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Uniqueness of Circuits and_Systems Containing One
| Nonlinearity

STEPHEN P. BOYD anp LEON O. CHUA, FeLLow, x5 '

Abstract—We study systems containing one memoryless nonlinearity.
We show that two such systems have the same 1/0 operator only when
they are related by simple scaling, delay, and loop transformations. The
theory is applied to one-port networks containing one nonlinear element.

I. INTRODUCTION

IN [1]1 the authors considered systems consisting of a
memoryless nonlinearity sandwiched between two linear
time-invariant (LTI) operators. We showed that if two such
systems have the same I/0 operator, then one can be got from the
other by scaling the LTI operators and memoryless nonlinearity,
and possibly redistributing some delay between the LTI operators.
Thus, such systems are essentially unique, in the sense that the
I/O operator determines the nonlinearity and the pre- and post-
LTI filters up to scaling and delays. ' ‘

In this paper we continue our study of systems which are
interconnections of LTI and memoryless operators. We consider
systems containing one nonlinearity, possibly in a feedback loop,
and show that these systems too are essentially unique, in this case
modulo scaling, delays, and loop transformations (Theorem 3).
Using this fact we show that the I/O maps realizable with some
common structures for nonlinear systems (we have called these
the cascade, Lur'e, and complementary Lur’e structures) are
completely disjoint. This raises the possibility of determining
internal structure from I/O measurements.

In Section VII we apply the theory to one-port networks
containing one nonlinear element and show that two such
networks are equivalent, that is, look the same from the external
port, only if they are related in a simple way (Theorem 4).

II. NOTATION AND FOUNDATIONS

In order to easily handle memoryless nonlinearitics we extend
the usual Volterra series formalism slightly to allow measures as
kernels. This will allow memoryless operators as well as
operators like .

Au(t)y= Su(t ~1)2h(r) dr

which are called Volterra-like by Sandberg [6], [7], and arise in
interconnections of memoryless and LTI operators. In fact, the
operators we allow are included in even more general formalisms,
¢.g., that of deFigueiredo [8]. A complete discussion of our
formulation can be found in Boyd et a/, [9].

Let u be a bounded measure on R*. [|u| will denote, as usual,
Il 2§ dlpl = |pl(R7).! We say p is symmetric if u(oE) =
#(E) for all permutations o0 € S and all (measurable) E € R*,
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"Eé{(xoh t xcn)rl(xh Tty xn‘).TEE}-

Let (a) be a sequence where the nth term a, is a symmetric

bounded measure supported on R” (R, & {r|r = 0}). Define

Rad {a) &[lim

sup [lafl'")-".

Ll

Then if Rad (@) = p > 0, (@) defines an operator A on B,, the
open ball of radius p in L=, into L™ given by?

Au(:)éEj---

n=l

5 u(t—mi) « - w(t~r)addry, <+, drp).

(2.1)

We will only consider operators of the form (2.1). We call a, the
nth time domain kernel of 4; we will use more often its Laplace
transform

Anls, ---,s,,)gg j

©exp-— (slTI +ee +sn7n)an(d7h 1t dfn)'

which is analytic and bounded in C, & {s|Re 5, > 0,1 < k <
n}. A, will be called the nth kernel of A, and we will use the
notational convention that whenever, say, B is an operator of the
form (2.1), B,(s;, -, s,) will denote its nth kernel,

AisLTIif A, = 0, n > 1 and in this case we write its only
nonzero kernel A,(s) as A(s); that is, we will use the same
notation for an LTI operator and its first kernel, For example,
e~*T will denote both an analytic function and the T-second delay
operator.

- Conversely, if A; = 0, that is, A has zero linear part, then we
say A is strictly nonlinear.

The part of (2.1) due to the masses or delta functions at the
origin in the a, will be called the memoryless part of 4; formally
MP A is the operator defined by

(MP A), éa;({ﬂ})

({0} is the set whose only element is 0 € R,). We develop some
of the properties of MP in the Appendix. If MP 4 = A then we
say A is memoryless, and then we will also use A(+) to denote the
associated function: R — R given by A(x) 2 T A,x" (the A, are
constants here).

I is as usual the identity operator with kernels

n=1
n>1.

If A is memoryless and LTI, it has the form of for some real

2 Just as convolution with a bounded measure is a bounded map from Le
into L or C® into C'¥, A also maps B, in C into C®, if you prefer these
signal spaces. : A
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constant or; we will simply write it as o. For example, aB8 is the
operator defined by '

(aBB)u = aB(Bu)

where o and g are just real numbers on the right-hand side.

In the sequel A will always denote an LTI operator, F a
memoryless operator, and N a memoryless strictly nonlinear
operator. '

Finally, we list a few facts we will use in the paper. If A and B -

arc operators, then the following holds.

Fact1: A = Bifandonlyif A, = B, for all n. Note that 4 =
B asserts equality of operators, whereas A, = B, asserts equality
of functions analytic in C%. This is sometimes called the
uniqueness theorem.

Fact 2: A + B and AB (composition of A and B) are
operators with kernels (4 + B), = 4, + B, and

n
(4B),=SYM ¥
m=l i dmiz
b+ tig=n

' A,,,(Sl'l' st +S,'|, Ty sn+l-i,,,+ “'+sn)

* -Bil(slv T Si|) Tt Bl'm(sll+l—l',,,r T sl!)
where SYM symmetrizes a function on C”,
SYM fé(n!)_l E f(suls T Sun)-

oES"

The 7 in SYM can be determined by context; it is the order of the
kernel on the left-hand side of the equation. When one of the
operators is LTI the composition formula simplifies to

{(4H)u(5y, --
(HA) (51, *

Fact 3: If A is strictly nonlinear, / + A has an inverse {near 0)
which is an operator in our sense. In particular, Rad [(/ + A)-']
> 0.

We refer the reader to {9] for proofs of these facts.

“y sn)':A(sl- "t S,.)H(S]) et H(S,.)

v Sp)=Hi(s+--- +s)A(sy, ** -, Sp).

II. PROBLEM SETUP

We will be concerned with systems which are stable intercon-
nections of various LTI operators H,(s) and one memoryless
nonlinear operator F(*) (see Fig. 1). Specifically, we assume that
the linearized system (F(-) replaced by F\) is internally stable.?
Under this assumption, we may extract N, the strictly nonlinear
partof F, collect the rest of the system into a two-input two-output
LTI operator H, and redraw Fig. 1 as Fig. 2. Here

= Hyw Hyd

and the overall I/0 operator S is therefore

S=Hp+ H, NI~ HN)H,,. 3.1

Remark I: Facts 2 and 3 of Section II can be used to show that
§ is indeed given by a Volterra series, i.e., has the form (2.1). To
sec this, note that by Fact 2 — H, N is an operator with first
kernel — M, ,(s)N, = 0; thatis, — H,/Nis strictly nonlinear, By
Fact 3 then (I — H_,N) ! is an operator of the form (2.1); a few
more applications of Fact 2 establish that § has form (2.1).

3 By internally stable we mean that if we inject a signal u into 2 summing
node placed anywhere in the system, and pick off an output ¥ from anywhere
in the system, the resulting map &:u ~ y is LTI in our sense (in particuiar,
i) 2 (t — 5) ), 5, etc). . o
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Fig. 1. Sy;t-ém which is interconnection of various LTI operators Hy{s) and
onc memoryless nonlinear operator F(-).

input u ———— —e— output y

H(s)
LTI

N}

memoryless
strictly nonlinear

(a) -

Hyy (3} .
v H, (s} «'t Nie) : Hoal3) ;l)——-‘ ey
Hyyls) ‘J

(b}

Fig. 2. (a) System redrawn as two-input two-output LTI operator F(s) and
strictly nonlinear memoryless operator N(-). (b) Block diagram.

Remark 2: This form is a special case of the class of systems
Sandberg considers in (6], [7], and occurs whenever a system is
decomposed into two subsystems, one of which is linear.*

We now ask the question, under what conditions could two
systems of the form (3.1) have the same I/O operator?

IV. SYSTEM TRANSFORMATIONS

We first describe three system transformations which leave the
I/O operator S unchanged: scaling, delay, and foop transforma-
tions.

Scaling Transformations: Let a and 8 be nonzero real
constants. Consider the system shown in Fig. 3. It clearly has I/0
operator S independent of o and 8. That is, if

H.w =Hy, Hyd: BH,4 , -
ms 1(:” X

* In the notation of [6], [7], we consider the special case where all the
operators are SISO, /N is memoryless strictly nonlincar, and A, B, C, and D
are given bl convolution with bounded measyres. Not all LTI bounded causal

rators L* — L* are given by convolution with bounded measures,
though all the ones of enginecring interest are [9). . &.i., o SO
. . - 4
S

T ey
-~ X
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Fig. 3.

(a) Scaling transformation of system in Fig. 2. The I/O operator is
independent of o and S. (b) Delay ransformation: any time delay in A,
and H,y can be distributed arbitrarily between them.

N=8"Na-!

then § = S.
Proof: Obvious from Fig. 3, or more formally

S=H, +BH,8 'Na~"I- aBH B8 'Na~ ")~ aHp,
=Hyp + HyaN(( — aH iNa~ Vo)~ oy,

since § commutes with H,; and H,; and B-'4~-! = (AB)-!
generally. -Carefully distributing the o we get

= Hy, + HygN(ot — aHgN) ™ ey,
= Hyy+ HyaN(I - HogN) " ‘Hp = §

after extracting the a on the left and using (AB)~! = B~'4 !
again.
Delay Transformations: When T is such that

Hm=e"TH,., HM=8’TH_‘.¢

are operators of the form we consider (i.e., still causal), then

BN - HogN) "By = HN(I - HegN) = \H,,.

{See Fig. 3(b).] This follows from the time invariance of N(f -
H,,N) =" and is easily verified.

Loop Transformations: Let k be any real constant and
consider the feedback subsystem shown in Fig. 4. The I/O
operator of the subsystem shown in Fig. 4(b) is independent of k;
that is, if

Bu=Hga+k  N=NI+kN)-!

then

NU-AN)"'=NU -~ HN)"!

and thus § = Sif A,, = Hp, By = Hy,and A,y = H,q. Note
that the transformed subsystem has the same structure: a strictly
nonlinear memoryless operator with LTI feedback around it. By
Facts 2 and 3 of Section I, N has a positive_radius of
convergence. We leave to the reader the proof that N is strictly
nonlinear and that the transformed subsystem has the same /O
operator.

It will be convenient to say that the subsystem in Fig. 4(a) is
normalized if MP H,4 = 0. Since MP B,; = MP H,, + k, any
subsystem of the form in Fig. 4(a) can be brought to an cquivalent
normalized by a loop transformation with k¥ = —MPH,,. This
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x - N(e) - d
1 Haq4l(s) ll
(a)
d .

(®)

Fig. 4. Loop transformation of the feedback subsystem. The transformed
subsystem in (b) has the same form as the original subsystem: a strictly
nonlinear memoryless operator with LTI feedback around it.

normalization has an intuitive interpretation: a normalized H,4 has
some sort of response delay or smoothness: its step response is
continuous at { = 0.

V. STATEMENT AND PROOF OF MAIN THEOREMS

In this section we will show that if two systems as in Fig. 2 have
the same I/O operator, then the systems are related by a scaling,
delay, and loop transformation. Thus, the transformations de-
scribed in the last section are the only transformations which
preserve the I/O operator. We first develop some results
concerning the feedback subsystem shown in Fig. 4(a).

Lemma I: Let G = N(I — HN)"~}, where His LTI, MP H
= 0, and N is memoryless strictly nonlinear. Then MPG = N.

Intuitively, there is some ‘‘delay’’ in the feedback loop (the
subsystem is normalized), so that only the feedforward path N
contributes to the memoryless part of the closed-loop operator G.

Proof: Deferred to the Appendix.

We will need to explicitly compute a few kemnels of the
subsystem:

Lemma 2: Let G = N(I — HN)~!, where His LTI and N is
memoryless with first nonvanishing term N,, thatis, N; = 0,1 <
i < k, Ny # 0. Then

G;="'=Gk_l=0
Gy=Np, ***, Gu-2=Nu_;
Gu—..]=Nu_|+kNi SYM H(S|+ AR XK

Thus, the first 2k — 2 terms of the closed-loop operator G are
simply those of N, as if the feedback were not present. We have to
look at the kerne! of order 2k — 1 to even detect the presence of
the feedback H.
Proof: Deferred to the Appendix.

We are now ready to state and prove:

Theroem 1: Suppose two normalized systems of the form (3.1)
have the same 1/0 operator. Formally, suppose

A+ BN~ BgN) = Ay = Hypy + HoN(I - HgN) =\ H,
5.1

where the /s are LTI, the N's are memoryless strictly nonlinear,
MP H,; = MP H,y = 0, and § is not linear. -
Then there are real constants 7 and nonzero o and 8 sut_:h

Byy= BC"?HN

Ay =H, =
HumabHy = <t

' Huy=ae H,

that '

P
S



BOYD AND CHUA: CIRCUITS AND SYSTEMS CONTAINING ONE NONLINEARITY

Proof of Theorem I: From Lemma 2 HN({ -
ANy ~'Hy, and HyN(I — HaN)~'H,, are strictly nonlinear
so the first kernel of (5.1) is

A.=H,,
Subtracting this term from (5.1) yiclds

BN~ B~ Ry = HyN(I - HyN) '"Ho.  (5.2)

N is not zero, for then S would be linear, so suppose N, is the first
nonzero term in N. Then by Lemma 2 the first nonzero kernel in
5.2)is

Afsi+ - + )N Bolsy) -+ Holse)
=Hyds1+ *** +SONH o (81)* - * Hy(50). 5.3

In particular, N also starts at the th term. Since § is not linear
(5.3) is not identically zero. We claim there are real T and
nonzero 8, « with

Ry=8eTHy  Ho=aeTH,,. (5.9
This is proved in Boyd and Chua [1], so we will give an
abbreviated argument here. Find an open ball D in C% in which
(5.3) does not vanish. In D define

QGss, -+, sy 2ln [5’—"(s.+---+s,.)] (5.5)
Hyq
Ha, . Ha, N
=In [E(Sl) . ;E(Sn)x—h] . (5.6)

From (5.5) and (5.6) we have

3°Q = [ln ﬂ_,,,] ~(s1+ e t5,)=0.

8:;352 Hyd
Thus, in D and therefore in all of C",

[ln E”—d] (Si+ - +s)=v{si+ - +s)+T
H,, :

for some constants y and 7. Hence,
A,45) = Be*TH,s)

where 8 = exp . Substituting this back into (5.3) yields the
other half of (5.4).
We now claim that (5.2) and (5.4) imply

N~ BNy~ ' =8N ~ HaN) '~ CR)]
which is what we would conclude if we pre- and post-operated on
(5.2) with A4 and A, respectively. To see that (5.7) is true
even when H,,; and A, are not invertible, consider the rth kernel
of (5.2). Find an open ball in C°, where H,4(s, + *~+ + s,) and
Ho(s)) -+ - Hy(s,) do not vanish. Then in that ball we have,
using (5.4)

{N(]_deﬁ)_l}n(sh Tty sn)
=8~ la (NI - HuaN) "}als1, * 0 Su)- (5.8)

Consequently (5.8) holds in all of C”, and the nth kernels of ¢.7
agree. This is true for all n, so (5.7) follows.
Now we look at the memoryless part of (5.7); by Lemma 1

"MP [NU-A.M"1) :
=N=MP [8-'N(/- HuN) " Ya~']=8"'Na~!.

" By the last part of Lemma 2 and (5.7)
Ny +kNE SYM Hofs)++++ +5)
=B"ta'" %[Ny + kNt SYM Ho A5+ - +55)].
Canceling Ny = f-'a'~#*N,,_, and dividing by kN} yields
. )

e Y N1
SYM H”(Syi- vee +Sk)=m

* SYM Hyf$1+ - s)=aB SYM Hf(s;+ - +5).

For s € C,, we evaluate this last cquation\at_ S| =" =85 =
s/k to get

H,As) = aBFH As)

which completes the proof of Theorem 1.

In the next section we will need the following.

Remark: Under the hypotheses of Theorem 1, A, = ofH
and det / = af det H. ,

Theorem 2: Suppose two systems of the form in Fig. 2 have
the same I/0 operator. Then there are real constants a,f, T, and
v such that (using previous notation)

H)II=H,W H,d=6e‘TH,d
B, =ae*TH,, Ay=oafHy+y
N=8""Na~(I+y8-'Na~")-",

v

That is, the two systems are related by a scaling, loop, and delay
transformation.

Proof: We first normalize the systems by loop transforma-
tions. Let k = —MP Hand £ = —MP A, Then Theorem 1
applies with H,, replaced by Hpy + k, N replaced by N(I +
kN)-1, and similarly for the tilded expressions. Three of the
conclusions above pop out immediately from Theorem 1; we also
conclude

Boa+ K= aB(H 4+ k) (5.9)
NI +kN)-'=8-N(I+ kN)-'a-". (5.10)

Letting v = afk — K in (5.9) yields the fourth conclusion of
Theorem 2. To get the last conclusion requires some work. In
general, if B = A(J + A)~', then A = B({ - B)-!, so from
(5.10) we have

FN=fB“N(I+kN)"a"[l—fB"'N([+ kN) a1,

Dividing by £ and carefully moving the (/ + AN)-'a~! into the
bracketed expression we get

N=8"'Nla+akN-£8-1N}-!
=B"'Na~'[/ + akNa~! - 8~ "N~ ]!
=8"'Na~![f+vy8~'Na~1]"!

which is the last conclusion of Theorem 2.

V1. STRUCTURAL UNIQUENESS

Theorems 1 and 2 allow us to determine under what conditions
two systems (or one-port networks) containing one nonlinearity
have the same 1/0 operator (port (v, i) pairs). These systems are
often described, perhaps after simplification such as lumping
together cascaded LTI operators, by a simple structure like those
in Fig. 5. Of course these systems can be put in the general form

677

considered in the last section, but a structure like those in Fig. Sis -’

usuaily & more natural description. Indeed the individuq




678

"—i"""” H Flo) Hi"”"”]_’

(a)

(<)

Fig. 5. Three structures for systems with onc nonlinearity. (a) Cascade
structure, (b) Lur’e structure, and (c) Complementary Lur’e structure.
Except for trivial cases, the /O operators of these structures are
completely disjoint. From /O measurements we could determine which
structure such a system has.

often correspond to parts of the actual physical system being
modeled. So we now rephrase our original question in terms of
these structures: when can two systems as in Fig. 5 have the same
1/0 operator? We will now show that except for the trivial case
when the system is linear, the realizable I/O operators for these
different structures are completely disjoint, that is, no system with
one structure can have the same 1/O operator as a system with a
different structure.

In fact we could expand the list of structures in Fig. 5, for
example, by taking the output (via Hyo) from the output of F(+)
in (5b) or the input of F(-) in (5c): we only intend the next
theorem to illustrate what we call structural uniqueness.

Theorem 3: Consider the three structures shown in Fig. §,
where F is memoryless and the H's are as usual LTI. Suppose F
and H y are not constant, H,, and H,, are not identically zero,
and Hy, is strictly proper; that is H () 2 lim,.. Hpy(s) = 0.

Then two such systems each with structure (a), (b), or (c) have

* the same /O operator if and only if:

1) they have the same structure; and furthermore

2) the corresponding operators are related by scaling, and
possibly shuttling some delay between H,,, and H,

Proof We transform the systems mto the fonn considered
in the previous section and apply Theorem 1. Let N = F — F| g
the smctly nonlinear part of F, and let K(s5) = (1 — F\H,)"!
Then in the notation of Section III the systems of Fig. 5 have
nonlinearity N and F{-matrices

H, H, H,
H(-)=[ '";' Pt ’“‘]

pre 0

Hon e | HoeFloKHou  KHpHier
® Hy KHypy KHp
Hoym [H,.,F.KHM KHpo,

o
HpK KHp,

Note that the strict properness of the H, guarantees that these
systems are normalized, so by the remark after Theorem 1 we
have

A) any system with the same I/O operator as (a) has H 4 = 0,
and

B) any system with the same 1/O operator as (b) has det H =
0

Thus, a system with structure (b) or (c) could have the same 1/O
operator as () only if Fy. or F, wWere zero, a contradiction. If a
system with structure (c) has the same 1/0 operator as (b), then by
B) det H,y = H, = 0, again a oontradncuon This
establishes conclusion 1).
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Conclusion 2) for the structure (a) is the main theorem of Boyd
and Chua [1] and follows immediately from Theorem 1 applied to
H,), so we omit the proof. The proofs for the other two structures
are similar, so we will just give the proof of 2) for (c). Assume
two systems with structure (c) have the same 1/0 operator. Then
from Theorem 1 there are &, 8, and T such that

HM.FlKH ‘\%.‘K HMFHKHW BEJTHMK
ae”TH,,,,K afHpK |
.. 6.1)
N=8"'"Na-1, .7 \ ‘
Thus, H”H:n{{’{,dﬁm)“ is
HJDF|=H”F|

so K = K. Canceling K from (6.1) yields

H |F1 HP“‘FlHF' ﬁe,THm
ffm «e-THy, afHp |
'.6 ‘F,. Coupled with N = §~'Na~! this implies
F=B-Fa~!

SOFI =

and we have shown the systems differ only by scaling and
shuttling delay between H,,, and ..

Theorem 3 has implications for black box modeling of systems
having a structure like those in Fig. 5. It implies that from I/O
measurements alone it is possible, in principle, to determine
which internal structure such a system has. Furthermore, we can
determine the internal blocks My, N(*), etc., up to scaling and
possibly delay factors. From Lemma 2 and the proof of Theorem
3 we could construct explicit probing signals which distinquish the
structures.

Of course, the differences in the I/O maps of the different
structures may be subtle, or in some cases unmeasurable. For
example, if a system is very nearly second order, that is, its third
and higher order kernels are very small, then it may as well be
modeled by the cascade structure of Fig. 5(a), since we need to
measure the kernel of order three to observe the effects of the
feedback (Lemma 2). A similar statement holds for odd systems
with unmeasurable fifth and higher order kernels.

VII. AppLICATION TO CIRCUIT THEORY

In this section we present a simple application of the preceding
theory to circuit theory. Suppose we have a one-port network N
which contains one nonlinear element, say a voltage controlled
nonlinear resistor R with characteristic ix = (ug), as in Fig. 6(a).
We extract the incremental conductance g at 0 of R and partition
N into a linear two-port Ny, and a strictly nonlinear resistor Ry,
as in Fig. 6(b). The network equations are then

vy =Zpiy + Zaiz
i.l1= Zz|l.1 + Zzziz
= -G(v)

where [Z,] is the impedance matrix of Ny, and i =
— gu is the constitutive relation of Ryy. These equations have the
same form as those describing the system we have already
studied: the 1/O operator S corresponds to the (nonlinear)
impedance operator ® of our network N, and the matrix H
corresponds to the impedance matrix of the linear two-port Ny,!

If Z is an operator in our sense, Theorem 2 applies and we have
the following..

Theorem 4: Suppose two one-ports N and N as in Fig. 6 have ;:‘"
» the same (v, /) pairs, and arenotlmear Thcn thetearcu. ﬁ, =

PR P
PR TN

Glv) = ()

-

I

. :‘:‘,,,.!.
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nonhnear resistor
‘_R in N

Y

f'-"..-' ’///’-;, ” ‘///
0
@)
strictly nonlineor ressstor Renso
n ‘z
 —
Nlin +
v LTI . v
— —— e >
(b)

Fig. 8. (a) One-port network N/ containing one nonlincar element, a resistor
R in this case. (b) NV partitioned into a LT1 2-port Ny, and a strictly
nonlinear resistor R,,.

and ry such that

1 0 1 0 0 o0
2= [0 ae“’]z[o ﬂe"]+[0 —ro] a.n

and the strictly nonlinear resistors are related by
G=,8"Ga"(l+r08"Ga")". (7.2)

For the case T = 0 this has the interpretation shown in Fig. 7.

If in addition N, and Ny, are reciprocal (for example, if they
contain onfy two terminal elements and trarisformers) then T = 0
and a = Bin (7.1). In Fig. 7 the scalers are then transformers and
the networks are related as in Fig. 8.

Proof: If N and N have the same (v, i) pairs, they have the .

same impedance operator: (7.1) and (7.2) are the conclusions of
Theorem 2. Suppose the two-ports are reciprocal. Then (7.1), Z
= ZTand Z = Z7 imply

e~ TZ,y(s)=Be*7Z,y(s).

Since Z;; is not identically zero, a8 ~! = exp (2sT), hence, T =
Oand a = 8. .

Of course, by using another Fepresentation (say, admittance)
for Ny, we can handle current controlled resistors. Similarly, if
the original resistor R had been a flux-controlied inductor with i
= fi(¢) we could rewrite the network equations as’

v =2Zyiy+ 2y, -
¢2=S-|Zz|i| +S'|Zniz

where S(-) is the strictly nonlinear part of {}: The conclusions of
Theorem 4 then hold with G and G replaced by § and §.

We will continue our study of uniqueness in nonlinear circuits
in a future paper.
ArpENDIX

THE MEMORYLESS PART OF AN OPERATOR

The main purpose of this section is to prove Lemma 1. While a
direct proof is possible we think the approach here is more

’S"Z,.issouleﬁniesnotanopenmrinouruﬁse,lndinfmmeman
be said for Z; itself, But the previous theorems still hold with relaxed
assumptions on H,,, H,, and H,; they con be, e.g., sors-!, .
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Fig. 7. Relation between one-ports as in ﬁig. 6 which are port-equivalent.
ACy, 8) scaier is defined by vy = v, and iy = —&i, (see [L1]).
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Fig. 8. If Nuu and R, are reciprocal, the relation of Fig. 7 simplifies to that
shown here.

interesting, We start with a theorem which g‘ive# an mtumvc
interpretation to MP A, )

Theorem Al: Suppose u(f) = 0, ¢t < 0, lim,_ ., «(f) exists
fwe will call this limit u(0*)], and Ju] < Bad A. Then
(Au)(0+) exists and (Au)(0*) = (MP A)(u(0+)).

Thus MP A is thé part of A which reacts instantaneously.

Proof: Let y(f) = (Au)(#). Then y(f) = Zra1 Ya(0) where
wn0r={ - fute=r) -+ wig=ry dasrr, -, 1)
=d,.({0})ll(f)"

+ Igu_{o) vew ju({-— 1’1) eua u(t-— ’,n) dan(fh e, 1'").
Hence, '
HO=MP Au(®))

+§l SR"—M -

Now the sum in (Al.1) is bounded by
2 lull"la.l0, am.

[t~ - wte=rpariam,, -, dry.
(ALD

(Al.2)

Since the summand in (A1.2) is sumrnable and decreases as t —
0+, monotone convergence tells us that (Al.2) tends to zero as ¢
— 0*, and hence the sum in (Al.1) also converges to zero ds
t = 0*. Since MP A is analytic near 0,

lim y(l;;MP A(u(0*))

10
-

which establishes Theorem A1l. :
Example: Consider the dynamical system

:i'=j(_x. d)
o Y=
where fand g are analytic near zero, and the linearized éystem is
exponentially stable near zero, with initial condition x0) =0
The /O operator A:i2 — y then has a Volterra series (6L [Mand -
Theorem Al tellsus T R I :

i

Vo ap A0

L MP A@=g0,@). .
C - Sk ¢ g L

Theorem A2: MP (A + B) = MPA + MP Band MP (UB) .., i
= MP AMP B. S St :;;? iy
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Thus, MP maps dynamic operators into memoryless ones,
preserving addition and composition. This gencralizes the fact that
g — u({0}) is an algebra homomorphism of the bounded
measures on R * with convolution into R. We should mention that
causality is crucial here, and also that the analogous theorem for
discrete time operators is obvious.

Proof: For |a] small (<min (Rad A, Rad B)) let u(f) =
al (1), a step of height . Then from ((4 + B)u)(0+*) = Au(0+)
+ Bu(0*) and Theorem Al

MP (A + B)(«)=MP A(a)+MP B(a)

which proves the first assertion; similarly, Bu(0+) = MP B(a)
50 ABu(0*) = MP A(MP B(qa)). By Theorem Al ABu(0+) =
MP (AB)(a), hence,

MP (AB)(a)=MP 4 MP B(a)

establishing Theorem A2.
77lieorem A3: If A in invertible, then MP (4-1) = (MP
A)-L, '

Proof: I = MP I = MP (AA-?) = (MP A}MP (A =,

hence MP (4-!) = MP A)-\.
Now we can give the following.

Proof of Lemma 1: In Lemma 1 we have G = NI -
HN)-!, where H is LTI, MP H = 0, and N is memoryless. By
Theorems Al and A2 MP (/ — HN) = I; now using Theorems
A3 and A2 we have MP [N(] — HN)-!] = MPN = N.

PROOF OF LEMMA 2

Recall that G = N(I — HN)-!, where His LTI and N is
memoryless strictly nonlinear with first nonvanishing kernel N,.
We first derive a recursive expression for G,. Since HN is strictly
nonlinear, / — HN is invertible (Rad [(/ - HN)-1 > 0),
hence, s0is G = N(I — HN)~!, Taking the nth kernel of G(/ —
HN) = N yields :

[GU - HN)l,=N,.
Expanding the left expression using the composition formula:

>

fore i)
h+ ' tigmn

/

No=SYM 3

TGS+ Sy, Saloiy S
¢ (I_HN)I](SI- Tt sll) e (I_HN)im(sn+l-l’,,,l ©t0y Sn)s
For n = 1 this gives G, = 0, hence, the m = 1 term does not

contribute. The m = n term is simply G,(s;, - -, S,); rearrang-
ing the equation above we get a recursive formuia for G, given by

Gﬂ(sll Tt ‘,’l)

n-1
=N,-SYM ¥

mel

>

fy o imiz
i+t tig=n

. Gm(sl+”'+sip "'ssn+l-l,,.+"'+sn)

) (I-HN)ll(sls T sll) tte (I-HN)I',,(SII-O-I-I,,,s trty sn).

We can now prove Lemma 2.

Proof of Lemma 2; From the recursive formula for G, we
scethatif G, = 0,i < n,and N, = 0, then G, = 0. Thus, G, =
On=1---k-1. The outer sum can therefore start at m =
k. Now we claim that the smallest  for which sum does not

’
.
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vanish is # = 2k — 1. By hypothesis,

1 i=1
(I_HN)';_{O l<i<k.

Tlie product (] — HN), -+ (I - HN )i,y Will vanish unless each
jjisoncor = k. Since atleastone i; > 1, the smallestn = T7., i
for which the sum can' contribute occurs with m = k, one iisk,
and the othersare 1. Thus,n = m — 1 + k = 2k — 1. The sum
then contains only the k derangementsof (k, 1, +++ 1), s0G; =
N,i<2-~)land - : '

Gu_|=Nu_1+kN2 SYM H(Sl'l-l,L,\','f'St)

using G, = Nyand (I — HN), = ~H(s; + **+ + 5)N,. So
Lemma 2 is proved.
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