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Abstract A method is presented for parameter set esti-
mation for a system which contains both parametric and
nonparametric uncertainty. Prior information is available
about both types of uncertainty, but only the parametric
type is further refined from the measured data.

1 Introduction

The problem is to transform the measured data
{yu:t=1,...,N} (¢))

into a model structure suitable for robust control design.
The system which produced the data is presumed to have
the input/output disturbance-free form

v=Gu (2

where u is an applied input, y is a measured output, and
G represents an uncertain linear-time-invariant discrete-
time system with transfer function G(z). (Depending on
the context, we use z to denote either the Z-transform
variable or the forward shift operator.)

Prior knowledge about G is given as follows:
e G has the structure
G =Go(l+AW) (3)

where Gy and A are uncertain, and where W is a
known stable transfer function.

e Gy is a parametric transfer function with a known
dependence on pararmeters

fe epr'\or CIR? (4)
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e A is a stable transfer function which is otherwise
unknown but bounded such that,

lAE*)<1,  Vwe[-x,7] (5)

with w is defined as the normalized frequency vari-
able.

Since both the parameter set Oprior and the transfer
function W are assumed known, it follows that (2)-(5)
describe the prior information about the system (2). The
problem we address in this paper is to reduce the uncer-
tainty about the parameters § € Opor by taking into
account the measured data (1) and the prior information

(2)-(5)-

The class of parametric model structures is further re-
stricted to the standard ARMA model structure [9]:

Go = By/As

By = bz7l4...4bpz™

A = 14a1z7 ... 4a,z7" (6)
T = [@1---an by bpm)

Previous work (see Reference list) has examined this
type of problem as well as some variations, such as: esti-
mating A and 6, inclusion of noise and/or disturbances,
other forms for the nonparametric uncertainty, and the
use of high order or nonparametric model structures.
These results produce a parameter set which, under cer-
tain conditions, will contain the true parameter. These
conditions are often hard to verify or require excessive
computation.

The contribution in this paper is to produce a worst-
case parameter set which, by definition, is guaranteed to
contain the true parameter and is no more difficult to
compute than least-squares. The computation of the set
is easily made recursive and has a form similar to recursive
least-squares, although this is not developed here. The
methodology is also easily extensible to forms of nonpara-
metric dynamics other than the multiplicative form(3),
e.g.,

By + ApWp

Ag+ AW,

The addition of disturbances, however, poses some com-
putational problem involving nonlinear programming so-
lutions. This is a subject of current research.

G=Gs+ AW or G =
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The ideas presented here have been independently de-
veloped by Younce and Rohrs [16,17] for the distur-
bance free case (2) with the uncertainty structure G =
(Bs + AW)/As. With this choice of nonparametric dy-
namics the center of the worst-case set coincides with the
least-squares estimate. A similar model structure is de-
scribed in (7] and is used to motivate a recursive parame-
ter estimator. In [16,17] there is also an in-depth discus-
sion of worst-case frequency response set estimation.

The idea of finding a set of parameters consistent with
the data and assumed model structure is not new. The
case of parametric uncertainty with bounded energy dis-
turbances is addressed in [13,2]. What we call here the
worst-case set is referred to there as a set-membership es-
timation. A precise characterization of this set is given in
[3,4] and is shown there to be an ellipsoid whose center is
the least-squares estimate. Parameter set bounding pro-
cedures are also described in [1] for bounded magnitude
disturbances. The contribution here and in [16,17] is to
characterize the parameter set for the disturbance free
case with bounded nonparametric dynamics. As we show
here the set can be either an ellipsoid or an hyperboloid,
depending on the measured data.

In general, there are two main limitations with this
formulation for the case considered here, namely: (i) The
measured data may be informative with respect to the
nonparametric dynamics, and since this uncertainty type
is not refined from the data, there is an inherent con-
servatism in the worst-case set. (ii) There is no unique
worst-case set; two are described here. Both these limi-
tations, however, can be almost completely eliminated by
appropriate choice of data filters and input spectrum.

2 Worst-Case Set Estimation

In this section we describe three worst-case sets: an equa-
tion error set, an output error set, and a limit set which
is data independent.

Combining (6) with (2) and (3) gives the equivalent
system description

Apy — Byu = AW Byu (7)
The left hand side above is the usual equation error [9].
Observe that {y,u:t=1,..., N} satisfying (2) also sat-
isfies (7) if the system is initially at rest.

To incorporate the prior information expressed by (5),
we have from [7] that

(®)

sup [|Az]|vz = |z]lva

where ||z|[%, = YTiv, z(t)? and sup, means the supre-
mum over all A satisfying (5). Applying (8) to (7) gives
the

Worst-Case Equation Error Set

Oweee = {0 € R : || Agy — Boul|n2 < ||BaWullna} (9)

The above inequality describes a set of parameter val-
ues that depend on the data set (1) and the prior infor-
mation about A in (5). Thus:

All parameter values which are consistent with
the measured data and the prior information are
in the set
epl'ior N ewc.ee (10)
Because of the underlying assumptions (2)-(6), the set
©Owc.ee Must contain the true parameter value.

There are other worst-case sets that adhere to the gov-
erning assumptions. For example, in addition to (7), the
system (2) is obviously also equivalent to

y — Gou = AWGhu (11)

In comparison with (7), the left hand side above is the
usual output error. Applying (8) to the above gives the

Worst-Case Output Error Set

ewc.oe = {9 €ER’: ”y— G‘u”N2 < ||WG‘u”N2} (12)

The sets Owc_ee and Ope e are both worst-case esti-
mates, both contain the true parameter, and both are
computable from the measured data, but, they are not
necessarily the same. However, when the identifica-
tion experiment is well designed, meaning an appropriate
choice of test signals and data filters, the two sets are
indeed very similar. (The effect of data filtering is to re-
place (y, u) with (Fy, Fu) where F is a filter.) One other
major difference is that both sides of the inequalities in
Owc_ce are affine in 0, whereas in Oy they are linear
fractional in . The former property, as will be shown
here, makes it very easy to compute Oyc_ce.

Both Owc_ce and Oy _oe are potentially conservative set
estimates because the particular nonparametric dynamics
A which actually generated the data set may not achieve
the bound (5). It is possible, however, to extract more
information from the data set (1). Recall that (5) implies
that

(13)

provided there are no non-zero initial conditions. Conse-
quently, we have the worst-case set:

sgPIIAzlln =llzllsa VE €[1,N]

Owcee = {0 : [lA0y — Boullx2 < [IW Boullea, VEk € [1,N]}
(14)
This set is an intersection of N sets, and is obviously

more informative than Owe_ee Which is computed for only
k=N.
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The question arises as to whether there is a “limit set”
corresponding to the plant uncetainty description alone.
From the assumptions we have
G(e?) — Go(e?¥)

W(e/“)Gy(elv) ’
Using (5) and (6) gives the

A(e¥) = Vw € [-7,7]  (15)

Worst-Case Limit Set
ewc..lim = {0 € IRP : flim(a’w) S 0 Yw € [—71 7]} (16)
where

fim(8,w) = | Ag(e*)G(7*)~Ba(e!) | = |W (e*) By (¢')?

Because Oyclim depends on the true, but unknown,
frequency response G(e’*), it cannot be computed from
the data. However, it is a useful set for analytic pur-
poses since it defines the maximum range of @ for a given
representative frequency response G(¢’“) and any A(e/%)
satisfying (5). In Section 4 we show that for sufficiently
large data length N, Owcim is always contained in Oyc_ce
or Oyc_0e. However, this is not necessarily the case for fi-
nite N. Section 5 contains an example of this phenomena.
The reason is that the set Oycim contains equivalent fre-
quency respones, that is, for any parameter in the limit
set, there is a corresponding A satisfying (5) such that for
any periodic input u the periodic part of the output re-
mains unchanged. Thus, for N much larger than the time
constants of the system, the periodic part will dominate.
However, the transient can be significantly different for
those choices of # € Owciim and A satisfying (5) which
leave G(e’“) unchanged. Hence, for a finite data length
N which just captures the transient, there can be con-
siderably more information for extracting the parametric
model. This possibility is not included in the set Oywe_im.

To capture the transient information we can describe
a limit set corresponding to equivalent transfer functions
G(z) rather than frequency responses G(e’*). To do this,
observe that since A is stable, ( §) is equivalent to

sup |A(z)| <1 (17)
1511

This gives the limit set:

wedim = {0 : |40(2)G(2)~Bo(2)| < [W(2)Bs(2)], Vl(zllss 1}

One cautionary note: although ©yc_.. is easy to com-
pute, Owcim or O, ;. involves an infinite search. These
sets are infinite intersections of sets at every (possibly
complex) frequency in |z} < 1. For practical purposes
these sets can be approximated by computing over a fi-
nite set of frequencies.

The form of (16) strongly suggests replacing the un-
known frequency response {G(¢’%) : w € [, x]} with

any good frequency response estimate {Gireq(w) : w € 2}
where Q is typically a set of discrete values. For exam-
ple, if Gyreq is obtained from standard spectral techniques,
then Q = {wy = 2xk/N : k =0,..., N — 1}. Techniques
for frequency response set estimation are explored in [16].

In the remainder of the paper we concentrate on com-
puting Owc_ee and also show the effect of test signals and
data filters.

(

3 Computing Oy e

A convenient form for computing (and interpreting)
Owc_ee now follows. Observe first that:

Aw—-Biu = y-6T¢ (19)
ByWu = 6Ty (20)
where ¢ and 4 have the form
ela] ] o
with
¢y [-z7 Y- = 27"y (22)
o7 [z7lu- - 27™y] (23)
Using the above definitions we can express (9) as
weee = {0 EIRP : |ly — 6T ¢|Ina < 1167 ¥lIn2}  (24)

It is convenient to introduce the averaging operator £y {-}

defined by
N

En{z} = -jlvz::(t)

t=1

(25)

It follows that ¥||z||%, = Ev {zTz}. Thus, (9) is given
by the quadratic form:

Owcee = {0 E€RP :6TT0~28T0+a <0}  (26)
where

I = &n{¢¢™ —vyT} (27)

B = En{dy} (28)

a = £N {y’} (29)

Provided I'! exists, another convenient expression is:

Owcee = {ER?: (0 —0.ee)TT(0 - bcee) < V)
bcee = I3
1% Fr-'f-a

If T > 0, then V > 0, for otherwise the data is not con-
sistent with the prior assumptions. Hence, I' > 0 implies
that Oyc_ce is an ellipsoid in RP with center at f._... The
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largest radius of the ellipsoid, denoted by pwc, bounds the
Euclidean norm of § — §._.. as follows:

[16 = bc_cell < pwe = /V/minA(T)

But ' not > 0 is possible. To see this, we can express
T as follows:

(30)

_ VI Tiu T
= [ IT, Ty ] (31)
where
T En {y47 } (32)
' = &n {¢y¢3} (33)
T2z = En{dudl —(Wo)(Weu)T}  (34)

The T';2 matrix subblock can have negative eigenvalues
if the spectrum of u is concentrated at those frequencies
where |W(e/*)| is large. We will illustrate this later in an
example.

Insummary: (i) All the eigenvalues of " are real with at
most m being negative, these latter arising whenever the
22-subblock has negative eigenvalues. (ii) When I' > 0,
Owec_ee is an ellipsoid in IR?. (iii) When I' not > 0, Owc_ee
is an hyperboloid in IR?.

4 Experiment Design

As discussed in [9], it is critical to a successful identifi-
cation that data filters and inputs are well selected. Let
F(z) denote a (stable) transfer function which is used to
modify the data set (1) to now read

{Fy,Fu:t=1,...,N} (35)

We refer to F as the data filter. It follows that the worst
case set Owc_ee has exactly the same form as in (26) but
now

T = en{(FO)Fe)T - (Fy)F)T}  (36)
B = En{(Fé)Fy)} 37
a = &n{(Fy)*} (38)

To see the effect of the data filter and the input selection,
suppose that u is a deterministic sequence with spectral
density Syy(w). Then,

M Oucee ={0ER’: [ feo(f,w)dw <0} (39)
where

fee(ov‘”) = flim(o,w)lF(ej”)IzSuu(w)

with fiim(8,w) as defined in (16). Comparing this set with
Ouwcim in (16), it is clear that

Owelim c Nh-?éo Owc.ce (40)

The question arises as to whether there are choices of
F and u such that imy—c Owcee = Owclim. To see
this, suppose that u consisits of sinusoids at K frequencies
{w1,...,wk}. Then,

K
Jim Oueee = {# € R : kz_:ll-‘kflim(ouwk) <0} (41

where .
B = |F(&“%)*Syu(wr)

If y; is small whenever |W(e?“*)| is large, then the non-
parametric dynamics will contribute only a small correc-
tion to the worst-case set. The dominant errors will be
soley due to identifiability issues, i.e. , how well the set
Owe.im is approximated by (41). As mentioned in Sec-
tion 2, for small values of N the limit set may not be
completely contained within Oyc_ce . This is seen in the
simulation example discussed next.

5 Simulation Example

The parametric transfer function is

bz-1

Go) = Tt

87 =[a b)

The true system which generated the data set has the
transfer function

G(z) = (l—z’l)Z{'}P(')}

10 (10)?
Pl = =/ 82 + 2(.005)(10)s + (10)?
G‘un - (1_2-1)2{31—01}

The sampling frequency is chosen as 10 hz (62.83 rad/sec)
which makes the true parameter,

9’trrue = [@true berue] = [—.9048 .9516]

The Bode magnitude plot of |W(e/*)| is shown in Figure 1
along with the true response |Airue(e’“)W(e“)|. The
chosen W reflects a low frequency uncertainty of 10%
relative error, and anticipates a rather large resonance at
frequencies beyond about 10 rad/sec. The true system
has a resonance at 10 rad/sec. The bandwidth of the
true parametric model is about 1 rad/sec.

Two series of simulation experiments were performed.
The first series of experiments used a pure sinewave
input at several frequencies, i.e. , u = sin(w,ist) for
Wyin € {8,6,4,2,1} rad/sec. In the second series of exper-
iments the input was a log spaced sine- sweep from .1 to
31 rad/sec over 102.3 sec, thus, N = 1024 data samples.
In this case several low pass data filters were used, where
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each had a different corner frequency. Specifically, we
used 8th order Butterworth filters with corner frequen-
cies wy € {8,6,4,2,1} rad/sec. We also processed the
data with no filters.

Results with sine wave inputs

Figure 2 shows Ouc_e for each of the input frequencies
wsin € {8,6,4,2,1} rad/ sec. Observe that at 8 and 7
rad/sec the sets are hyperboloids. Since the system is
stable we know that the pole a must be negative, so only
that portion is shown. Figure 3 shows the sets for 2 and 1
rad/ sec as well as points in the limit set Oy _1im indicated
by the shaded region. The * denotes the least-squares es-
timate for w,yn = 1 rad/sec. The axes in this plot show
relative error between the estimate and the true param-
eter, thus, the (0,0) point is the true parameter value.
Observe that the estimation tolerance for the pole a is
from -3.5% to +3% whereas for the gain b the tolerance
is much worse, from -20% to +40%. The least-squares
estimate of the pole a is almost perfect and for the gain
b has a +10% tolerance. However, the least-squares esti-
mate would not change if some other value were selected
out of the limit set, in which case the least-squares esti-
mate would be inaccurate by as much as +2% for a and
almost 10% for b.

In all the cases we ran with sine inputs, the ellipsoids
were concentric, decreased in volume with decreasing fre-
quency, and completely covered the limit set. But this is
not always to be expected as seen in the next experiment.

Results with sinesweep and data filters

Figure 4 shows Ouwc_ee for the sinesweep (N = 1024) pro-
cessed with no filter and with each of the data filter cor-
ner frequencies w; € {8,6,4,2,1} rad/ sec. Hyperboloids
are obtained with no data filter and for wy = 8 rad/sec.
In this case the remaining sets are ellipsoids but they
are not concentric. Figure 5, which uses a relative er-
ror scale, shows the bounding ellipsoids for wy € {4,2,1}
rad/sec. The ‘dots’ are points in the limit set. Again,
the (0,0) point is the true parameter value. The * de-
notes the least-squares estimate using the filtered data
with wy = 1 rad/sec. The estimation accuracy is signifi-
cantly increased when wy is 2 or 1 rad /sec. For 1 rad/sec,
both a and b are within £3% tolerance.

From Figure 5, we see that not all points in the limit
set Owc_tim are in the set Ouc_ce, a possibility which was
discussed in Section 2. The implication here is that there
is significant transient response during the observation
period of 102.3 sec with N = 1024 points. To verify
this we increased the observation samples to N = 2048
by appending to the original sine sweep with N = 1024
the reverse sine sweep, i.e. , the new sweep went from .1
to 31 rad/sec and then from 31 to .1 rad/sec over 204.7

sec. Figure 6 shows the sets for wy = 1 rad/sec with
N = 1024 and N = 2048 samples. The ‘dots’ are points
in the limit set, which of course remains unchanged; it is
not affected by the data. But now, the limit set is com-
pletely contained in the bounding ellipsoid for N = 2048.
This which verifies the theoretical result in Section 4 that
Oveldim C My 00 Oweee. It is clear from Figure 6 that
lower observation times which capture transients can sig-
nificantly reduce set uncertainty. Observe also that the
least-squares estimate (denoted by *) remins almost un-
affected by increasing N from 1024 to 2048.
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Figure 4: Worst case sets for no filter and
wy = {8,6,4,2,1}. Hyberboloids for no filter and w; = 8.

Figure 2: Worst-case sets for w,in = {8,6,4,2,1}. Hy-

perboloids for w,in = {8, 6}.
Figure 5: Worst case sets for w; = {4,2,1)}; dots are in
limit set; * is least-squares estimate for w; = 1.

Figure 3: Worst case sets for w,in = {2,1}; dots are in

limit set; * is least-squares estimate for w,in = 1.
Figure 6: Worst case sets for w; = 1; small ellipse for
N = 1024; large ellipse for N = 2048; dots are in limit
set; * is least-squares estimate for wy = 1 and N = 2048.
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