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Abstract

Multi-forecast model predictive control (MF-MPC) is a control policy that creates
a plan of actions over a horizon for each of a given set of forecasted scenarios or
contingencies, with the constraint that the first action in all plans be the same. In this
note we show how these coupled plans can be found by solving a sequence of single
plans, using an incremental proximal method. We refer to this policy as incremental
proximal model predictive control (IP-MPC). We have observed that even when the
iterations in IP-MPC are not carried out to convergence, we obtain a policy that
achieves much of the improvement of MF-MPC over single-forecast model predictive
control (MPC).

1 Multi-forecast model predictive control

We consider a control policy which generates a control input u; € R™ from the current
system state z; € R" (presumed known), as well as other information that is available in
(discrete time) period t.

1.1 Model predictive control

In model predictive control (MPC), we first form an approximation of the dynamics of the
system over from period 7 =t to period 7 =t + H, where H is the planning horizon. The
approximate dynamics are affine, of the form

Tr41 :AT|th+BT|tuT+CT|t’ T:t7"'at+H_ L.

Here z; is the current state, which is known; x;,1, ..., 2,y g is our plan for the future states.
The current control input (that we seek) is w; gy, ..., U g—1 is our plan for future control
actions. The data that define the dynamics used in our plan, A, B;; and c,;, are a forecast
or prediction, based on information known at period ¢. (These can change with ¢, as new
information becomes available.) We let x = (z441,..., 2 ) and u = (uy, . .., U g—1) denote
the state and control action plans, respectively.



In MPC we choose the plan by solving the optimization problem

minimize  Gy(y, x, u) (1)
subject to w,41 = Arpvr + Bryur +cp, T=1,...t+H -1,

with variables # € R"" and u € R”™, where G, : R" x R"" x R”"™ — RU {00} is a convex
cost function.

Infinite values of GG; are used to enforce constraints, such as u, € U,, a convex set of
allowed control actions, or z;, gz € X'™™, a convex set of allowed terminal states for our
plan. Traditionally the cost function G; is separable across (z,,u,), but it need not be;
for example it could penalize a maximum excursion of the state or maximum actuator use
over the horizon. Like the dynamics, the cost function G; can also depend on forecasts of
unknown future quantities, based on information available at period ¢t. The model predictive
control problem (1) is convex, and readily solved [11], even in real time [6,20,40,65,71]. The
total number of scalar variables in the MPC problem (1) is H(m + n).

History. MPC has a long history and large literature, and is widely used. Some early
work is [16, 25, 55]; for more recent surveys see the papers [1, 30, 34, 41, 45, 72] or books
(13,28, 38,53, 54]. Papers describing applications of MPC in specific areas include data
center cooling [33], building HVAC control [2,21], wind power systems [31], microgrids [32],
pandemic management [15,48], dynamic hedging [51], railway systems [24], aerospace systems
23], and agriculture [19]. With appropriate forecasting (which in many applications is very
simple) and choice of cost function, MPC can work well, even though it does not explicitly
take into account uncertainty in the dynamics and cost, or more precisely, since it is based
on a single forecast of these quantities. (It does have recourse, however, since the forecasts
and plans are updated in each time period.)

1.2 Multi-forecast model predictive control

There are many extensions of MPC that attempt to improve performance by taking into
account uncertainty in the future dynamics and cost. Examples include robust MPC [7,14],
min-max MPC [52], tube MPC [42], and stochastic MPC [29,43].

One particularly simple approach is multi-forecast MPC (MF-MPC) which replaces the
single forecast of Gy, A;t, By, and ¢y used in MPC with multiple forecasts, all of which
are considered plausible. We denote these as

Gi, A

7|t

Bi, c, T=t. . t+H-1 i=1,..5,

where the superscript ¢ gives the forecast or scenario, and S is the number of scenarios.
We can also specify positive weights w', ..., w* associated with these forecasts, which are
often taken to be one. These multiple forecasts can be found several ways. Each could be a
forecast using a different but reasonable method; or they can be samples from a statistical
model of future values. In the latter case, options include Monte Carlo sampling, Monte
Carlo sampling with importance sampling, or pseudo-Monte Carlo sampling [12,26,64]. The
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scenarios can also be constructed by hand. It is common to take scenario ¢ = 1 as the single
forecast that would be used in basic MPC.

To find the desired control action u,;, we solve the following extension of the single-forecast
MPC problem (1):

minimize Y27 w'Gi(x,, 2, ub)
subject to al,, = A al + BLul +cb,, T=t,... t+H-1, i=1,...,8 (2)

[ —
up =uy, 1=1,...,5,

with variables #* € R”" v’ € R”™, and u, € R™ (our control action). In MF-MPC we
create S different future state and action plans, each using its own forecast of cost and
dynamics, and add the constraint that all plans must agree on the first action u;. Like the
MPC problem (1), the MF-MPC problem (2) is also convex, but it can be a large problem
if S is large, with a total number of scalar variables SH(m + n) + m.

History and related literature. MF-MPC is a simple special case of many other methods
for incorporating uncertainty and information patterns via multiple scenarios [17,27,37,39,
46,57,66,73]. In these papers (and others) a scenario tree is used to represent the evolution
of uncertainty over time, with non-anticipativity constraints imposed so that inputs from the
same tree node are equal. Such multi-stage problems can then be solved by methods such as
nested Benders decomposition [10,46], progressive hedging [58], progressive decoupling [57],
scenario decomposition with alternating projections [17], to evaluate the policy. In this
context, MF-MPC is the very special case where there the scenario tree consists of the root
(the current period), and S edges to the different scenarios at period t + 1. In terms of
stochastic control, the information pattern for which MF-MPC is optimal is one where there
are only S possible outcomes (the scenarios): When the first action is taken, the S outcomes
are known but which one will obtain or realize is not; after the first action is taken, which
of the scenarios is realized is revealed.

The MF-MPC problem is a basic and standard two-stage stochastic programming prob-
lem; see, e.g., [22,61] [44, §5]. In this context the first stage is referred to as the “here and
now” decision and the second stage as the “recourse” actions. For linear two-stage programs
there are several algorithms that decompose the problem into each scenario based on cutting
plane techniques [36,50,59,60,62,63,70], and for convex (nonlinear) two-stage problem there
are methods based on augmented Lagrangians and ADMM [5, 58] [47, §7.6].

In summary, neither MF-MPC nor special methods for solving the MF-MPC problem,
which is a two-stage stochastic programming problem, are new.

1.3 This note

The point of this note is to describe a method for solving the MF-MPC problem (1) using an
incremental proximal method, a sequential algorithm that in each iteration solves a problem
similar to the single-forecast MPC problem (1). If these iterations are continued long enough,
the method will converge to a solution of the MF-MPC problem. Of more practical interest,



we have found that stopping the incremental proximal algorithm early, well before it has
converged, we obtain a policy that works well in practice, yielding most or all of the benefits
of MF-MPC over single-forecast MPC.

In this note we are not concerned with comparing MF-MPC with other control policies,
or arguing that it is a good policy. Our only point is that MF-MPC can be (approximately)
evaluated using an iterative method in which each iteration is essentially solving a (single
forecast) MPC problem. Thus the MF-MPC policy can be evaluated by solving a sequence
of MPC problems, each one asssociated with one scenario.

2 Incremental proximal model predictive control

2.1 Incremental proximal method

We define F*' : R™ — RU {00}, i =1,...,S5, as the optimal value of the MPC problem in
scenario i, as a function of the first action u;. Specifically, F(u;) is the optimal value of the
problem
minimize  w'G(x, 2%, u?)
subject to a., = Alzl + Biul +¢, 7=t,....t+H—1
Uy = Uy,
with variables z° and u’. This is a convex function since it is the partial minimization of a

convex function over some variables (here, z* and uj 4, ..., u}, ;1) [11, §3.2.5]. In terms of
F*, the MF-MPC problem (2) can be expressed as the problem

minimize 35 | Fi(uy), (3)

with variable u; € R™. (This is the same as the MF-MPC problem (2), after we optimize
over the variables z* and u}_,,...u} ;_;.)
The incremental proximal method [8,9] solves problems with the sum form in (3). In the

kth iteration the updated iterate ugkﬂ) is the solution of the problem
minimize a F* (u;) + Lluy — uf?|3, (4)

where wu, is the variable, and aj > 0 is a step size. The sample index i; can be chosen in a
cyclic order (i, = k£ mod 5), or uniformly randomly drawn from the S scenarios. The step
sizes should be square summable but not summable, with a typical choice o = o/ (k + ),
where a and /3 are positive parameters. The update (4) is the proximal operator of ayF"
(35,47, 56], giving the method its name. (‘Incremental’ refers to the fact that the scenarios
are handled separately, one in each iteration.)
Solving the problem (4) is the same as solving the problem
minimize WGy (zy, x,u) + 3 |lue — w2,

subject to @, = A% x —i—B“cuT%—czT’Tt, T=t,...,t+H—1,
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where v and x are the variables. Solving this convex optimization problem gives ugkﬂ). The
problem (5) is identical to the single forecast MPC problem, except for the addition of the
proximal term § [|u, — ul®) |2. In many cases the cost function Gy already includes a quadratic
term in u,, in which case the problem (5) has exactly the same form as the single forecast
MPC problem. Thus the cost of carrying out each iteration of the incremental proximal
method is essentially the same as the cost of evaluating a single forecast MPC policy. We
refer to the policy obtained by running a fixed number of iterations of the update (5) as the
incremental proximal model predictive control (IP-MPC) method.

Convergence. While the convergence proof given in [9, §3] does not exactly cover our case
here, it is readily modified to handle it, with a few additional assumptions. Suppose G* has
the form

G'(xg, 2" u") = g'(zy, 2" u’) + T(u' € UY) + (2" € XY, (6)

where ¢’ is a real-valued convex function, I is the indicator function, the set X is convex, and
the set " is convex and bounded. In this case, with step sizes that are square summable but
not summable, we can conclude that ugk) converges to a solution of the MF-MPC problem
(2). To see this, observe that when G* satisfies (6), the corresponding F* is a sum of a
real-valued function and the indicator function of a bounded set. Though the bounded set
depends on i, while the constraint set in [9] does not, with a minor modification one can
show that the same convergence conclusions hold.

While it is nice to know that if the iterations of IP-MPC were continued indefinitely, we
would (asymptotically) solve the MF-MPC problem (2), an essential part of IP-MPC is that
performs well (as a policy) even when it is terminated long before it has solved the MF-MPC
problem (2) to high accuracy.

2.2 Mini-batch IP-MPC

A useful extension of IP-MPC uses multiple scenarios in each update, i.e., a minibatch of
scenarios, rather than just one. Thus in each iteration we solve not a signle-forecast MPC
problem but a smaller MF-MPC problem, with b < S scenarios, where b is the minibatch
size.

In the kth iteration, we take a subset of indices Sy C {1,...,S} with |Sx| = b, which
can be chosen cyclically or drawn randomly from the scenario indices, with or without
replacement. Then the updated iterate uikH is the solution of the problem

minimize (o /b) Ziesk F*(uy) + %Hut - ng)Hg

with variable u;, which is an MF-MPC problem with b scenarios, plus the quadratic proximal
term. This problem can be expressed as

minimize (g /b) X;cs, WG (e, 2", u) + 5w — w2,
subject to z% , = Al 2’ + B! tui—{—cilt, T=t,...,t+ H-1, i€

7
7| gl

ug =uy, 1€ Sy,



where the variables are z*, u', for i € Sy and u;. The number of scalar variables is bH (n +
m) +m, which is about b times of that of the IP-MPC problem (5), and a factor S/b smaller
than the full MF-MPC problem (2).

As the minibatch size b increases, the incremental proximal method converges faster (in
terms of number of iterations), but the iterations are more costly. A good choice of b trades
off these two competing trends.

3 Example

In this section we illustrate IP-MPC with a simple energy storage arbitrage problem.

3.1 Problem and policies

The problem. We are to choose the charging (discharging, when negative) rate of an
energy storage system in each hour, with time-varying energy prices, so as to maximize our
average profit. We let u; € R denote the battery charging rate in period (hour) ¢, and ¢; the
stored energy. These must satisfy —D < u; < C' and 0 < ¢ < @ for all ¢, where D is the
maximum discharge rate, C' is the maximum charge rate, and () is the storage capacity. The
storage dynamics is given by ¢;11 = ¢; + u;. The cost in period ¢ is given by p;(uy + n|wl),
where p; > 0 is the mid-price and n € (0,1) gives a gap between the buy and sell prices,
i.e., we purchase energy at higher price (1 4+ n)p;, and we sell it back at the lower price
(1 —n)p;. The charging rate u; is chosen with knowledge of the current stored energy ¢; and
current price p;, but not future prices p;11, ..., which, however, can be forecast. The goal is
to minimize the average cost, i.e., to maximize the average profit.

In this problem the state is the stored energy ¢;, and the actual system dynamics are
linear, constant, and known. The true cost is convex, and in this case separable across
periods. The only uncertainty is in the future energy prices, which affects the cost.

MPC policy. We use a planning horizon H = 24, i.e., one day. We denote the forecast
of future prices as p,, 7 =t +1,...,t 4+ 23. For notational simplicity, we use p; = p;, the
known current price. At time ¢, we plan the input w, from 7 =t to 7 = t + 23, i.e., we plan
over the next 24 hours. To determine u; we solve the problem
minimize Y57 (Bru, + npelus|)
subject to —C' <wu, <D, 7=t,...,t+23
0<q¢, <Q, 7=t+1,...,t+24
QGri1=Gqr + Uy, T=1,...,t+23
Qry2a = Q/2,

with variables wy, ..., w03 and ggy1, . .., @rro4. (The current stored energy ¢; is known.) The
terminal constraint requires that in our plan, the terminal storage energy should be half the
capacity.



MF-MPC policy. We denote the S forecasts of future prices as pt, 7 =t +1,...,t + 23,
i=1,...,8, with p! the forecast used in MPC. As in MPC, we take p! = p;, the known
current price. We create plans u', 7 =¢,...,t+ 23,7 = 1...,S, with the constraint that
uj = --- = u?, with the common value giving us u;. We solve the problem

minimize  (1/5) Y7, Y20 (Plul + npt |ul])

subject to —C' <u. <D, 7=t,...,t4+23, i=1,...,8
0<¢<Q, 7=t+1,...,t+24, i=1,...,8
qﬁ+1:qi+ui, T=t,...,t+23, i=1,...,8

q§+24:Q/27 Z:1,,S
wl ==,

with variables u’, 7 =1¢,...,t +23,i=1,...,S, and ¢', 7=t +1,...,t +24,i=1,....85.
We take ¢! = ¢;, the current known stored energy.

3.2 Parameters and data

Parameters. We take C' = D = 10 and ) = 50, so we can completely charge or discharge
our storage system in 5 hours. We take n = 0.075, which means there is a 15% difference
between the energy buy and sell prices.

Price data. We use real price data, the hourly verified real-time local marginal price
(LMP), in dollars per MWh, for zonal node 51217 obtained from the PJM market [49], over
a period of 268 weeks from July 2016 through August 2021. We clip or winsorize the smallest
values at the 0.2-percentile of prices, which is 6.6; the maximum price over this time period
was 690. The mean price is 28.5, and the median price is 23.9.

We use the data of the first 260 weeks, from July 1 2016 to June 24 2021, to fit our
forecasting model, and the data of the last 8 weeks, June 25 to August 19 2021, to evaluate
our policies. The prices are shown in figure 1, with blue showing the data used to develop
our forecast model, and orange showing the price data used to evaluate the policies.

3.3 Forecasts

Transformation. The price data are very right skewed, so we first transform them with
two log transforms, and work with z; = loglog p;, which results in a distribution of values
that is reasonably Gaussian. While our forecasting methods will use z;, we convert our
predictions (single or multiple) back to prices using p; = exp exp Z;.

Baseline model. We use the simple forecast method described in [44, §A], applied to z,
which first fits a baseline to the price data that captures the daily, weekly, and seasonal
variation. Our baseline b; has the form

16
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Figure 1: Electricity price p;, in dollars per MWh, over 268 weeks. Prices shown
in blue are used to fit the forecasting models; the prices shown in orange are used
to evaluate various policies.

where the model parameters are (3, 3; and «; for i = 1,...,16. The periods T; are as follows.
e Diurnal (daily) variation: T; = 24/k, k =1,2,3,4
o Weekly variation: T; =7 x 24/k, k =1,2,3,4
e Seasonal (annual) variation: T; = 365 x 24/k, k =1,2,3,4
e [nteraction terms: T; =7 x 24 + 24, 365 x 24 + 24

Thus our basic daily, weekly, and seasonal variation models each have 4 Fourier coefficients;
the interaction terms allow the baseline daily and weekly patterns to vary (a bit) over the
year.

Our baseline model has 33 parameters; we fit these on the 43680 data points using ridge
regression. The log-price prediction error logp; — exp b, has RMS value 0.38, meaning the
baseline typically differs from the actual price by a factor of exp0.38 = 1.46, i.c., 46%.
(Recall that the original price data varies over a 100:1 range.) The price p; and baseline
price exp exp b; over four different weeks are shown in figure 2. Comparing the vertical scales
of the two plots, we can see that the baseline does not capture the occasional large deviations,
low or high, in the actual prices.

Single forecast model. Following the simple forecasting method from [44, §A], we fit an
auto-regressive (AR) model to predict the residual r, = loglog p; — b; over the next 23 time
periods, given the previous 24. The residual AR model has the form

(ft+1|t, e ,ft+23\t) = F(Tt—zs, ce 77‘t)7

where T' € R*** is the AR parameter matrix. We fit T' using ridge regression on 43633
training data points. Our final (single) price forecast is then given by

137'|t = exp exp (bT + PT—t(Tt—237 s th)) )
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Figure 2: Price p; and baseline price exp exp b, over four different weeks, in July
2016, January 2017, July 2019, and January 2020.

where I';_; is the (7 — t)th row of I". These forecasts have an RMS log-price error of 0.30, a
reduction from the baseline RMS log-price error 0.38. This means our forecasts are typically
off from the true price by around 35%. (If our forecasts were much better, then there would
no need to use MF-MPC instead of MPC.)

The forecast error varies with 7 — ¢, the number of hours forward that we are predicting.
The RMS log-price error versus 7 — ¢ is shown in figure 3. We can see that our prediction of
the next hour’s price (i.e., 7 —t = 1) is typically around 32%. For larger prediction horizons
it increases. Our predictions 24 hours in the future (i.e., 7 —t = 23) have RMS log-error
37%, still well below the RMS log-error of the baseline alone, which is 46%.

Multi-forecast model. Denote the AR forecast error at 7 given start time ¢ as

erip = loglog p, — loglog prs.

The statistics of these errors varies with the start time hour of the week, so we fit a different
mean and a different covariance matrix for each hour of the week. The 24 x 7 = 168
mean vectors denoted as p,,, m = 1,...,168, are empirical means. We fit 168 covariance
matrices to the errors, denoted >,,, m = 1,...,168, using a Laplacian regularized stratified
model [68,69]. Our graph on the stratified variable, in this case hour of the week, is a cycle
graph with 24 x 7 vertices. We use the solver implemented in [67] to fit the models.
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Figure 3: RMS forecast error for log-price versus 7 — ¢.
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Figure 4: Baseline price, forecast price, and three price samples in the first 24 test
hours, and the price data from the last 24th training hour to the first 24th test
hour.
Scenario sampling. Given a start time ¢, S samples (€i+1\t7 e e;rzg‘t), i=1,...,5 are

generated IID from N (i, 3, ), where m is the hour of the week for ¢. From these we obtain
our price forecasts as

ﬁiﬂt:eXpeXp(bT—i—FT,t(rt,gg,...,rt)—|—ei|t), T=t+1,...,t+23, i=1,...,5.

Figure 4 shows the actual price, baseline, single forecast, and three random sample forecasts
in the first 24 test hours.

3.4 Simulation results

Policies. We simulate a number of different policies over the 8 week period at the end of

our data.

e MPC using the single forecast.
e MF-MPC with S = 20, 40, 80, 160, 320, and 640.
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e [P-MPC, with minibatch size b = 20, for a number of iterations 1, 2,4, 8, 16, 32.

The MF-MPC policies (with different numbers of scenarios) and IP-MPC use the same
samples in the same order, so with 1 iteration, IP-MPC uses the same set of samples as
MF-MPC with S = 20 samples, and so on. For IP-MPC, we start at the MPC plan, so with
zero iterations, this coincides with simple MPC. We use step sizes ay, = 7/k.

Prescient bound. To get a performance bound, we compute the exact optimal charging
with all future prices known. (This is a single LP that extends over the test period.) The
resulting cost is —62.3 per hour, i.e., we make an averge profit of $62.30 per hour. This is
an upper bound on how well any policy can do.

Results. We ran MF-MPC and IP-MPC for 10 trials, with different sets of randomly
generated scenarios, and we report the averaged result over the 10 trials. The cost per hour
for our policies is shown in figure 5. We can see that MF-MPC gives an improvement over
MPC, with S = 640 samples reducing cost from around —38.8 to around —41.5, around 2/3
of the optimal average cost from our prescient bound. We can also see that MF-MPC with
S = 640 scenarios is not significantly better than S = 320, and that S = 160 gives us a
reasonable fraction of the improvement over MPC.

The figure also shows that IP-MPC performs well. For 4 iterations, IP-MPC uses the first
80 samples and achieves a cost that is not far from MF-MPC S = 80, despite 4 iterations of
IP-MPC giving only a very crude approximate solution of the associated MF-MPC problem.
For 16 iterations IP-MPC uses the first 320 samples and achieves performance not too far
from MF-MPC with S = 320 samples. Running IP-MPC for even 32 iterations does not
solve the batch MF-MPC planning problem to high (or even modest) accuracy, but it yields
a policy that does very well.

Computation times. We use CVXPY [4,18] and the solver ECOS [20]. Simulating the
MPC policy over 8 weeks (i.e., 1344 hours) takes 33 seconds, which means around 0.025
seconds per policy evaluation. Simulating MF-MPC with 640 samples takes 2268 seconds,
corresponding to 1.69 seconds per policy evaluation. Using disciplined parameterized pro-
gramming [3], running 32 IP-MPC iterations takes 1023 seconds, corresponding to 0.76
seconds per policy evaluation.

4 Conclusion

IP-MPC is an iterative method for evaluating an MF-MPC policy, with each iteration involv-
ing the solution of a single forecast MPC problem. In the limit as the number of iterations
increases, IP-MPC coincides with MF-MPC. More interesting to us, and evident in our ex-
ample, is that IP-MPC can deliver much of the benefit of MF-MPC with a modest number
of iterations, well before the IP-MPC policy is close to MF-MPC.
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Figure 5: Cost per hour of various policies, including MPC, MF-MPC with different
numbers of scenarios S, and IP-MPC for different numbers of iterations. The per
hour cost of the prescient policy with all future prices known is —62.3.

Our example suggests a reasonable general design approach. First, design a standard
(single forecast) MPC control policy, choosing the objective and constraints, and tuning
their parameters, to achieve good closed-loop performance, ideally on real data that was
not used to develop the forecaster. Many variations on the objective and constraints can be
tried out, since the policy is relatively fast to evaluate. Then, try out MF-MPC with varying
numbers of scenarios to see what improvement (if any) is obtained over MPC, while possibly
making small changes to the parameters to improve performance. Finally, try out IP-MPC,
experimenting with the step length sequence and number of scenarios.
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