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Contribution

dominant time constant as measure for RC circuit delay

e applies to general (nontree) RC circuits

e can be efficiently, globally optimized

example applications: sizing of
e clock meshes

e busses with crosstalk



Outline

Elmore delay minimization in RC trees
dominant time constant minimization in general RC circuits
example applications

conclusions



RC models for digital circuits
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C’% =—-Gwv(t)-V), v(0)=0

e (' >0, G > 0 (capacitance and conductance matrices)

e simple model for transistors & wires



Sizing problem

design variables: transistor and wire widths
C'(z), G(x) are affine in design variables x

tradeoff between

e threshold delay (e.g., 50%)
e power: sV IC(z)V per transition (i.e., affine in z)

e area (approximated by affine function of x)

. . intractable



The Elmore delay

Elmore delay TFm

0.5 ;

Tlic:hres
e good approximation of 50% delay (for monotonic step resp.)

o efficiently & globally minimized for RC trees
(via geometric programming; c.f. TILOS)

e no useful convexity properties for non-tree circuits



Dominant time constant

e node voltages have form vi(t) =1 — Z?zl et

e 0> A1 > Xy >--- >\, roots of det(AC(x) + G(x)) =0

e slowest. i.e.. dominant time constant is 79°™ — —1/\

L 1/Tdom

good approximation of max threshold delay
(usually better than Elmore delay)



Sizing with dominant time constant constraint

T9m < T = TG(z) — C(z) >0

e convex constraint in x (linear matrix inequality)
¢ no restrictions on topology (i.e., G, C)

example: minimize linear function (e.g., area, power) s.t.

e upper bound on Tdom

e upper and lower bounds on z;

a convex optimization problem (semidefinite program)



Semidefinite programming (SDP)

minimize !z

subject to Fo+z1F1+---+x,Fn >0

e linear objective function, linear matrix inequality constraint

e convex (but not necessarily differentiable) constraint

e global optimum efficiently computed using recent
Interior-point methods



Outline

e Elmore delay minimization in RC trees
e dominant time constant minimization in general RC circuits

e example applications

— clock meshes
— busses with crosstalk

e conclusions



Clock distribution mesh

e used in high-performance designs to reduce clock skew
(e.g., DEC alpha)

e quantities of interest: skew, maximum delay, power

e non-tree topology: Elmore delay methods find local
optimum [Desai et al., DAC96]
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Clock mesh example

e multiple synchronized drivers

e variables x;: interconnect widths
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minimize power subject to 79°™ < T, 0 < x; < Wax
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Power versus dominant time constant
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Two solutions on tradeoff curve
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o T9°m is 3 good approximation of max. 50% delay

e minimizing 79°™ reduces skew
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Busses with crosstalk

e capacitive coupling in deep submicron
e non-tree topology (non-grounded capacitors)

e Elmore delay is not a good delay measure (non-monotonic
step response)
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Example
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e variables: widths w;;, spacing s1, s

e coupling capacitances ~ 1/s;;
e minimize total width s; + s subject to bound Tdom < T
upper and lower bounds on s;;, w;;
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Total width versus dominant time constant
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total width
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globally optimal tradeoff curve via semidefinite programming



Effect on crosstalk level

apply unit step to bus line 2, zero input to lines 1 and 3

Tdom |arge T9om small

vy (output line 2)
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Tdom .

minimizing indirectly reduces crosstalk level
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Computational complexity of SDP

interior-point methods

e worst-case: F#iterations ~ /problem size
e In practice: #iterations between 5 and 50

e can exploit structure to reduce computation per iteration

structure in SDPs arising in circuit sizing

e G(x), C(x) sparse; each entry depends on very few variables

Tdom

e can evaluate very efficiently using Lanczos algorithm
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Conclusions

dominant time constant as measure for RC circuit delay

e applies to general (nontree) RC circuits

— multiple sources
— loops of resistors
— capacitive coupling

o efficiently, globally optimized via semidefinite
programming

no specialized implementation for large-scale problems
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