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Abstract

This paper shows that Lyapunov-based state feedback controller synthesis for piecewise-affine (PWA) slab systems can be
cast as an optimization problem subject to a set of linear matrix inequalities (LMIs) analytically parameterized by a vector.
Furthermore, it is shown that continuity of the control inputs at the switchings can be guaranteed by adding equality constraints
to the problem without affecting its parameterization structure. Finally, it is shown that piecewise-affine state feedback controller
synthesis for piecewise-affine slab systems to maximize the decay rate of a quadratic control Lyapunov function can be cast as
a set of quasi-concave optimization problems analytically parameterized by a vector. Before casting the synthesis in the format
presented in this paper, Lyapunov-based piecewise-affine state feedback controller synthesis could only be formulated as a bi-
convex optimization program, which is very expensive to solve globally. Thus, the fundamental importance of the contributions
of the paper relies on the fact that, for the first time, the piecewise-affine state feedback synthesis problem has been formulated
as a convex problem with a parameterized set of LMIs that can be relaxed to a finite set of LMIs and solved efficiently to a point
near the global optimum using available software. Furthermore, it is shown for the first time that, in some situations, the global
can be exactly found by solving only one concave problem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Piecewise-affine systems are multi-model systems that offer a good modeling framework for complex dynamical
systems involving nonlinear phenomena. In fact, many nonlinearities that appear frequently in engineering systems
are either piecewise-affine (e.g., a saturated linear actuator characteristic) or can be approximated as piecewise-affine
functions. Piecewise-affine systems are also a class of hybrid systems, i.e, systems with a continuous-time state
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and a discrete-event state. For piecewise-affine systems the discrete-event state is associated with discrete modes
of operation. The continuous-time state is associated with the affine (linear with offset) dynamics valid within each
discrete mode. Piecewise-affine systems pose challenging problems because of its switched structure. In fact, the
analysis and control of even some simple piecewise-affine systems have been shown to be either anNP hard
problem or undecidable[4].

State and output feedback control of continuous-time piecewise-affine systems have received increasing interest
over the last years[10,13,15,21]. The interesting approach presented in[13,15]relies on computing upper and lower
bounds to the optimal cost of the controller obtained as the solution to the Hamilton–Jacobi–Bellman equation.
However, the continuous-time controller resulting from the approach in[15] is a patched LQR that cannot be
guaranteed to avoid sliding modes at the switching and, therefore, is not provably stabilizing. Previous work of
the authors has concentrated on Lyapunov-based controller synthesis methods for continuous-time piecewise-affine
(PWA) systems[10,21]. In [21], Lyapunov-based controller synthesis was formulated as a bi-convex optimization
problem. The bi-convexity structure arises because of the negativity constraint on the derivative of the piecewise-
quadratic Lyapunov function over time. This constraint leads to a bilinear matrix inequality (BMI)[8]. Bi-convex
optimization problems are non-convex,NP hard and, therefore, extremely expensive to solve globally from a
computational point of view[8]. Based on this fact, Ref.[21] has adapted three alternative iterative algorithms for
solving the non-convex problem to a suboptimal solution. Although the controller synthesis problem for piecewise-
affine systems using piecewise-quadratic Lyapunov functions is non-convex, Hassibi and Boyd[10] have shown
that for the particular case of piecewise-linear state feedback of slab piecewise-linear systems (without affine terms),
globally quadratic stabilization could be cast as a convex optimization problem. Unfortunately, if affine terms are
included in the controller, as stated in[10], “it does not seem that the condition for stabilizability can be cast
as an LMI”, which apparently destroys the convex structure of the problem, making it hard to solve globally. The
current paper shows that piecewise-affine state feedback for piecewise-affine slab systems using a globally quadratic
Lyapunov function can indeed be solved to a point near the global optimum in an efficient way by a set of LMIs.
Building on the result of[10], this paper formulates piecewise-affine state feedback as an optimization problem
involving a set of LMIs analytically parameterized by a vector. Three different algorithms will be suggested to
solve relaxations of the optimization problem to a point near the global optimum. One is based on gridding of
the domain of the parameterizing vector and yields solutions that approach the global optimum as the density
of the grid is increased. The others are based on trace maximization to approximately solve an LMI subject to
rank constraints[17], a problem that appears frequently in reduced order controller design. Although yielding
solutions approaching the global optimum, the algorithm involving gridding increases the computational cost as
the grid becomes denser and can be prohibitive for large systems. However, the gridding approach has already
been used in other recent research on analysis[9], LPV control [23], gain-scheduling control[1,2] and some
techniques already exist to alleviate the computational cost due to the gridding phase[3,22]. The algorithms for
trace maximization are inspired by the work presented in[11,7,6]. One of these algorithms is iterative but typically
involves only one or two iterations, thus typically being less computationally expensive than the gridding algorithm.
The other proposed trace maximization algorithm is simply a concave program, which is therefore efficient from
a computational point of view. It is also shown in the paper that constraints for continuity of the control inputs
can be added to the PWA state feedback problem without affecting its parameterization structure. Finally, it is
shown that piecewise-affine state feedback controller synthesis for piecewise-affine slab systems to maximize the
decay rate of a globally quadratic control Lyapunov function can be cast as a set of quasi-concave optimization
problems analytically parameterized by a vector. This problem can also be solved numerically using efficient
algorithms.

In this paper, four controller synthesis problems are formulated, relaxed to a finite set of convex optimization
problems and solved. The paper starts by presenting the assumptions that are common to all controller design
problems, followed by the statements of the four problems. Section 4 formulates the controller synthesis problems
as optimization programs. Section 5 presents several algorithms to solve the formulated problems. Finally, after two
numerical examples, the paper finishes by presenting the conclusions
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2. Problem assumptions

It is assumed that a PWA system and a corresponding partition of the state space with polytopic cellsRi , i ∈
I= {1, . . . ,M} are given (see[20] for generating such a partition). Following[14,18,10], each cell is constructed
as the intersection of a finite number(pi) of half-spaces

Ri = {x|HT
i x − g̃i <0}, (1)

whereHi = [hi1 hi2 . . . hipi ], g̃i = [g̃i1 g̃i2 . . . g̃ipi ]T. Moreover, the setsRi partition a subset of the state space

X ⊂ Rn such that
⋃M
i=1Ri =X,Ri ∩Rj = ∅, i �= j , whereRi denotes the closure ofRi . Within each cell the

dynamics are affine of the form

ẋ(t)= Aix(t)+ b̃i + Biu(t), (2)

wherex(t) ∈ Rn andu(t) ∈ Rm. For system (2), we adopt the following definition of trajectories or solutions
presented in[13].

Definition 2.1 (Johansson[13] ). Let x(t) ∈ X be an absolutely continuous function. Thenx(t) is a trajectory of
the system (2) on[t0, tf ] if, for almost allt ∈ [t0, tf ] and Lebesgue measurableu(t), the equatioṅx(t)=Aix(t)+
b̃i + Biu(t) holds forx(t) ∈ Ri .

Any two cells sharing a common facet will be calledlevel-1 neighboring cells. LetNi =
{level-1 neighboring cells ofRi}. It is also assumed that vectorscij ∈ Rn and scalarsdij exist such that the
facet boundary between cellsRi andRj is contained in the hyperplane described by{x ∈ Rn | cT

ij x − dij = 0}, for
i = 1, . . . ,M, j ∈Ni . A parametric description of the boundaries can then be obtained as[10]

Ri ∩Rj ⊆ {x = l̃ij + Fij s|s ∈ Rn−1} (3)

for i = 1, . . . ,M, j ∈Ni , whereFij ∈ Rn×(n−1) (full rank) is the matrix whose columns span the null space of
cT
ij , andl̃ij ∈ Rn is given byl̃ij = cij (cT

ij cij )
−1dij . For systems whose polytopic cells are slabs, calledpiecewise-

affine slab systems, eachRi can be outer approximated by a degenerate ellipsoidεi . This covering will be used to
describe the regions instead of the polytopic description. The ellipsoidal description of piecewise-affine systems is
useful because it often requires fewer parameters than the polytopic description and it enables to cast the synthesis
problem as an optimization program involving a set of LMIs analytically parameterized by a vector. To describe the
ellipsoidal covering, it is assumed that matricesEi andf̃i exist such that

Ri ⊆ εi , (4)

where

εi = {x| ‖Eix + f̃i‖�1}. (5)

This covering is especially useful in the case whereRi is a slab because in this case the matricesEi and f̃i are
guaranteed to exist and the covering (having one degenerate ellipsoidεi) is exact, i.e.,εi ⊆ Ri andRi ⊆ εi .
More precisely, ifRi = {x | d1<c

T
i x < d2}, then the degenerate ellipsoid is described byEi = 2cT

i /(d2 − d1) and
f̃i =−(d2+ d1)/(d2− d1). Finally, it is assumed that the control objective is to stabilize the system to a given point
xcl. With the change of coordinatesz= x− xcl the problem is transformed to the stabilization of the origin. In these
coordinates, the system dynamics (2) are

ż(t)= Aiz(t)+ bi + Biu(t), (6)
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wherebi = b̃i + Aixcl. The parametric description of boundaries (3) is written as

Ri ∩Rj ⊆ {z= lij + Fij s | s ∈ Rn−1}, (7)

wherelij = l̃ij − xcl for i = 1, . . . ,M, j ∈Ni . The description of the polytopic cells is

Ri = {z |HT
i z− gi <0}, (8)

wheregi = g̃i −HT
i xcl, and the ellipsoidal covering is described by

εi = {z| ‖Eiz+ fi‖�1}, (9)

wherefi = f̃i + Eixcl.

3. Problem statement

There are four Lyapunov-based controller synthesis problems that will be solved in this paper. For the four
problems, the piecewise-affine state feedback input signal is parameterized byKi andmi in the form

u=Kiz+mi, z ∈ Ri (10)

with −l0�mi� l0 wherel0 is a vector of upper bounds for the entries ofmi , i = 1, . . . ,M. The globally quadratic
candidate control Lyapunov function is parameterized byP = P T as

V (z)= zTPz. (11)

The four problems are:

1. Problem 1. Find a piecewise-affine state feedback controller that exponentially stabilizes the origin of (6) and
find a globally quadratic Lyapunov function that proves it.

2. Problem 2. The same as problem 1 with continuous input signals at the switching boundaries.
3. Problem 3. From the controllers that exponentially stabilize the origin, find the one that maximizes the decay

rate of the globally quadratic control Lyapunov function.
4. Problem 4. The same as problem 3 with continuous input signals at the switching boundaries.

4. Problem formulation

This section formulates mathematically the stabilization problems 1 and 2 as optimization programs involving a
set of LMIs analytically parameterized by a vector. The decay rate maximization problems 3 and 4 are formulated
as a set of quasi-concave optimization programs analytically parameterized by the same vector.

4.1. Stabilization—problem 1

The candidate control Lyapunov function (11) becomes a Lyapunov function if for fixed��0,V >0 andV̇ <−
�V . Using (6) and (10), sufficient conditions for exponential stability are thusP = P T>0 and

z ∈ Ri ⇒ [(Ai + BiKi)z+ (bi + Bimi)]TPz
+ zTP [(Ai + BiKi)z+ (bi + Bimi)] + �zTPz<0. (12)
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This expression can be recast as

z ∈ Ri ⇒
[
z

1

]T [
ĀT
i P + P Āi + �P P b̄i

(P b̄i)
T 0

] [
z

1

]
<0, (13)

whereĀi =Ai +BiKi andb̄i = bi +Bimi . If the conditionz ∈ Ri in (13) is relaxed toz ∈ εi and if expression (9)
is used along with theS-procedure[24,5] with multiplier �i <0 yields the sufficient conditionsP = P T>0 and[

z

1

]T [
ĀT
i P + P Āi + �P P b̄i

(P b̄i)
T 0

] [
z

1

]
<− �i

[
z

1

]T [
ĒT
i Ei ET

i fi

f T
i Ei f T

i fi − 1

] [
z

1

]
, (14)

Rearranging expression (14) the following sufficient conditions for quadratic stabilization are derived:

P = P T>0, �i <0, i = 1, . . . ,M,[
ĀT
i P + P Āi + �P + �iET

i Ei P b̄i + �iET
i fi

(P b̄i + �iET
i fi)

T −�i (1− f T
i fi)

]
<0. (15)

Using new variablesQ= P−1,�i = �−1
i this set of conditions are equivalent to

Q=QT>0, �i <0, i = 1, . . . ,M,[
ĀT
i Q
−1+Q−1Āi + �Q−1+ �−1

i E
T
i Ei Q−1b̄i + �−1

i E
T
i fi

(Q−1b̄i + �−1
i E

T
i fi)

T −�−1
i (1− f T

i fi)

]
<0. (16)

The following lemma will present a set of equivalent conditions to inequalities (16).

Lemma 4.1. Conditions(16)are equivalent toQ=QT>0,�i <0 and

1− f T
i fi <0, (17)

ĀiQ+QĀT
i + �Q+ �i b̄i b̄

T
i

+ (�i b̄if T
i +QET

i )�
−1
i (I − fif T

i )
−1(�i b̄if

T
i +QET

i )
T<0 (18)

for i = 1, . . . ,M.

Proof. The conditionsQ =QT>0, �i <0, i = 1, . . . ,M are the same as in (16). To derive inequalities (17) and
(18), using Schur complement, the LMI in (16) is equivalent to 1− f T

i fi <0 and

Q−1Āi + ĀT
i Q
−1+ �Q−1+ �−1

i E
T
i Ei

+ (Q−1b̄i + �−1
i E

T
i fi)�i (1− f T

i fi)
−1(Q−1b̄i + �−1

i E
T
i fi)

T<0. (19)

Left multiplying inequality (19) byQ and right multiplying it byQT =Q yields the equivalent condition

ĀiQ+QĀT
i + �Q+ �−1

i QE
T
i EiQ

T

+ (b̄i + �−1
i QE

T
i fi)�i (1− f T

i fi)
−1(b̄i + �−1

i QE
T
i fi)

T<0. (20)

The Matrix Inversion Lemma[16] states that(1− f T
i fi)

−1= 1+ f T
i (I − fif T

i )
−1fi . Using this result, expression

(20) can be rewritten as

ĀiQ+QĀT
i + �Q+ �−1

i QE
T
i EiQ

T

+ (b̄i + �−1
i QE

T
i fi)�i[1+ f T

i (I − fif T
i )
−1fi](b̄i + �−1

i QE
T
i fi)

T<0. (21)
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Expression (21) can be expanded as

ĀiQ+QĀT
i + �Q+ �−1

i QE
T
i EiQ

T + �i b̄i b̄
T
i + �−1

i (QE
T
i fi)(QE

T
i fi)

T + b̄if T
i EiQ

+QET
i fi b̄

T
i + (�i b̄if T

i +QET
i fif

T
i )�
−1
i (I − fif T

i )
−1(�i b̄if

T
i +QET

i fif
T
i )

T<0. (22)

Expression (22) can be rewritten as

ĀiQ+QĀT
i + �Q+ �i b̄i b̄

T
i + �−1

i QE
T
i (I + fif T

i )(QE
T
i )

T + b̄if T
i (QE

T
i )

T

+QET
i (b̄if

T
i )

T + (�i b̄if T
i +QET

i

−QET
i (I − fif T

i ))�
−1
i (I − fif T

i )
−1(�i b̄if

T
i +QET

i −QET
i (I − fif T

i ))
T<0. (23)

Inequality (23) can be rearranged in the form

ĀiQ+QĀT
i + �Q+ �i b̄i b̄

T
i + (�i b̄if T

i +QET
i )�
−1
i (I − fif T

i )
−1(�i b̄if

T
i +QET

i )
T

+ �−1
i QE

T
i (I + fif T

i )(QE
T
i )

T + b̄if T
i (QE

T
i )

T +QET
i (b̄if

T
i )

T + �−1
i QE

T
i (I − fif T

i )(QE
T
i )

T

− (�i b̄if T
i +QET

i )�
−1
i (QE

T
i )

T − �−1
i QE

T
i (�i b̄if

T
i +QET

i )
T<0. (24)

Finally, the last two rows of expression (24) cancel and we are left with the following conditions:

1− f T
i fi <0, (25)

ĀiQ+QĀT
i + �Q+ �i b̄i b̄

T
i + (�i b̄if T

i +QET
i )�
−1
i (I − fif T

i )
−1(�i b̄if

T
i +QET

i )
T<0. � (26)

The following result can now be derived.

Corollary 4.1. For piecewise-affine slab systems conditions(16)are equivalent to

Q=QT>0, �i <0, i = 1, . . . ,M,[
ĀiQ+QĀT

i + �Q+ �i b̄i b̄
T
i �i b̄if

T
i +QET

i

(�i b̄if
T
i +QET

i )
T −�i (1− fif T

i )

]
<0. (27)

Proof. It follows trivially from (25) to (26) applying Schur complement and using the fact that 1− f T
i fi <0 and

I − fif T
i <0 are equivalent whenfi is a scalar, which is the case for piecewise-affine slab systems.�

Remark 1. For an alternative path that enables to derive similar results in a more general setting please see Duality
Lemma 4 in[12].

For the remainder of the paper we will concentrate on piecewise-affine slab systems. Performing the substitution
Āi = Ai + BiKi and introducing new variablesYi =KiQ in (27) yields

Q=QT>0, �i <0, i = 1, . . . ,M,[
AiQ+QAT

i + BiYi + Y T
i B

T
i + �Q+ �i b̄i b̄

T
i �i b̄if

T
i +QET

i

(�i b̄if
T
i +QET

i )
T −�i (1− fif T

i )

]
<0, (28)

whereb̄i = bi + Bimi . The piecewise-affine state feedback stabilization problem is now formally defined.

Definition 4.1. The piecewise-affine state feedback synthesis problem (problem 1) is: for fixed��0

find Q,Yi,mi,�i
s.t. Q=QT>0, �i <0, (28),

−l1 ≺ Yi ≺ l1,−l0 ≺ mi ≺ l0, i = 1, . . . ,M,

where�,≺ mean component-wise inequalities andl0, l1 are given vector bounds.
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Section 5 presents three algorithms to (approximately) solve this problem. The feasibility problem 1 can be
transformed into an optimization problem if theQwith minimum condition number is sought as follows:

Definition 4.2. The minimum condition number piecewise-affine state feedback problem is: for fixed��0, �>0

min �
s.t. �>0, �I <Q< ��I,

Q=QT>0, �i <0, (28),
−l1 ≺ Yi ≺ l1,−l0 ≺ mi ≺ l0, i = 1, . . . ,M,

where�,≺ mean component-wise inequalities andl0, l1 are given vector bounds.

Usually� is selected to be unitary.

4.2. Stabilization—problem 2

To formulate problem 2, similarly to what was done in[21], the boundary description (7) is used to yield the
following constraints for continuity of the control signals:

(Ki −Kj)Fij = 0, (29)

(Ki −Kj)lij + (mi −mj)= 0, ∀j ∈Ni . (30)

These constraints for continuity cannot be directly used in the problem from Definition 4.1 becauseKi , i = 1,
. . . ,M, are not variables in that problem since the change of variablesYi = KiQ has been used. To be able to
express constraints (29)–(30) on the variablesYi , i = 1, . . . ,M, define the matrix

Xij = [Fij lij ]. (31)

Note thatXij is invertible becauseFij is full rank andlij does not belong to the column space ofFij by construction.
Using (31), (29)–(30) can be rewritten as

(Ki −Kj)Xij = [0m×(n−1) mj −mi], ∀j ∈Ni . (32)

Then, using (32), the change of variablesYi =KiQ and invertingXij , we can write the constraints onYi, Yj as

Yi = Yj + [0m×(n−1) mj −mi]X−1
ij Q, ∀j ∈Ni . (33)

The stabilization problem 2 is now formally defined.

Definition 4.3. The stabilization problem 2 is: for fixed��0

find Q,Yi,mi,�i
s.t. Q=QT>0, �i <0, (28), (33),

−l1 ≺ Yi ≺ l1,−l0 ≺ mi ≺ l0, i = 1, . . . ,M,

where�,≺ mean component-wise inequalities andl0, l1 are vector bounds.

In summary, constraints (33) must be included in the optimization problem to guarantee that the control signals
are continuous at the switching boundaries.
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4.3. Decay rate maximization—problems 3 and 4

In the problems of Sections 4.1 and 4.2 the parameter� was fixed. Let now�, the desired decay rate for the
globally quadratic control Lyapunov function, be a variable. Then, we define the performance criterion

J= �. (34)

The controller design problem is now to find from the class of control signals parameterized in the formu=Kiz+mi
in each regionRi , the one that maximizes the performanceJ. This is formally defined next.

Definition 4.4. The decay rate optimization problem 3 is:

max �
s.t. Q=QT>0, �i <0, �>0, (28),

−l1 ≺ Yi ≺ l1,−l0 ≺ mi ≺ l0, i = 1, . . . ,M,

where�,≺ mean component-wise inequalities andl0, l1 are vector bounds.

Finally, to formulate problem 4, it suffices to include the continuity constraints (33) in the optimization 4.4
yielding the following new optimization problem.

Definition 4.5. The decay rate optimization problem 4 is

max �
s.t. Q=QT>0, �i <0, �>0, (28), (33),

−l1 ≺ Yi ≺ l1,−l0 ≺ mi ≺ l0, i = 1, . . . ,M,

where�,≺ mean component-wise inequalities andl0, l1 are vector bounds.

5. Solution algorithms

Previous work[10] stated that piecewise-affine state feedback controller synthesis using a quadratic control
Lyapunov function does not seem to be convex. In fact, it is clear from (28) that this synthesis problem cannot be
formulated as one convex program because (28) is not an LMI if the parametersmi , i = 1, . . . ,M are unknown but
rather an infinite set of parameterized LMIs. However, this section shows how the piecewise-affine state feedback
synthesis problem for piecewise-affine slab systems using a globally quadratic Lyapunov function can be relaxed
and solved to a point near the global optimum in an efficient way by a finite set of LMIs. Three different algorithms
will be presented next.

5.1. Solution Algorithm #1: sampling method

The interesting observation here is that for fixedmi , i = 1, . . . ,M, expression (28) is indeed an LMI and the
problem is convex. Therefore, although the problem formulated in (28) cannot be cast as one convex program, it
is an infinite set of convex problems involving an LMI or, equivalently, an infinite number of LMIs analytically
parameterized by the vector�= [mT

1m
T
2 . . . m

T
M ]T. Since each elementmi , i = 1, . . . ,M has bounded components,

� belongs to an hypercube. Effective meshing techniques can then be used to sample the hypercube and solve a
finite number of LMIs. The following algorithm is suggested to solve the state feedback problems 1 and 2:

Algorithm #1: sampling method.

1. Define a grid for the domain of the vector� to sample it atN points,



L. Rodrigues, S. Boyd / Systems & Control Letters 54 (2005) 835–853 843

2. For fixed��0, solve the corresponding feasibility Definition 4.1 for each of the points in the grid until a feasible
point is found.

3. If step 2 is successful or if the maximum number of iterations was reached, stop. Otherwise, increase the grid
density and go back to Step 2.

Remark 2. Algorithm #1 can be changed to solve the problem stated in Definition 4.2 and store for all grid points
the one that yields the minimum value of�. The algorithm can be further improved if the derivative of the cost with
respect to� is computed at each point. Then, for each selected sample point, the next sample point should be chosen
in the direction opposite to the vector derivative. This reduces the number of points from the grid that need to be
used, thus reducing the computational burden of the algorithm.

Algorithm #1 increases the computational cost as the grid becomes denser and can be prohibitive for large systems.
However, the gridding approach has already been used in other recent research on analysis[9], LPV control[23],
gain-scheduling control[23,1,2]and some techniques already exist to alleviate the computational cost due to the
gridding phase[3,22].

5.2. Solution Algorithms #2 and #3: trace maximization methods

An alternative algorithm can be developed to solve the state feedback problem stated in Definition 4.1 when the
ellipsoidal cover for each region is formed by only one ellipsoid, which is the case forpiecewise-affine slab systems.
To develop alternative algorithms for such case, let us return to inequality (28) and perform the change of variables

Zi = �imi , (35)

Wi = �imim
T
i = �−1

i ZiZ
T
i . (36)

Then, inequality (28) can be rewritten as[
AiQ+QAT

i +BiYi+Y T
i B

T
i +�Q+�ibib

T
i +biZT

i B
T
i +BiZibT

i +BiWiBT
i (·)

((�ibi+BiZi)f T
i +QET

i )
T −�i (1−fif T

i )

]
<0. (37)

This inequality is an LMI. Note that (35) is just a change of variables becausemi is not involved in (37). After
knowing�i andZi ,mi can be obtained asmi=�−1

i Zi . Therefore, constraint (35) can be handled after the solution to
the controller design optimization problem is obtained. However, constraint (36) must be included in the controller
design optimization problem because it involves variables that appear in (37). Therefore, the following problem can
be defined, which is equivalent to problem 1:

Definition 5.1. The piecewise-affine state feedback synthesis problem (problem 1b) is: for fixed��0

find Q,Wi, Zi, Yi,mi,�i
s.t. Q=QT>0, �i <0, (36), (37),

−l1 ≺ Yi ≺ l1,−l0 ≺ mi ≺ l0, i = 1, . . . ,M,

where�,≺ mean component-wise inequalities andl0, l1 are given vector bounds.

The main obstacle here is that constraint (36) is not convex. Therefore the approach to be followed next is to
replace this constraint by a set of convex constraints and formulate a convex optimization problem whose solution
will also be a solution to problem 1b whenever the optimal value of the convex problem is zero. To do this,
observe that because�i <0, if constraint (36) is verified then rank(Wi)= 1 and by a Schur complement argument
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the following constraints are verified:

W̃i =
[
Wi Zi
ZT
i �i

]
�0, i = 1, . . . ,M. (38)

Let us now define the functional

Js
�=

∑
i

[trace(Wi)− �−1
i Z

T
i Zi]. (39)

If constraint (38) is verified, we observe thatJs�0 andJs =0 if and only ifWi =�−1
i ZiZ

T
i , i=1, . . . ,M, which

agrees with (36). This discussion motivates the definition of the following maximization problem:

Definition 5.2. The trace maximization problem (problem 1c) is: for fixed��0

max Js

s.t. Q=QT>0, �i <0, (37), (38),
−l1 ≺ Yi ≺ l1,−l̃0 ≺ Zi ≺ l̃0, i = 1, . . . ,M,

where�,≺mean component-wise inequalities,l̃0, l1 are given vector bounds andQ,Yi, Zi,Wi,�i , i = 1, . . . ,M
are the optimization variables.

From the previous discussion it is clear that if the optimal value of problem 1c in Definition 5.2 is zero, then the
solution to problem 1c automatically yields a stabilizing piecewise-affine state feedback controller with guaranteed
Lyapunov decay rate�, i.e, it yields a solution to problem 1b and to the original problem 1 in Definition 4.1. Since
the functionalJs is not convex, following the ideas expressed in[11,7], an approximation to the solution of problem
1c is obtained by the algorithm that is presented next. Let nominal values of the matricesZi at each iterationk�1
be given byZi,k−1, i = 1, . . . ,M. Let also nominal values for theS-procedure multiplier parameters be given as
�i,0 and let��i = �i − �i,0, i = 1, . . . ,M. The description of the algorithm now follows.

Algorithm #2: Trace maximization.

1.

find Q,Yi, Zi,Wi,�i
s.t. Q=QT>0, �i <0, (37), (38),

−l1 ≺ Yi ≺ l1,−l̃0 ≺ Zi ≺ l̃0, i = 1, . . . ,M.

If the problem is not feasible stop. Otherwise, set�i,0=�i , Zi,0=Zi , i=1, . . . ,M, k=1 and select a tolerance
parameter�>0.

2. Solve

max
∑
i

[trace(Wi,k)− 2�−1
i,0Z

T
i,k−1Zi,k + �−1

i,0Z
T
i,k−1Zi,k−1]

s.t. Q=QT>0, �i <0, ��i�0, (37), (38),
−l1 ≺ Yi ≺ l1,−l̃0 ≺ Zi ≺ l̃0, i = 1, . . . ,M.

3. If the absolute value ofJs obtained for the solution parameters of step 2 is less than�, or if the maximum
number of iterations has been reached, stop. Otherwise, setZi,k−1= Zi,k, i = 1, . . . ,M, k = k + 1, and go to
step 2.

Remark 3. Note that an equivalent functional to be maximized is
∑
i[trace(Wi,k)− 2�−1

i,0Z
T
i,k−1Zi,k] because the

term�−1
i,0Z

T
i,k−1Zi,k−1 is constant at iterationk.
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Theorem 5.1. The sequencẽJk
�=∑

i[trace(Wi,k)−2�−1
i,0Z

T
i,k−1Zi,k+�−1

i,0Z
T
i,k−1Zi,k−1] is upper bounded by zero

and is nondecreasing. Therefore, if there exists a feasible point for problem1c, Algorithm# 2 converges to some
objective value��0. If �= 0 then Algorithm# 2yields the solution to problem1b in Definition5.1and therefore
also the solution to problem1 in Definition4.1

Proof. The proof that the algorithm converges is divided into two parts:

1. J̃k is upper bounded by zero. As noticed previously, because of constraints (38) we have
∑
i[trace(Wi,k) −

�−1
i,k Z

T
i,kZi,k]�0. Since�i,0<0,�i,0 + ��i <0,��i�0, i = 1, . . . ,M, setting�Zi = Zi,k − Zi,k−1 yields

0�Js =
∑
i

[trace(Wi,k)− �−1
i,k Z

T
i,kZi,k]

=
∑
i

[trace(Wi,k)− (�i,0 + ��i )
−1 (ZT

i,k−1Zi,k−1+ 2ZT
i,k−1�Zi + �ZT

i �Zi)]

�
∑
i

[trace(Wi,k)− �−1
i,0 (2Z

T
i,k−1Zi,k − ZT

i,k−1Zi,k−1)]

= J̃k. (40)

2. J̃k is non-decreasing. For anyZi,k−1, sinceZT
i,k−2Zi,k−1= ZT

i,k−1Zi,k−2 and�i,0<0, i = 1, . . . ,M, then

J̃k−1(Wi,k−1, Zi,k−1)= J̃k(Wi,k−1, Zi,k−1)+
∑
i

�−1
i,0 [Zi,k−1− Zi,k−2]T [Zi,k−1− Zi,k−2]

� J̃k(Wi,k−1, Zi,k−1)

� J̃k(Wi,k, Zi,k) (41)

because(Wi,k−1, Zi,k−1) is a feasible solution and(Wi,k, Zi,k) corresponds to the optimal solution.
When�=0 notice from (40) that 0=�= J̃∞�Js�0, so this implies thatJs=0 when�=0. But, as mentioned

before,Js = 0 if and only ifWi = �−1
i Z

T
i Zi , i = 1, . . . ,M, as required. �

As will be shown in the examples, this algorithm works very well in practice and it has yielded a solution close
to the optimal valueJs = 0 in only one iteration (or two if finding a feasible point is counted as an iteration) for
the examples analyzed in Section 6.

Algorithm #3. An alternative way to find the solution to problem 1c is by solving the following concave problem:

Definition 5.3. The modified trace maximization problem (problem 1d) is: for fixed��0

max
∑
i

[trace(Wi)]
s.t. Q=QT>0, �i <0, (37), (38),

−l1 ≺ Yi ≺ l1,−l̃0 ≺ Zi ≺ l̃0, i = 1, . . . ,M.

We have seen that when the optimal value of the solution to problem 1c is zero, the solution of problem 1c is also
a solution of problem 1. The following result shows that, in this case, a more efficient way to get this solution is to
solve the concave problem 1d.

Theorem 5.2. If the optimal value of the solution to problem1c is zero then problem1d has the same solution and
this solution is also the solution to problem1.
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Proof. It follows from the following three facts:

1. the solution of problem 1c is a feasible point for problem 1d,
2. if the solution to problem 1c yields an optimal value of zero thenWi = �−1

i ZiZ
T
i , i = 1, . . . ,M implying that∑

i[trace(Wi)] =∑
i[�−1

i Z
T
i Zi], and

3. no other feasible point yields a higher value of the objective function of problem 1d because
∑
i[trace(Wi)]�∑

i[�−1
i Z

T
i Zi] given constraints (38). �

Remark 4. An approach to solve problem 1 is thus to solve problem 1d (a concave problem) and then check if
condition (36) is verified.

5.3. Solution algorithm for maximizing the decay rate

Regarding problems 3 and 4, notice that if there is only one region in the partition of the state space, thenM = 1,
m1 = 0, the system is linear and the decay rate maximization problem is a quasi-concave problem because of
the product of variables�Q (see[5] for details about an equivalent quasi-convex problem). Following the same
reasoning as the one used at the beginning of Section 5.1, for the general case of piecewise-affine systems, the decay
rate maximization problem is an infinite set of quasi-concave programs analytically parameterized by the vector�.

To solve the problems stated in Definitions 4.4 and 4.5, note that if� is again sampled using Algorithm # 1, for
each fixed value of� there is one quasi-concave optimization problem to be solved. For each of these quasi-concave
optimization problems, a lower bound to the corresponding maximum value of� can then be found, as tight as
desired, using the familiar bisection algorithm.

Algorithm #4: Bisection.

1. Set�=0, and solve the corresponding convex stabilization problem 1 (or problem 2). If the problem is infeasible,
stop because there is no piecewise-affine state feedback controller that can quadratically stabilize the system.
If the problem is feasible, set�lower= 0 and�= � for small� and go to step 2.

2. Solve stabilization problem 1 (or problem 2) with�← 10� until an infeasible solution is reported.
3. Set�upper= �, where� is the one that made problem 1 (or problem 2) infeasible in step 2. Given the desired

degree of� tightness of the lower bound, choose the tolerance tol= �.
4. While �upper− �lower< tol solve the convex stabilization problem 1 (or problem 2) with� ← 0.5�lower +

0.5�upper. If the problem is feasible set�lower= �, otherwise set�upper= �
5. The�-tight lower bound is�lower and the�-optimal controller and control Lyapunov function parameters are

the ones that are provided as the solution to problem 1 (or problem 2) using�= �lower.

This procedure should be done for each point in the grid. Finally, the point in the grid that has the highest value
of � is selected.

6. Examples

The purpose of this section is to show that the formulation for controller synthesis presented in this paper is
applicable to systems in many different areas. Two examples will be shown: one in the area of circuit control and
another in the area of vehicle control. For both examples, the controller synthesis can now be obtained by solving
globally only one concave program as opposed to previously existing techniques that could only solve locally a
bi-convex optimization problem in a set of iterations (each involving one or two convex programs).
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Fig. 1. Circuit with nonlinear resistor.

6.1. Example 1

This example considers a circuit with a nonlinear resistor shown inFig. 1 [10,19]. This nonlinear resistor model is
sometimes used to approximate the behavior of a tunnel diode. With time expressed in 10−10 seconds, the inductor
current in milliAmps and the capacitor voltage in Volts, the dynamics are written as[

ẋ1
ẋ2

]
=

[−30 −20
0.05 0

] [
x1
x2

]
+

[
24

−50g(x2)

]
+

[
20
0

]
u.

Following[10], the characteristic of the nonlinear resistorg(x2) is defined to be the piecewise-affine function shown
in Fig. 2which generates the polytopic regions

R1= {x ∈ R2 | − L<x2<0.2}, R2= {x ∈ R2 |0.2<x2<0.6}, R3= {x ∈ R2 |0.6<x2<L},
whereL was selected to beL= 2× 104. The (exact) ellipsoidal covering is

E1= 2

0.2+ Le1, E2= 2

0.6− 0.2
e2, E3= 2

L− 0.6
e3,

f̃1= L− 0.2

L+ 0.2
, f̃2=−0.6+ 0.2

0.6− 0.2
, f̃3=−L+ 0.6

L− 0.6
,

wheree1= e2= e3= [0 1]. Assume that the affine terms of the control law have magnitude bounded by 0.2 so that
l0=[0.2 0.2 0.2]T. The objective is to design a piecewise-affine state feedback controller to stabilize the open-loop
equilibrium point of regionR3 so

xcl = x3
ol =

[
0.3714
0.6429

]
.

For regionR3 we then must havem3 = 0 so thatxcl is the closed-loop equilibrium point of the dynamics that are
valid within this region. We start by applying Algorithm #2 with�= 1× 10−9, l1= 1× 10−9 andl̃0= 1× 10−10.
After only one iteration, the algorithm found a solution with|Js | = 6.07× 10−11. Since Algorithm #2 found a



848 L. Rodrigues, S. Boyd / Systems & Control Letters 54 (2005) 835–853

0

0.2

0.1

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
g(

x 2
)

x 10-3

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x2

R1 R2 R3

xeq,1

xeq,2

xeq,3

lode line

Fig. 2. Nonlinear resistor characteristic.

solution whose optimal value is very close to zero, based on the result of theorem 5.2, Algorithm #3 was then used
and yielded the following controller (for which|Js | = 1.16× 10−12):

K1= [1.390 −0.329], m1= 0.000,

K2= [1.432 +0.372], m2= 0.000.

K3= [1.379 −0.484], m3= 0.000.

Finally, if each of the affine termsm1 andm2 are now sampled in the interval[−0.2,0.2] with increments of 0.1,
a mesh is obtained for the domain of� = [m1m2]T with 25 points. A loop with Algorithm #4 inside Algorithm #1
was then used to maximize the decay rate of the Lyapunov function subject to the constraint�<1 (to impose a
maximum value for alpha and thus reduce the execution time of the algorithm). The resulting controller yielded
�= 0.993 and is described by

K1= [1.339 −7.067], m1= 0.200,

K2= [1.261 −8.527], m2=−0.200,

K3= [1.310 −10.547], m3= 0.000.

The simulation results for the initial conditionsx0
1 = 0.5, x0

2 = 0.1 (inside regionR1) are overplotted inFig. 3 for
the controller that maximizes the decay rate and the controller obtained from Algorithm # 3. It can be clearly seen
that the controller that maximizes the decay rate is significantly faster.
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Fig. 3. Comparison between the controllers from Algorithms #3 (dashed) and #4 (solid).

6.2. Example 2

The objective of this example is to design a controller that forces a cart on thex–y plane to follow the straight
line y= 0 with a constant velocityu0= 1 m/s. It is assumed that a controller has already been designed to maintain
a constant forward velocity. The cart’s path is then controlled by the torqueT about thez-axis according to the
following dynamics:

[ 	̇
ṙ

ẏ

]
=

[0 1 0
0 − k

I
0

0 0 0

] [	
r

y

]
+

[ 0
0

u0 sin(	)

]
+

[ 0
1
I
0

]
T , (42)

where	 is the heading angle with time derivativer, I = 1 kg m2 is the moment of inertia of the cart with respect
to the center of mass,k = 0.01 Nms is the damping coefficient, andT is the control torque. The state of the system
is (x1, x2, x3) = (	, r, y). Assume the trajectories can start from any possible initial angle in the range	0 ∈
[−3
/5,3
/5] and any initial distance from the line. The function sin(	) is approximated by a piecewise-affine
function (see[20]) yielding a piecewise-affine slab system with 5 regions as follows:

R1=
{
x ∈ R3 | x1 ∈

(
−3


5
,−


5

)}
,

R2=
{
x ∈ R3 | x1 ∈

(
−


5
,− 


15

)}
,

R3=
{
x ∈ R3 | x1 ∈

(
− 


15
,



15

)}
,
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Fig. 4. Time response for	0 = 
/2, r0 = 0 rad/s, y0 = 3 m.

andR4 is symmetric toR2 andR5 is symmetric toR1 , all with respect to the origin. For this system, a controller
was designed to stabilize the origin (which lies inside regionR3) using Algorithm #2. After only one iteration, the
algorithm found a solution with|Js | = 9.58× 10−11. Since Algorithm #2 found a solution whose optimal value
is very close to zero, based on the result of Theorem 5.2, Algorithm #3 was then used and yielded the following
controller (for which|Js | = 1.84× 10−12):

K1= [−49.907 −9.468 −13.925], m1= 0.00,

K2= [−48.315 −9.330 −13.812], m2= 0.00,

K3= [−50.147 −9.468 −13.742], m3= 0.00,

K4= [−48.316 −9.330 −13.812], m4= 0.00,

K5= [−49.907 −9.468 −13.925], m5= 0.00.

The simulations results for this controller are shown inFigs. 4and5 The trajectory on thex–y plane is shown in
Fig. 6where it is clear that the controller makes the cart trajectory converge to the desired straight line.

7. Conclusions

This paper has presented four piecewise-affine state feedback controller synthesis problems. The two stabilization
problems were formulated as an infinite set of convex feasibility problems analytically parameterized by a vector.The
two decay rate maximization problems were formulated as an infinite set of quasi-concave optimization problems
analytically parameterized by the same vector. The feasibility problems can be solved by a finite set of LMIs either
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by discretizing the domain of the parameterizing vector or by using the trace maximization algorithms proposed
in the paper. It was shown that these algorithms converges and if the functional value of the solution is zero then
a feasible point of the original problem was found. The decay rate maximization problems can also be solved to a



852 L. Rodrigues, S. Boyd / Systems & Control Letters 54 (2005) 835–853

given desired approximation level to the global optimum by discretizing the domain of the parameterizing vector.
If each optimization problem takes approximately 10 s to be solved in a standard pentium 4 personal computer, the
problems formulated in this paper can be approximately solved in a matter of few hours of computation time for
a number of discretizing points up to 5000. There are more effective methods of discretization that can save a lot
of computation time. For example, the gradient with respect to� can be used to decide which points of the mesh
should be selected at each iteration. Alternative techniques, using for example directional convexity concepts[3],
have been recently developed to alleviate the computational effort of gridding. Whichever method presented in the
current paper is used, the fundamental conclusion is that it is now possible to solve piecewise-affine state feedback
synthesis to suboptimal solutions that can be proved to be close to the global optimum. The existing methods from
previous research were either not able to give this guarantee or were not able to include affine terms in the control
law. On one hand, if affine terms are not included in the control law then the synthesis problem is restricted to
systems for which the closed-loop equilibrium points of all regions are placed at the origin. This might not be
possible for certain systems and, even if it is possible, it will limit performance. In Example 6.1 shown in this
paper, the closed-loop equilibrium points of all regions are different and only the equilibrium point of region 3 is at
the translated origin. On the other hand, bi-convex optimization problems are computationally expensive to solve
globally. If local solution algorithms are used to perform the design then there are no guarantees that the suboptimal
solution found is close to the global optimum. The biggest disadvantage of local algorithms to solve the bi-convex
optimization problem is that the solution heavily depends on the initial point and it is not usually clear how to get
good initial points. It should be mentioned however, that another advantage of the new algorithms proposed in the
paper is that they can provide good initial points for the bi-convex optimization. The importance of this fact is that a
piecewise-quadratic Lyapunov function can then be searched for to see if the performance of the resulting controller
can be improved over the performance of the controller obtained for a globally quadratic Lyapunov function.
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