro-
gram is, in fact, computing a channel capacity with an input cost
constraint.
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II. LAGRANGE DUAL OF CHANNEL CAPACITY

A. The Channel Capacity Problem With Input Cost

First consider the problem of data transmission over a dis-
crete memoryless channel with input ,
output , and channel law

The channel law forms a channel matrix , where
the entry of is with . A distribution

on the input, together with a given channel matrix ,
induces a distribution on the output by , and
a joint distribution on the input output pair by .
We also associate with each input alphabet symbol an input
cost , forming a column vector .

It is a key result in information theory [20] that the capacity
of a discrete memoryless channel under the input cost

constraint is

(5)

where the mutual information between input and output is
defined as

where and is the condi-
tional entropy of given .

Therefore, we view channel capacity as the optimal objective
value of the following maximization problem, referred to as the
channel capacity problem with input cost:

maximize

subject to

(6)

where the optimization variables are and . The constant pa-
rameters are the channel matrix and

In the special case of no input cost constraint, the channel ca-
pacity problem becomes

maximize

subject to

(7)

If we substituted in the objective function of (6), we
would have found that the Lagrange dual problem can only be
implicitly expressed through the solution of a system of linear
equations. Keeping two sets of optimization variables and ,
and introducing the equality constraint in the primal
problem is a key step to derive an explicit and simple Lagrange
dual problem of (6).

B. Geometric Programming Dual

Proposition 1: The Lagrange dual of the channel capacity
problem with input cost (6) is the following geometric program
(in convex form):

minimize

subject to

(8)

where the optimization variables are and , and the constant
parameters are , , and .

An equivalent version of the Lagrange dual problem is the
following geometric program (in standard form):

minimize

subject to

(9)

where the optimization variables are and , and is the th
row of .

Lagrange duality between problems (6) and (8) means the
following.

• Weak duality. Any feasible of the Lagrange dual
problem (8) produce an upper bound on channel capacity
with input cost:

• Strong duality. The optimal value of the Lagrange dual
problem (8) is .

Proof: In order to find the Lagrange dual of problem (6),
we first form the Lagrangian as

(10)

with Lagrange multiplier vector , Lagrange multi-
plier , and Lagrange multiplier vector .
Since and correspond to the inequality constraints, we have

and .
We then find the Lagrange dual function

by finding the and that maximize
, which is a concave function of . First, note that
is a linear function of , thus bounded from above only

when it is identically zero. As a result,
unless , which is equivalent to

since .
Assuming , the Lagrangian becomes

which we must now maximize over . To find the maximum of
over , we set the derivative with respect to

equal to zero: . Thus,
is the maximizer, with the associated maximum value
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Therefore, the Lagrange dual function is

otherwise.
(11)

By making the constraint explicit, we
obtain the Lagrange dual problem

minimize

subject to

The optimization variables are , , and , and the constant
parameters are .

Letting , and using the fact , we rewrite
the dual problem as

minimize

subject to

where the optimization variables are , , and . Since the
dual variable , which is the Lagrange multiplier corresponding
to the primal constraint , is unconstrained in the dual
problem, we can minimize the dual objective function over
analytically, and obtain the minimizing .
The resulting dual objective function is . The
Lagrange dual problem is simplified to the following geometric
program in convex form:

minimize

subject to

where the optimization variables are and , and the constant
parameters are .

We can turn this geometric program into standard form,
through an exponential change of the variables and
the dual objective function

minimize

subject to

where the optimization variables are and , the constant pa-
rameters are , and is the th row of .

The weak duality part of the proposition follows directly from
a standard fact in Lagrange duality theory [4]: the Lagrange dual
function is always an upper bound on the primal maximization
problem.

It is well known that the objective function to be maximized
in the primal problem (6) is concave in and the constraint
functions are affine. The strong duality part of the proposition
holds because the primal problem (5) is a convex optimization
satisfying Slater’s condition [4].

Corollary 1: The Lagrange dual of the channel capacity
problem without input cost (7) is the following geometric
program (in convex form):

minimize

subject to (12)

where the optimization variables are , and the constant param-
eters are .

An equivalent version of the Lagrange dual problem is the
following geometric program (in standard form):

minimize

subject to

(13)

where the optimization variables are , the constant parameters
are , and is the th row of .

Lagrange duality between problems (7) and (12) means the
following.

• Weak duality. for all that satisfy
.

• Strong duality. , where are the
optimal dual variables.

We can also prove the weak duality result in Corollary 1 on
channel capacity upper bound in a simple way without using the
machinery of Lagrange duality.

Proof: We are given

and , , , . Through
second derivative test, , , is readily verified
to be convex, i.e.,

with , . Letting and and

using gives

Since

we have

i.e., any feasible dual objective value is an upper bound on
channel capacity.

Note that the Lagrange dual (13) of the channel capacity
problem is a simple geometric program with a linear objective
function and only monomial inequality constraints. Also, dual
problem (9) is a generalized version of dual problem (13),
weighing the objective function by and each constraint by

, where is the Lagrange multiplier associated with the
input cost constraint. If the costs for all alphabet symbols are ,



CHIANG AND BOYD: GEOMETRIC PROGRAMMING DUALS OF CHANNEL CAPACITY AND RATE DISTORTION 249

we can analytically minimize the objective function over by
simply letting , indeed recovering the dual problem (13)
for channels without the input cost constraint.

We can interpret the Lagrange dual problem (12) as follows.
Let be a real-valued function on the
output space, with . We can think of the variables
as parameterizing all real-valued functions on the output space,
so the dual problem is one over all real-valued functions on the
output space. Since

the inequality constraint in the dual states that for each ,
exceeds . Since

the objective function in the dual is a smooth approximation of
the maximum function. Thus, the Lagrange dual problem asks
us to consider all real-valued functions on the output space,
for which exceeds for each .
Among all such , we are to find the one that minimizes a
smoothed approximation of the maximum value of .

Suppose we have solved the geometric program dual of
channel capacity. By strong duality, we obtain . We
can also recover the optimal primal variables, i.e., the ca-
pacity-achieving input distribution, from the optimal dual
variables. For example, we can recover a least norm ca-
pacity-achieving input distribution for a channel without an
input cost constraint as follows. First, the optimal output
distribution can be recovered from the optimal dual variable

(14)

where , and the optimal input distribution
is a vector that satisfies the linear equations

In fact, both the primal and dual problems of can be
simultaneously and efficiently solved through a primal–dual in-
terior point algorithm [4], [22], which scales smoothly for dif-
ferent channels and alphabet sizes. Utilizing the structure and
sparsity of the exponent constant matrix of the geometric pro-
gram dual for channel capacity, standard convex optimization
algorithms can be further accelerated in this case.

Proposition 1 can be easily extended when there are
input cost constraints indexed by ,

. The Lagrange dual problem becomes

minimize

subject to

(15)

where the optimization variables are and .

C. Complementary Slackness

From the complementary slackness property [4], if ,
, i.e., every mass point in the capacity-achieving input dis-

tribution is positive, then solving a system of linear equations
obtains and , hence, the channel capacity

with input cost

In the case of no input cost constraint, this recovers the obser-
vation made by Gallager in [13].

A dual argument based on complementary slackness shows
that if in the Lagrange dual of
channel capacity. Therefore, from the optimal dual variable ,

, we immediately obtain the support of the capacity-achieving
input distribution as

From the primal and dual problems of channel capacity,
we also obtain various optimality conditions. For example, if
there are and satisfying the following
Karush–Kuhn–Tucker (KKT) conditions [4] for a given

then the resulting is the channel capacity .
There is a minmax KL divergence (minmaxKL) characteri-

zation of discrete memoryless channel capacity with input cost
in [10], [14]

(18)

where the minimization over is over all possible output
distributions.

Since the Lagrange dual (8) and minmaxKL (18) character-
izations both give , they must be equivalent. This equiv-
alence can also be established directly. Let the dual variables

where and is any distribution. Then
the dual constraints become

Since the case of is trivial, assume .
By complementary slackness, if at optimality all the dual
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constraints are satisfied with strict inequalities, then the optimal
Lagrange multipliers (readily seen to be the optimal input
distribution) of this geometric program must all be zero,
contradicting our assumption that . Therefore,

By the strong duality part of Proposition 1

Since at optimality, must correspond to the output distri-
bution induced by an optimal input distribution, restricting the
minimization of dual variables to a scaled version of an output
distribution incurs no loss of generality. Thus, the minmaxKL
characterization (18) is recovered.

D. Bounding From the Dual

Because the inequality constraints in the dual problem (8) are
affine, it is easy to obtain a dual feasible by finding any so-
lution to a system of linear inequalities, and the resulting value
of the dual objective function provides an easily derivable upper
bound on channel capacity. Many channel matrices also exhibit
sparsity patterns: special patterns of a small number of nonzero
entries. Based on the sparsity pattern of the given channel ma-
trix, tight analytic bounds may also be obtained from an appro-
priate selection of dual variables.

As a simple example, it is easy to verify that
, , satisfy the dual constraints and generate

an upper bound on channel capacity

Similarly, it is easy to verify that satisfy
the dual constraints and give the following.

Corollary 2: Channel capacity is upper-bounded in terms of
a maximum-likelihood receiver selecting for each
output alphabet symbol

(19)

which is tight if and only if the optimal output distribution is

When there is an input cost constraint , the above upper
bound becomes

(20)

where each maximum-likelihood decision is modified by the
cost vector .

Of course, it is also easy to find a primal feasible point sat-
isfying the linear inequality constraints of the primal problem
(7), which gives a lower bound on channel capacity. must
be within the range determined by this pair of upper and lower
bounds.

Sometimes dual feasible variables alone give an estimate
of the channel capacity with a bounded error. For example,
for channel capacity without input cost, find any such that

, from which we generate

If there is a such that , then the estimated channel
capacity can only be away from the
true capacity , where

Note that the minmaxKL characterization of (18) obvi-
ously leads to the following known class of upper bounds on
channel capacity: for any output distribution

(21)

which is shown in [10], [13], and has recently been used for
simulating finite-state channels in [29] and bounding capacity
of noncoherent multiple-antenna fading channels in [18].

An argument similar to that in Section II-C shows that the
geometric program Lagrange dual (8) generates a broader class
of upper bounds on , including the class of bounds from
(21) as a special case. Specifically, the following bounds, readily
extended from (21) and parameterized by output distributions
and :

can be obtained from the geometric program dual by restricting
the dual variables to be such that

and by restricting to be a scaled output distribution.
For a memoryless channel with continuous alphabets, where

the channel is a family of conditional distributions and
the input cost constraint is , a derivation sim-
ilar to Proof 1 shows that the Lagrange dual of the channel ca-
pacity problem is the following continuous analog of geometric
program with variables and :

minimize

subject to

(22)
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Weak duality and the Lagrange dual problem (22) readily lead
to the following class of bounds, which is also shown in [18]:
for any distribution and

III. LAGRANGE DUAL OF RATE DISTORTION

A. The Rate Distortion Problem

Consider the following standard problem of data compres-
sion. Assume a source that produces a sequence of i.i.d. random
variables , where the state space of
is a discrete source alphabet with alphabet symbols and

is the source distribution. The encoder describes the
source sequence by an index ,
where is a realization of . The decoder reconstructs
by an estimate in a finite reconstruction al-
phabet . Given a bounded distortion measure

, the distortion between sequences and is
the average distortion of these two -letter blocks.

It is another key result in information theory that the rate dis-
tortion function of a discrete source can be evaluated as
the minimum mutual information between the source
and the reconstruction under the distortion constraint

(23)

where

In Section III-B, we will focus on the following rate distortion
problem:

minimize

subject to

(24)

where the variables are the reconstruction probabilities . The
constant parameters are the source distribution , the distortion
measures , and the distortion con-
straint .

B. Geometric Programming Dual

Proposition 2: The Lagrange dual of the rate distortion
problem (24) is the following geometric program (in convex
form):

maximize

subject to

(25)

where the optimization variables are and , and the
constant parameters are , , and .

An equivalent version of the Lagrange dual problem is the
following geometric program (in standard form):

maximize

subject to

(26)

where the optimization variables are and , and the constant
parameters are , , and .

Lagrange duality between problems (23) and (25) means the
following.

• Weak duality. Any feasible of the Lagrange dual
problem (25) produce a lower bound on the rate distortion
function

• Strong duality. The optimal value of the Lagrange dual
problem (25) is .

Note that in [1], Berger proved an equivalent formulation as
(25). The proof here is simpler by directly using the Lagrange
duality approach.

Proof: In order to find the Lagrange dual of problem (24),
we first form the Lagrangian

(27)

with Lagrange multiplier vector , Lagrange mul-
tiplier , and Lagrange multiplier matrix ,
with entry of denoted as . Since and correspond
to the inequality constraints, we have and ,

, .
We then find the Lagrange dual function

by finding the that minimizes , which is a convex function
of . We let the derivatives of with respect to be equal
to

where . This gives the following condition on
the minimizer of :

(28)

where . Now multiply both sides of (28) by ,
sum over , and cancel on both sides; we obtain the following
condition:
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which, by the definition of and the condition , is
equivalent to

(29)

Substituting the minimizer (28) and the condition (29) into
(27), we obtain the Lagrange dual function

otherwise.
(30)

By making the constraints explicit, we obtain the Lagrange
dual problem

maximize

subject to

where the variables are and , and the constant parameters are
, , and .
Now we change the dual variables from to : ,

and rewrite the dual problem as

maximize

subject to

where the variables are and , and the constant parameters are
, , and .
In order to bring the dual problem (25) to the standard form

of geometric programming, we use an exponential change of the
variables , to rewrite the dual problem as

maximize

subject to

where the variables are and , and the constant parameters are
, , and .
The weak duality part of the proposition follows directly from

a standard fact in Lagrange duality theory [4]: the Lagrange dual
function is always a lower bound on the primal minimization
problem.

It is well known that the objective function in the primal
problem (24) is convex in , and the constraints are affine.
The strong duality part of the proposition holds because the
primal problem (5) is a convex optimization satisfying Slater’s
condition [4].

The Lagrange dual (26) of the rate distortion problem (24)
is a simple geometric program: maximizing a monomial over
posynomial constraints, in the form of maximizing a geometric
mean weighted by , under constraints on arith-
metic means weighted by . A smaller shadow
price would reduce the objective value but also loosen each
constraint, allowing larger dual variables and possibly higher
objective value.

Proposition 2 can be easily generalized to rate distortion with
distortion constraints indexed by ,

, where the Lagrange dual problem becomes

maximize

subject to

(31)

where the optimization variables are and .
Similar to the case for channel capacity, we can now effi-

ciently lower-bound the rate distortion function from the geo-
metric programming dual. In particular, due to the structure of
the constraints in (26), for any given , finding a dual feasible

reduces to the easy task of solving a system of linear inequal-
ities. For example, with Hamming distortion measure, it is easy
to verify that

and

satisfy the Lagrange dual constraints in (25), and give the fol-
lowing lower bound:

(32)

where is the binary
entropy function.

Now consider guessing a random variable based on an-
other random variable . If we replace by the probability of
estimation error and use the fact that

then the lower bound (32) recovers Fano’s inequality

(33)

that readily proves the converse theorem for channel capacity
[9].

More results on bounding and computing the rate distortion
function can be found in [1] and [2].

C. Rate Distortion With State Information

As an extension of the basic data compression problem de-
scribed in Section III-A, rate distortion with state information
has been studied (e.g., in [31]) and applied to data compression
systems such as distributed source coding in a sensor web (e.g.,
in [24]).

The following general problem of rate distortion with two-
sided state information was considered in [8]. Assume corre-
lated random variables i.i.d. with
finite alphabets , respectively. Let
be a sequence of independent drawings of , and let

be the state information avail-
able to the encoder and to the decoder. We wish to describe

at rate bits per symbol and reconstruct with dis-
tortion smaller than or equal to . The sequence is en-
coded in blocks of length into a binary stream of rate , which
will in turn be decoded as a sequence in the reproduc-
tion alphabet. For a given bounded distortion measure ,
the average distortion is . We say that
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rate is achievable at distortion level if there exists a se-
quence of codes ,

such that

The rate distortion function is the infimum of the
achievable rates with distortion .

The rate distortion function with two-sided state information
is [8]

(34)

where is an auxiliary random variable and the minimization
is under the distortion constraint

The problem of rate distortion with state information at the
decoder, i.e., when and , was studied by Wyner
and Ziv [31], who proved the rate distortion function to be

(35)

where the minimum is under the distortion constraint

and
Although the above source coding theorems have been

proved, bounding or computing the rate distortion function
with state information have not appeared in the literature. In
Section III-D, we will show that the Lagrange dual of the rate
distortion problem with state information is again a geometric
program, which allows us to lower-bound from the
dual.

D. Geometric Programming Dual

We can view (34) as the primal optimization problem. How-
ever, deriving the Lagrange dual in an explicit form directly
from (34) turns out to be difficult. Therefore, we first simplify
the primal problem by using the Markovity structure of the
problem and then Shannon’s signaling strategy [28].

Lemma 1: The rate distortion function with two-sided state
information can be written as

(36)

where is a deterministic function, and the
minimization is under the constraint

Proof: It was shown in [8], [31] that restricting the
minimization over to deterministic functions

incurs no loss of generality. Using the conditional
independence of and given , we have

Now, similar to Shannon’s signaling strategy for channels
with state information at the encoder [28], consider all strate-
gies that map into . Each strategy can be represented
as a vector . Therefore, there are a total
of strategies. Following the arguments in [8], [28], [30],
[31], both the achievability and converse proofs of the following
lemma can be readily verified.

Lemma 2: The rate distortion function with two-sided state
information can be written as

(37)

where the minimization is over all conditional distributions of
strategies and under the distortion constraint

Note that for a given , once a strategy is determined
by , the reconstruction is fixed. Therefore, we only
need to optimize over . By exponentially expanding
the size of the domain of the reconstruction function (from

to ), we have reduced the primal problem
from (34) to the convex optimization of a conditional mutual
information over a set of conditional probabilities (37).

To facilitate a more compact expression of the primal and
dual problems, we will use the following simplified notation.
We use , , , to index , , , , respectively, and sup-
press ranges of the summations. We are given distributions

and , and
minimize over the conditional distribution of strategies

. Using Lemma 2, the rate distor-
tion function with two-sided state information be-
comes the optimal value of the following convex optimization
with variables :

minimize

subject to

(38)

Following the proof for Proposition 2, we derive and simplify
the Lagrange dual problem for (38) in the following.

Proposition 3: The Lagrange dual of the problem of rate dis-
tortion with two-sided state information (38) is the following
geometric program (in convex form):

maximize

subject to

(39)

where the optimization variables are and , and the constant
parameters are the given distributions , , distortion mea-
sures , and constraint .
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An equivalent version of the Lagrange dual problem is the
following geometric program (in standard form):

maximize

subject to

(40)

where the optimization variables are and .
Lagrange duality between problems (38) and (39) means the

following.

• Weak duality. Any feasible of the Lagrange dual
problem (39) produce a lower bound on the rate distortion
function

• Strong duality. The optimal value of the Lagrange dual
problem (39) is .

The geometric program Lagrange dual (40) for rate distortion
with two-sided state information indeed extends the following
Lagrange dual problem for rate distortion without state (26):

maximize

subject to

where the optimization variables are and .
The Lagrange dual gives a class of lower bounds for rate

distortion function with two-sided state information: any dual
feasible in (39) lower bounds . Due to
strong duality, this class of bounds can be made arbitrarily tight
by choosing appropriate dual variables. At the same time, it
is trivial to generate an upper bound: any in the primal
problem (38) gives one. This pair of bounds gives an estimate
of and at optimality, they coincide.

Assuming Hamming distortion measure, we now give an
example lower bound that is valid for any joint distribution

. It is readily verified that

and

where is the size of source alphabet, satisfy the dual con-
straints in (39), and lead to the following.

Corollary 3: The rate distortion function with two-sided
state information and Hamming distortion measure is lower-
bounded by

(41)

where is the binary entropy function.

Consider the following problem in the special case of rate
distortion with state information at the decoder only. We
guess random variable based on and would like to
upper-bound similar to Fano’s inequality (33)
that bounds in terms of the probability of guessing
error . Corollary 3 gives the following extension of Fano’s
inequality:

(42)

Since the Lagrange dual problem (39) is a simple geometric
program, it can be very efficiently solved through a primal–dual
interior-point algorithm [4], [22] for large alphabet sizes. By
strong duality, the resulting optimal dual value is .
Using a similar technique for rate distortion without state infor-
mation in [1], we can further recover the optimal

.
There have been discussions of the duality between channel

capacity and rate distortion with state information, e.g., in [3],
[8], [23]. A different Markovity structure for channel capacity
with state information makes it difficult to convert the problem
into the convex optimization form of minimizing a conditional
mutual information over conditional distribution. This was the
key step (Lemmas 1 and 2) to decouple the primal variables and
derive an explicit Lagrange dual problem for rate distortion with
state information.

IV. SHANNON DUALITY THROUGH LAGRANGE DUALITY

A. “Duality By Mapping” Between the Lagrange Duals

Lagrange duality is usually stated as follows. Given an opti-
mization problem called the primal problem, the objective and
constraint functions in the dual problem can be obtained from
those in the primal problem by some simple mappings of signs,
variables, constant parameters, and mathematical operations.
This “duality by mapping” that turns one optimization problem
into its Lagrange dual is also used in other duality relationships
[19], such as that between controllability and observability.
However, as can be easily verified, “duality by mapping” does
not hold between the primal problems of channel capacity (6)
and rate distortion (24). It turns out that their Lagrange dual
problems exhibit a precise “duality by mapping.” Due to strong
duality, this induces a “duality by mapping” between the primal
problems through the geometric programming duals, as shown
in Fig. 1. Note that Lagrange duality is different from Shannon
duality. Indeed, while channel capacity and rate distortion are
“somewhat dual,” as commented by Shannon, their Lagrange
dual problems are both geometric programs.

We first summarize two versions of the Lagrange dual
problems for and in Table I, where the geometric
program dual problems in standard form better illustrate the
“duality by mapping” relationships. The objective functions,
constraint functions, variables, and constant parameters in the
Lagrange dual problems of and can be obtained
from one another through the following simple mappings.
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TABLE I
LAGRANGE DUAL PROBLEMS OF CHANNEL CAPACITY WITH INPUT COST AND RATE DISTORTION

Fig. 1. Shannon duality characterized through the Lagrange dual problems of
channel capacity and rate distortion.

Shannon Duality Correspondence

Dual of channel capacity Dual of rate distortion

monomial posynomial

posynomial monomial

minimization maximization

constraints constraints

(receiver side index) (sender side index)

(sender side index) (receiver side index)

Lagrange duality gives an exact and detailed analysis of the
structures in Shannon duality.

• It resolves the apparent asymmetry between maximizing
over a vector in the channel capacity problem and min-
imizing over a matrix in the rate distortion problem. In
the Lagrange dual of , there are as many optimiza-
tion variables as output alphabet symbols, plus a shadow
price for the cost constraint. In the Lagrange dual of ,
there are as many optimization variables as input alphabet
symbols, plus a shadow price for the distortion constraint.

• It answers the following question: since a vector (the
source distribution) is given in the rate distortion problem,
and a matrix (the channel matrix) is given in the channel
capacity problem, what is the proper analog of (the
th entry in ) in the channel capacity problem? The last

pair in the Shannon duality correspondence shows that the
proper analog of in rate distortion is in
channel capacity: is the number of bits to describe
an alphabet symbol with probability in the Shannon
code for lossless compression, and is the number
of bits needed to describe without loss the th row of
channel matrix. This correspondence can be interpreted in
the context of universal source coding, where each row

of the channel matrix represents a possible distribu-
tion of the source.

• It confirms Shannon’s remark [27] on introducing input
costs to enhance duality. From the geometric programming
Lagrange duals in standard form, it is easy to see that input
costs and cost constraint in the channel capacity dual
problem are complementary to distortion measures and
distortion constraint in the rate distortion dual problem.

• The dual variable can be interpreted as the shadow
price associated with the input cost constraint and with
the reconstruction distortion constraint , respectively.
From local sensitivity analysis [4], the optimal tells
us approximately how much increase in capacity or
reduction in rate would result if the cost or dis-
tortion constraint could be relaxed by a small amount.
From global sensitivity analysis [4], if is large, then
tightening the cost or distortion constraint will greatly de-
crease capacity, or increase the rate required to describe
the source for a given distortion constraint. If is small,
then loosening the cost or distortion constraint will not sig-
nificantly increase capacity or decrease rate.

The above characterization of Shannon duality through the
Lagrange dual problems is different from the functional duality
characterization in [23]. However, the two characterizations to-
gether imply that solving one geometric program in the form of
(8) induces a set of problem parameters for another geometric
program in the form of (25), whose optimal value equals that of
the first geometric program.
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B. Free Energy Interpretations

Various parallels between physics and information theory
have been drawn, for example, in [9], [15]. In recent years,
free energy concepts in statistical physics have also been used
to identify threshold behaviors in error exponents [12], to
understand iterative decoding through sum product algorithms
on graphs [32], and to design low-density parity-check codes
[21]. In this subsection, we interpret both the primal and dual
problems of channel capacity as free energy optimization
problems from statistical physics, complementing the analogy
made by Berger in [1] between rate distortion and free energy
optimization.

Consider a system with states at temperature , where
each state has energy and probability of occurring.
Given an energy column vector and a probability row
vector , average energy is and entropy is

. The Gibbs free energy is defined as

Solving the problem of the Gibbs free energy minimization

minimize

subject to (43)

where the optimization variables are and the constant parame-
ters are , is important in statistical physics with several interpre-
tations, such as striking a balance between energy minimization
and entropy maximization.

Following the same argument in the discussion of conjugacy
in Section I-B, it is easy to see that the Boltzmann distribution
minimizes over for a given energy vector , where is
proportional to . The proportionality constant needed
for normalization is called the partition function

The Gibbs free energy induced by the Boltzmann dis-
tribution is called the Helmholtz free energy , which
is the negative logarithm of scaled by

Due to convexity of the Gibbs free energy in and concavity of
the Helmholtz free energy in ,

Therefore, maximizing the Helmholtz free energy is equivalent
to finding the minimum Gibbs free energy for the worst case
energy vector.

Now suppose the distribution on the states is not the
Boltzmann distribution but some general distribution . In
this case, we will get a corresponding value for the Gibbs free
energy , and the difference between this value and the

Helmholtz free energy, normalized by the temperature , is
given by

(44)

Therefore, another way to derive the Boltzmann distribution
is through minimizing the difference between a general Gibbs
free energy and the Helmholtz free energy, expressed as a KL di-
vergence, over the probability simplex. Minimizing a KL diver-
gence over is precisely the dual objective function of
an unconstrained geometric program as shown in the Appendix.

For the primal problem of rate distortion (23), Berger [1]
shows that minimizing the Lagrangian of rate distortion is a
Gibbs free energy minimization problem. Furthermore, as can
be readily verified, the Lagrange dual problem (25) of is
minimizing an average energy under the Helmholtz free energy
constraints, where the energy of state in the th constraint is

.
Turning to channel capacity problems, we note that the primal

problem of channel capacity without input cost is a general-
ized Gibbs free energy minimization, where each state has
energy , temperature is unity, average energy is
on the input distribution, but entropy is on the output distribu-
tion induced by the input distribution and the channel. Min-
imizing the Lagrangian of channel
capacity with input cost is still a Gibbs free energy minimiza-
tion problem, with the energy for each state increased by the
input cost . Furthermore, the Lagrange dual problem (12) of

is a Helmholtz free energy maximization problem under
average energy constraints: energy for each state is , the
objective is to maximize the Helmholtz free energy ,
and the average energy constraints are ,

.
When channel capacity is written as

, there is a standard typicality interpretation of :
the number of typical output sequences is about , but

typical output sequences may be associated with the
same input sequence due to the unreliability of the channel.
When channel capacity is written in the minmaxKL form (18),
[10] gives a geometric interpretation of : it is the radius of the
smallest sphere containing all distributions , where the dis-
tance between two distributions is measured by KL divergence.
When channel capacity is written in the geometric programming
form (8), (9), we have a new physical interpretation that is a
maximized Helmholtz free energy.

More discussion on the free energy interpretation of error ex-
ponents, lossless source codes, and general geometric programs
can be found in [6] and [12].

V. CONCLUSION

The Lagrange dual problems of channel capacity with input
cost and rate distortion are geometric programs. The structures
of these geometric programs allow us to efficiently generate
upper bounds on channel capacity and lower bounds on rate dis-
tortion by solving systems of linear inequalities, to characterize
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Shannon duality between transmission and compression in the
discrete memoryless cases, and to interpret channel capacity and
rate distortion problems as free energy optimization in statistical
physics.

APPENDIX

DUAL PROOF OF COROLLARY 1

Conjugate functions can be used to derive the Lagrange dual
of an optimization problem [4]. It is readily verified that for the
following geometric program over :

minimize

subject to

the dual problem is

maximize

subject to

(45)

where the optimization variables are , . Note
that is the matrix of the exponential constants in the primal
objective function, and , , are the matrices of
the exponential constants in the primal constraint functions.

A special case is an unconstrained geometric program

minimize

From (45), the Lagrange dual problem of unconstrained geo-
metric program is

maximize

subject to

(46)

where the optimization variables are . Notice that we can
rewrite the dual objective in (46) as a KL divergence min-
imization: minimize , or in exponentiated form:

maximize , where . In general, a KL

divergence is the Gibbs free energy
where the energy vector is the negative log likelihood of :

. Therefore, the dual objective of an uncon-
strained geometric program (46) is equivalent to minimizing
Gibbs free energy at unit temperature.

Now recall the perspective suggested by Shannon [26]: Con-
sider communication as a problem of reproducing an i.i.d. sto-
chastic source (with alphabet symbols) at the destination. If

each alphabet symbol in the source has probability of ap-
pearing, and the string is symbols long, then for large , the
probability of a typical string is approximately

and to the first order in the exponent, the number of typical se-
quences is

It turns out that is the exponentiated objective function of the
dual problem of an unconstrained geometric program: if we let
the constants and the variables , then

Therefore, maximizing the number of typical sequences ,
which is equivalent to maximizing , over linear constraints
on , is Lagrange dual to an unconstrained geometric program.

It is natural to ask if maximizing a mutual information is the
Lagrange dual of a properly constrained geometric program.
This intuition, together with the Lagrange dual geometric pro-
gram (45) quickly shows (through simple identification of the
appropriate terms) that

maximize

subject to

is indeed the Lagrange dual of a linearly constrained geometric
program with variables

minimize

subject to

This geometric program is indeed the Lagrange dual of
channel capacity as derived in Section II-B, and the above
argument is a “dual” and shorter, proof of Corollary 1.
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