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Abstract

We have investigated a method for data transmis-
sion over slowly time-varying MIMO channels. A low
complexity method is introduced that effectively di-
agonalizes the MIMQ channel. This enables the use
of Discrete Multi-Tone (DMT) modulation over the
MIMO channel to achieve information transmission
rates close to Shannon capacity.

DMT requires knowledge of the channel state infor-
mation at the transmitter which is not always possible
in practice. In this case the channel can be only made
block diagonal and signal detection requires the solu-
tion to a least-squares problem with integer variables.
This is a very challenging problem that is theoreti-
cally difficult (NP-hard). In this paper, & practically
efficient method is proposed to solve this least-squares
problem.

Introduction

Multichannel modulation methods such as Multi-
Tone, OFDM (Orthogonal Frequency Division Multi-
plexing), and DMT (Discrete Multi-Tone) are in gen-
eral one of the best methods for data transmission
channels with severe inter-symbol interference (ISI).
The concept of DMT [1] has been analyzed exten-
sively for single-input, single-output (SISO) channels.
It has been shown that DMT is able to achieve data
transmission rates close to Shannon capacity, given
the channel state information is provided at the trans-
mitter. This motivates to investigate the application
of DMT for multiple-input,multiple-output (MIMO)
channels. Figure 1 shows a block diagram of such a
system. The concept of DMT lies behind two factors.
One is (fast) diagonalization of the channel matrix
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and the other is using water-filling on the input data
to maximize the information rate sent over the diag-
onalized channel.
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Figure 1: Block diagram of the MIMO system

Here we will consider the case of block-time-invariant
MIMQO channels, where the channel is assumed to be
time-invariant during transmission of each block of
data. One important aspect of such channels that
has motivated us to study MIMO systems is the fact
that the capacity of such channels depends linearly
on the number of antennas utilized [2, 3, 4]. Though
the formulations won’t suggest how to achieve this
capacity but it is a large gain compared to the SISO
case. Few mumber of studies have been done on the
problem of transmission over MIMO time invariant
channels in the literature [5, 6, 7, 8, 9, 10]. How-
ever, less study has been done on time-varying MIMO
channels. [11j has approached the problem by in-
troducing a multi-layer transmission structure using
multiple antennas, and has come up with capacity for-
mulations for the proposed structure. In our opinion,
the muilti-carrier based approaches such as OFDM
and DMT, are superior implementation-wise to ap-
proaches requiring multiple equalizers at the receiver.
In this paper we will consider the approach taken
by [4], where they have analyzed the capacity of a
slowly time-varying wireless MIMO channel, and have
proposed an OFDM communication structure for the
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MIMO wireless channel. DMT requires knowledge
of the channel state information at the transmitter.
This is not always possible in practice. If the trans-
mitter does not have the knowledge of the channel
state information, the channel can be only made block
diagonal, and in this case, (optimal) signal detec-
tion at the receiver hecomes very challenging. More
specifically, signal detection requires the solution to
a least-squares problem with integer variables which
is theoretically very difficult (NP-hard). The solu-
tion to such a least-squares problem is also required
in GPS (Global Positioning System) signal process-
ing and has been of significant research interest in
the GPS field for some years now (cf. [12, 13] and
references therein). We will show that although the
solution to this problem is theoretically difficult, it
can be solved rather efficiently in practice using an
algorithm from the theory of geometry of numbers
due to Lenstra, Lenstra, and Lovdsz [14, 15].

In §1 we describe the channel model and discuss chan-
nel block diagonalization, in §2 we will use the results
obtained in §1 to completely diagonalize the channel,
and will discuss the concept of MIMO DMT. Finally,
in §3 we address the problem of signal detection.

1 MIMO System Model

The aim of this section is to present a matrix equa-
tion for the MIMO system and to show how this chan-
nel matrix can be block diagonalized efficiently using
FFT and IFFT algorithms by adding redundancy to
the input vector. The diagonalization of the channel
matrix leads to N independent channels, over which
information can be sent independently. Using a gen-
eralized water-filling solution the input vector can be
optimized to achieve channel capacity.

We wili assume a block time-invariant channel model,
i.e., the channel remains unchanged during one block
period. A block consists of N data symbols and v
cyvelic prefix symbols. We will also assume an addi-
tive white Gaussian noise (AWGN) channel with My
transmitting and Mg receiving antennas.

Over one block of data transmission, the channel in-
put/output relationship is given by

Yy (k) = hyj (k)i (k) +n; (k)

y; (k) 1s the channel output (at the jth receiving an-
tenna), x;(k) is the channel input (at the ith trans-
mitting antenna), and hy; is the channel impulse re-
sponse from the ith transmitting antenna to the joh
receiving antenna. We assume all channel impulse re-
sponses to be of finite length v, i.e., hy{k) = 0 for
E<Oand k> v

t=1,....,Mp, j=1,..., Mg,

At the transmitter, each data block of length NV is
concatenated with its first v data symbols (cycelic pre-
fix). At the receiver, the first and last v symbols will
be discarded, and the middle N symbols from each
receiving antenna will be retained. Let H;; € NN
be the matrix representation of this block transmis-

sion so that
¥; = Hijx; +nj,

where x; = [2:(0) (N = 17, y; =
(0 -~ w (N = DI7, and n; = [n;(0) -~ ny(N —
DT are respectively, the block of N data symbols
at the fth transmitting antenna, block of N received
symbols at the jth receiving antenna, and block of
N additive white Gaussian noise samples at the jth
receiving antenna.

Assuming the first ¥ symbols of x; is the cyclic prefix
that is added to the transmitted data block x;, then
the N x N channel matrix is cérculant and is given
by

- hi;(0) 0 hig(v) hii(1) ]
S ohgo) .0 hij(2)
Hij — hl] ()
hi;(v)
L o 0 his(1)  hi(0)
(1)
Now defining
®T =[xT - s Tl yT =0T - yaa Tl
nT =nl - napp T,
and
Hy Hio Hiney
Hy Hp Honro
H= . _ . , @
Hpgpn Hagpdir
the matrix equation for the MIMO system becomes
v=Hx+n. (3}

If the (block) SVD of H can be easily computed, the
(generalized) water-filling solution can be readily ob-
tained, which would enable us to send data close to
Shannon capacity. Since by adding the cyclic prefix
we made the H;; matrices circulant, the (block) SVD
of H can be easily computed using FFT and IFFT
algorithms.

The SVD of H;; is given by Hy; = Q*Ay;@Q where
2 and @* are the FFT and IFFT matrices (Qy =
ﬁexp(ﬁg’Qﬂ'kJ/N) for k,i = 1,...,N), and Ay
is a diagonal matrix. Defining Qps and Qg re-
spectively as block diagonal matrices with Mt and
Mg blocks of @ on their diagonals, and A;; =
diag (A;(0), Ay (1), -+, X (W — 1)) we have

A A Ay
A21 A22 AZMT
Qup HQpyp = .
A1 Aptg Mo

TLet A be the matrix on the right, then matrix el-
ements A,;; of the A are each diagonal. Therefore,
by multiplying A on the left and right by permu-
tation mairices Pay and Py, respectively, A can
be transformed into a block diagonal matrix Ap =
diag(Aq,- -+, An) satisfying

Ap = Prp AP = PMRQMRHQ;V!T Py (1)
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where forz =1,...,N

Arnld)  Ape(d) A ()
Aa1{i) Az (%) Az sy (i)
A= . .
Aarg1 () Aty 1 (7)

The permutation matrix Pps, is an NAMr x NMy
matrix where all of the nonzero elements are unity
and located at positions (i, j) satisfying

. ; o )
i= | Nk, k=0,--,Mr -1, =1,-,N M.
l_j\/[TJ+ ’ : DT ) 3 ’ T

Siilarly, Pus, is NMg x N Mg with unity elements
at positions (7, j) given by

i= [A—;;]JrNk where; k=0, ., Mg—1, i=1, -, Mg-N.

From the channe! equation y = Hx + n we get
Prig Qaig ¥ = Parg Qasg Hx + Parg Qg m,
and assuming
x = Q&T Puorp X, Y = Pa Q. v,
we get,
Y = (Pug Que HQh Py X+ N=ApX + N
or

N = Px\la QAIRH

Y =ApX + N (5)
FEquation (5) represents the block diagonalized chan-
nel matrix equation. In practice, blocks of data are
concatenated to form the vector X which is then
permuted according to Pay,. and passed through the
IFFT matrix Qj,.. Then, consecutive length-N
blocks of the resulting N-point IFFT are sent to the
M1 transmitting antennas. Figure 2 shows a block
diagram of the above implementation.

At the receiver, the output symbols from each of the
Mg receiving antennas are grouped in blocks of length
N and are then concatenated to form the vector y
which is passed through the FFT matrix Qpg,. The
resulting N-point FFT vector is permuted according
to Pagy and would yield vector Y.

Note that the effect of the permutation matrices, Pas,
and P, on the vectors X and FFT of y is just
simple reordering.

2 MIMO DMT

In this section we wil] discuss the issue of transmitter
optimization and DMT for the MIMO channel (in
terms of how much energy we should put in different
frequency bins) to obtain the highest possible channel
capacity.

In the SISO case this is achieved by a water-filling
solution, and the whole multicarrier system is named
DMT, which is basically OFDM with an optimized
transmit data vector. A similar approach leads to
the optimal transmit vector in the MIMO case, hence
the name MIMO DMT. We would like to mention
that Roy, Yang and Kumar [6] have solved a similar

&
=

I

[Ser.;’Pnr.

Figure 2: Detailed block diagram of the MIMO system

problem for the continuous-time case, however here
we will focus on the discrete-time case.

According to [4] the channel capacity for a slowly
time-varying, ergodic, AWGN MIMO channel, with
channel matrix H is obtained from

n v
. LV
Crgary = E{ E log |:] + 3
i=1

where Ag, s for i = 1,...,n are the singular values of
the channel matrix H that are greater than a certain
threshold that depends on the transmission energy,
and €;s are the energies assigned to each frequency
bin of the transmitted vector X found from the water-
filling solution (cf. [1] for details). Therefore, the key
to finding the energy allocations ¢; that maximize the
channel capacity is to compute the singular values of
H.

Since H is assumed to be known and can be block
diagonalized efficiently to Ap = diag(A,...,An)
as in (4}, the singular values of H can be computed
easily by finding the singular values of the Mg x My
matrices A;.

Suppose that FFA;M,; = [%] (F;, M; are orthogonal
and %; is diagonal) follows from the SVD of the di-
agonal block A; of Ap (assuming My > Mr). Then
. - di oo [Ea
FaoM = diag ([ 2] [22] ) (6)
where

F* = diag (F7,--,F5), M= (M, -, M),

= =diag{[Z] .-, [B2])

These relations lead to the following decomposition
of H,

Y =F'ApM = (F~ Parg Quag JH(Q3; Pre, M) (T)
which is in fact an SVD. (Since F;, Q, M;, Par, and
Py, are unitary, it can be easily checked that so
are F, Qu, Qarp, M, and as a result the products
F* Pryn Qarg and Qi Par M) Nonzero elements of
3 are the singular values of H and can now be used

to compute the optimum energy allocations ; using
the water-filling method.

The channel equation can now be written as
Y = (F"PupQuy )H{Qy, Py, MX 4+ N
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= F'ApM+N
X +N.

The above equation represents the complete diago-
nalized channel. Now in comparison to the block di-
agonalized case given in (5), the concatenated biocks
of data forming vector X, are first passed through the
matrix M before being permuted according to Pas,
and passed through the IFFT matrix Q.

I

Similarly at the receiver, the received blocks of length
N from the receiving antennas are concatenated to
form vector y which is then passed through the FFT
matrix - The resulting vector is permuted ac-
cording to Py and passed through matrix F* which
would finally yield vector Y.

The input vector X is such that its energy in each
frequency bin is optimal. The result would be the
same as using a continuous time transmitting filter
as proposed by [9].

The important fact to be noted is that the complexity
of the above algorithm is much less than normal SVD
algorithms. The complexity of performing a normal
SVD on channel H is O(N?*a?) while the complexity
here is O{N?a* log(Na)), where o = min(MT, Mg).

3 MIMO DMT Symbol Detection

The input/output relationship over one block of data
for the MIMOG AWGN channel is given by

Y =HX+N.
The goal of the symbol detection step is to estimate
X given Y. The optimum (maximum likelihood) es-
timate of X ig given by the minirmmum least-squares
formula

X = argmin  |[Y — HX}? (8)
X ¢ oMy
argmin (X — (H"H) 'H*Y) H"H
= b4 c CNMT

9
(x- (H*H)—IH*Y)( )
where C, the symbol constellation, can be assumed to
be a subset of the integer lattice Z (if the symbols
are complex then C can be assumed to be a subset of
Z2).

The fact is that solving (8) or (9) for general H is
very difficult {NP-hard) due to the discrete nature
of X. A straightforward yet very inefficient method
for finding X is through an exhaustive search which
requires trying all |C|VMT possibilities for X.

The solution to (8) or {9) is very easy in one spe-

cial case. This is when H has orthogonal columns so

that H*H is diagonal and the minimum least-squares

problem (9) decouples into NMr one-dimensional

least-squares problems

X; = argmin \Xif((H*H)‘lH"‘Y)
X;ecC

3

MF, i=1,...,NMr,
and therefore X can be found by component-
wise rounding of (the pseudo-inverse solution)
(H*H)"!H"Y to the nearest element in C.

Under the MIMO DMT structure of §2, the channel
is completely decoupled and H = X is orthogonal {or
equivalently XI"H is diagonal). Therefore, comput-
ing the maximum likelihood symbol estimates is no
big issue (in terms of complexity) and it can be eas-
ily found by component-wise rounding of the pseudo-
inverse solution, 4.e., X; = round ([Z; ' 0]Y;} (here
X; and Y, are the ith Mt x 1 blocks of X and Y
respectively).

Under the structure of §1 (in which the transmitter
does not incorporate the matrices F and M in its
structure'), the channel matrix H is no longer or-
thogonal as in §2 so the minimum least-squares prob-
lem is not completely decoupled. However, H = Ap
is block diagonal and therefore the minimum least-
squares problem portially decouples into N minimum
least-sguares problem of smaller size

% argmin  (X; - (A7A)71ATY) ArA;
P = . M-
TToKechw (i~ (A1a)71A7YS),

(10)
or equivalently,

X; = argmin H?i - Gixi”2 ) (11}
X, e cMr

where G; = (AXA) ! and Y = GiAYY, for i =
1,...,N. In fact, we have reduced the problem of
solving a least-squares problem of size NMry to an
easier problem of solving N minimum least-squares
problems of size Mr. However, for an MIMO channel
with Mp > 1 it s still not straightforward to solve
these N least-squares problems.

The set.
LG 2 { GiX; | X e 2MT)

is a lattice and therefore (11) can be interpreted as
finding the closest lattice point to ¥; under the con-
straint X; € CMT. If G; is orthogonal then X, can be
simply found by rounding each component of G;l?i
to the nearest element in C. Therefore, we would
hope, that if (; is in some sense “almost orthogo-
nal”, rounding the components of G;l?@- would vield
a solution that is “close” if not exactly the same as
the optimum solution X;. This is basically the idea
behind an algorithm to efficiently solve (10) or (11)
which is the subject of the next subsections.

3.1 Suboptimal
squares problem
In this subsection, we describe a suboptimal
polynomial-time algorithm for solving (10) or (11).
Suboptimal algorithms of this kind are important for
a few reasons. First, suboptimal algorithms can be
performed efficiently with a guaranteed low worst-
case complexity. Second, they provide a relatively
good initial guess for any global optimization algo-
rithm, and finally, these suboptimal algorithms might

algorithm for the least-

LThis could be the case when the channel matrix H is un-
known to the transmitter. Since the H is usually estimated at
the receiver there shouid be some feedback from the receiver
to the transmitter if we want to use the MIMO DMT structure
of §2, but this is not always practical.
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find the global optimum as they often do in practice.
If d.in, the minimum length vector in L{G;), or any
lower bound 4 < dy;, on it is known, a sufficient con-

dition for the suboptima} minimizer X; oy to be the
global minimizer X; is simply given by

. . d N .
1Y: — GiX, supll £ 2 = X, sub = X4, (12)

as there is only one lattice point in a ball centered at
GiX; sup and with radius dmin /2.

Suppose that F; is a unimodular matrix, i.e.,
Fy F7b e ZM7MT 5o that it is an onto mapping
from ZMT to Z7. Therefore, in (11} we can change
variables to W,; = Fi_le-, so the optimlization in the
new variable W, € ZMT pecomes

W; — argmi:_l H?i - G F,W; HZ R
W, ecC

where C is the mapping of CT under F,'. If F;
can be chosen such that G;F; becomes orthogonal
then X; can be found by, component-wise rounding
of (GF;)~1Y; to the closest integer, and multiply-
ing the result by F; to get a vector whose compo-
nents should be mapped to the closest element in C.
However, such an F; usually does not exigt, and in
practice, one can only hope to find an F; that “al-
most orthogonalizes” G} F;. If such an F; is found, it
is reasonable to believe that the change of variables
to W, followed by rounding would give a “close” to
optimal solution.

There is an algorithm due to Lenstra, Lenstra, and
Lovész (LLL algorithm) that finds such an Fj. This
algorithm is polynomial-time and practically efficient.
For details of the LLL algorithm and its different vari-
ations refer to [14, 15, 16, 13, 17, 18] and references
therein. The following suboptimal algorithm for solv-
ing the least-squares problem (which makes use of the
LLL algorithm) is based on the heuristic that round-
ing would give a “close” to optimal solution if G; is
“almost” orthogonal.

Suboptimal algorithm for solving the least-

squares problem. Suppose that &; and ¥; are

given. A suboptimal sclution Xz—,sub to (11} in the

sense that when C = Z

¥ —GiX, supll < (14 2887 (45172} min
X; € ZMr

{13)
exists that can be found as follows [16]:

e Perform the LLL algorithm on ;. This re-
sults in a new matrix (; which is almost or-
thogonal and a unimodular matrix £} such that
G = G,F;.

¢ Xitmp + Fiféfl?ij where [-] is the
component-wise rounding operation to the
nearest integer.

Y- GiXall,

e Components of Xmub are components of Xi,tmp
mapped to the nearest element in C.

Another heuristic to get a suboptimal solution is to do
the component-wise rounding recursively. i.e., round
only one of the components of G;'Y; (e.g., the one
closest to an integer) at a time, then fix that com-
ponent, in the least-squares problem and repeat. Yet
another suboptimal ponnomiai—tim(? algorithm is due
to Babai [15, 16]. In this method, X; s is found by
recursively computing the closest point in sub-lattices
of L to Y;. The provable worst-case bound we get is
better than (13) with the price of some additional
computation.

As reported in [19] and from our own experience, it
should be noted that these suboptimal algorithms
work uch better in practice than the worst-case
bounds suggest. In practice, optimality of X;sub
can be checked using condition (12). This is very
easy since a {relatively sharp) lower bound d on dyin
can he computed as the length of the shortest vec-
tor resulting from performing the Gram-Schmidt or-
thogonalization procedutre on the columns of G (cf.
[12, 13]).

Using the worst-case performance bounds of these
suboptimal algorithms (for example the one in (13))
it is possible to find a lower bound on the probability
that X; sup = X given X; = X, i.e., the probability
that the suboptimal estimate of the symbol is corrvect
given the optimal estimate of the symbol is correct.
Suppose that the known worst-case sub-optimality
factor of the suboptimal algorithm is easr. > 1 s0

II¥: — GiX; subll € aarp 1V — GiX)l
We have
16X g — X 0¥: — @Ky — (¥ — G gup)l
¥ — GiXall + 1Y — GiX g gupll
{1+ oy IV — GiXll

\

[FANENTat

It X-zfsgb # Xg then [|G5{Xisub — Xi)ll > dmin s0
that ||Y; — G:Xy|| = Gmin /{1 + s, ). J3ut pin €20
be (lower) bounded by P, = Prob{X; # X,) as
dpin > 207 (P./2) where Q! is the inverse func-
tion of the @ function (the probability of the tail of
the Gaussian PDF). Therefore if X, sup # X we have
Y — GiXill = 2071 (B./2) /(1 + any), or equiva-
lently,

2Q7 (Pe/2)

I+ ang

Now if X; = X, then ||¥, — G;Xy||? is x* with Mt
degrees of freedom and we finally get

471 (Po/2)?
(1 + ey )? '.MT)

(14)
where Fy2{-, M1) is the x> CDF with Mr degrees
of freedom. The interesting point about {14) is that

“?1 - GiXi” < = Xi‘sub = XT'

Prob (X, o =X | Ri=Xs) > Fe (
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as P, gets smaller the bound on the probability gets
larger, which means that the suboptimal algorithm
is guaranteed to perform better. In communication
systems, P, is designed to be very small and there-
fore these suboptimal algorithms have a guarantee
on their performance. Again, we must note that, in
practice, the performance is much better than the
worst-case bounds.

3.2 Global optimization algorithm for the
least-squares problem

Once we have efficiently computed a suboptimal solu-
tion to the least-squares problem (for example using
the method discussed in the previous subsection), we
need to check whether any better solution exists or
not. As noted in §3.1, it is easy to check the suffi-
cient condition (12) for optimality. It turns out that,
specially for “low” P., this condition is “most” of the
times true and the optimality of the solution is guar-
anteed. However, if this condition is not true we can-
not say anything about the optimality of the solution.

In this case, the problem of checking whether any
better solution exists or not is equivalent to checking
whether an ellipsoid contains any point with integer-
valued coordinates. The global optimization algo-
rithm basically consists of computing a “good” initial
guess using the suboptimal algorithm of the previous
subsection, and an exhaustive search for finding, if
any, points with integral coordinates inside an ellip-
soid. This exhaustive search can be performed rel-
atively efficiently {(cf. {12, 13] and references therein
for details). Tn practice, cur simulations show that for
problem sizes of a few ten integer variables, the com-
putation required for solving the least-squares prob-
lem is in the order of a matrix inversion of the same
size. An implementation of the global optimization
algorithm in Matlab can be obtained by contacting
the authors.

4 Conclusions

In this paper we discussed in detail the MIMO chan-
nel model proposed by Raleigh and Cioffi [4]. It was
shown that by using cyclic prefix in the transmit-
ted block of data from each antenna, it is possible
to effectively block diagonalize the channel matrix.
However in order to optimize the input vector, the
channel has to be decomposed and completely diag-
onalized. A low complexity method was introduced
that effectively diagonalizes the MIMO channel. This
ensables the use of Discrete Multi-Tone (DMT) mod-
ulation over the MIMO channel that achieves infor-
mation transmission rates close to Shannon capacity
by using an optimized input vector.

However, DMT requires knowledge of the channel
state information at the transmitter, which is not al-
ways possible in practice. In this case, the channel
can be only made block diagonal and signal detec-
tion becomes very challenging. A practically efficient
method was proposed to solve the signal detection

problem which is basically a least-squares problem
with integer variables.

Finally, we should note that we did not address the
channel estimation problem that is crucial for any
practical implementation of the DMT approach.
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